
Appendix B

The groups of the Standard Model

The Standard Model is constructed by insisting that the equations of the model retain the
same form after certain transformations. For instance, we require that the equations take
the same form in every inertial frame of reference, so that they are covariant under a
Lorentz transformation; this may be a rotation of axes or a boost, or a combination of
rotation and boost. The Lagrangian density that describes the Standard Model takes the
same form in the new coordinate system, and the Lorentz transformation is said to be a
symmetry transformation. In the Standard Model, as well as symmetries under coordinate
transformations, there are ‘internal’ symmetries of the particle fields. The corresponding
symmetry transformations are conveniently represented by matrices.

It is characteristic of symmetry transformations that they satisfy the mathematical
axioms of a group, which we set out below. In this appendix we consider some properties
of the groups that play a special role in the Standard Model.

B.1 Definition of a group

A group G is a set of elements a, b, c, . . ., together with a rule that combines any two
elements a,b of G to form an element ab, which also belongs to G, satisfying the
following conditions.

(i) The rule is associative: a(bc) = (ab)c.
(ii) G contains a unique identity element I such that, for every element a of G,

aI = I a = a.

(iii) For every element a of G there exists a unique inverse element a−1 such that

aa−1 = a−1a = I.

If also ab = ba for all a, b the group is said to be commutative or Abelian.
It is usually easy to determine whether or not a given set of elements and their

combination law satisfy these axioms. For example, the set of all integers forms an
Abelian group under addition, with 0 the identity element. The set of all non-singular
n × n matrices (n > 1) forms a non-Abelian group under matrix multiplication. The
permutations of the numbers 1, 2, . . ., n form a group which has n! elements; this is an
example of a finite group. The group of rotations of the coordinate axes is a
three-parameter continuous group: an element is specified by three parameters that take on
a continuous range of values. We shall be concerned principally with groups of this type.
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228 Appendix B: Groups of the Standard Model

B.2 Rotations of the coordinate axes, and the group SO(3)

Consider a rotation of the coordinate axes about the origin. If the coordinates of a point P
are (x1, x2, x3) in a frame of reference K, and (x ′1, x ′2, x ′3) in a frame K ′, rotated relative
to K, the x ′i are related to the xi by a real linear transformation of the form

x ′i = Ri
j x

j . (B.1)

R = (Ri
j ) is the rotation matrix. For example, a rotation of the axes through an angle θ

about the 03 axis in a right-handed sense is given by

x ′1 = x1 cos θ + x2 sin θ,
x ′2 = −x1 sin θ + x2 cos θ,
x ′3 = x3,

and corresponds to the matrix

R03(θ ) =
(

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

)
. (B.2)

We may regard the x ′i and xi as 3 × 1 (column) matrices x′ and x, and write the
transformation (B.1) as

x′ = Rx.

The transpose xT of x is a 1 × 3 (row) matrix, and the scalar product of two vectors x and
y is

x ′y′ = xTy = yTx.

In particular, the length OP is given by
√

(xTx). Since a rotation of axes preserves scalar
products,

x′Ty′ = xTRTRy = xTy.

This holds for all pairs x, y. Hence

RTR = I (B.3)

where I is the identity matrix: hence the inverse of R is the transpose RT of R and R is
said to be an orthogonal matrix.

Since det RT det R = det(RTR) = det I = 1 and det RT = det R, (B.4)

(det R)2 = 1, det R = ±1.

Matrices corresponding to pure or ‘proper’ rotations have det R = +1. We can see this
by noting that the identity rotation is a proper rotation, and det I = 1. Any proper rotation
can be constructed as a sequence of infinitesimal rotations starting from I and hence by
continuity also has determinant +1.

The product of two orthogonal matrices is an orthogonal matrix, since

(R1R2)T = R2
TR T

1 = R2
−1R1

−1 = (R1R2)−1,

and if det R1 = 1 and det R2 = 1,

det(R1R2) = det R1 det R2 = 1.

Hence real orthogonal 3 × 3 matrices with det R = 1 form a group under matrix
multiplication. This group is called the special orthogonal group and is denoted by SO(3).

Orthogonal matrices with det R = −1 also preserve scalar products. It is easy to see
that inversion of the coordinate axes in the origin, x ′i = −xi , corresponds to an
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orthogonal matrix with determinant −1; a general ‘improper’ rotation corresponds to
inversion in the origin together with a proper rotation. Improper rotation matrices do not
form a group, since the product of two improper rotations is a proper rotation.

A general proper rotation may be built up as a sequence of rotations about three
different axes. For example, consider

R(ψ, θ, φ) = R03′′ (ψ)R02′ (θ )R03(φ), (B.5)

in an obvious notation. The direction of 03′′ is defined by θ and φ, and then ψ defines the
final orientation of 01′′2′′ in the plane perpendicular to 03′′. Thus each element of SO(3) is
specified by just three parameters. (ψ, θ, φ are known as the Euler angles.)

We can also interpret the transformation (B.1) in an active sense. Consider a system
described by a wave function Φ(x) in the frame K. The system is described by
Φ′(x′) = Φ(R−1x′) in the frame K′. This is the passive interpretation. We might,
alternatively, drop the primes on the coordinates and give this equation an active
interpretation, supposing that the axes have been held fixed and the system given the
inverse rotation R−1. The wave function of the rotated system is Φ′(x) = Φ(R−1x).

B.3 The group SU(2)

An n × n matrix U is unitary if UU† = U†U = I. The product of two unitary matrices is
unitary. Hence n × n unitary matrices form a group under matrix multiplication, denoted
by U (n).

Since

det(UU†) = det U det U∗ = det U(det(U)∗ = det I = 1,

we may write det U = einα , where α is real.
The special unitary group SU(2) is the group of all 2 × 2 unitary matrices with

determinant equal to 1. These form a group, since if det U1 = 1 and det U2 = 1 then
det(U1U2) = det U1 det U2 = 1. SU(2) is a sub-group of U(2). Every element of U(2) is
the product of a phase factor eiα , which is an element of U(1), and an element of SU(2).

The group SU(2) is related in a remarkable way to the rotation group SO(3) described
in Section B.2. It is central to the electroweak sector of the Standard Model.

Any element of U(2) can be put in the form

U = exp (iH)

where H is a Hermitian matrix (Appendix A). A general 2 × 2 Hermitian matrix may be
taken as

H =
(

α0 + α3 a1 − iα2

α1 + iα2 α0 − α3

)

where the αμ(μ = 0, 1, 2, 3) are four real parameters. This choice enables us to write

H = α0I + αkσ k, (B.6)

where the index k runs from 1 to 3, and

σ 1 =
(

0 1
1 0

)
, σ 2 =

(
0 −i
i 0

)
, σ 3 =

(
1 0
0 −1

)
.

The σ k are the same as the Pauli spin matrices, and hence they satisfy

(σ 1)2 = (σ 2)2 = (σ 3)2 = I; σ jσ k + σ kσ j = 0, j �= k;

[σ 1, σ 2] = σ 1σ 2 − σ 2σ 1 = 2iσ3, etc.
(B.7)
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230 Appendix B: Groups of the Standard Model

Since the unit matrix I commutes with all matrices, a general member of U(2) can be
written as

U = exp i(α0I + αkσ k) = exp(iα0) exp(iαkσ k).

The phase factor exp(iα0) belongs to the group U(1). Hence elements of SU(2) are of the
form

Us = exp(iαkσ k). (B.8)

An element may be specified by the three parameters αk ; the matrices σ k are the
corresponding generators of the group. Each has zero trace (see Problem B.1).

The algebra of the σ k matrices enables us to write these elements in closed form. Let us
formally consider the αk to make up a vector α = αα̂, where α̂ is the corresponding unit
vector, and write the ‘scalar product’ αkσ k as αα̂ · σ. It is easy to see that

(α̂ · σ)2 = α̂ jσ j α̂kσ k = α̂ j α̂ j I = I,

since σ jσ k + σ kσ j = 0 and (σ 1)2 = I, etc. Then the power series expansion of (B.8)
gives

Us = I + iα(α̂ · σ) + (iα)2

2!
I + · · ·

= cos αI + i sin α(α̂ · σ). (B.9)

To establish the connection between the groups SU(2) and SO(3), we associate with
each point x the Hermitian matrix

X(x) =
(

x3 x1 − ix2

x1 + ix2 − x3

)
. (B.10)

This matrix has Tr X = 0 and det X = − xk xk .
Consider now an element U of SU(2) and the matrix

X′= UXU†. (B.11)

(We are now dropping the suffix s on U.)

X′ is also Hermitian, and Tr X′ = Tr(UXU†) = Tr(U†UX) = Tr X = 0. Hence X′ is of
the form

X′ =
(

x ′3 x ′1 − ix ′2
x ′1 + ix ′2 −x ′3

)

where the x ′k are related to the xk by a real linear transformation.

Also det X′ = det U det X det U† = det(UU†) det X = det X, so that x ′k x ′k = xk xk .
Since the length of x is preserved and the transformation may be continuously generated
from the identity matrix (see Problem B.3), the transformation must correspond to a
proper rotation of the coordinate axes and hence to a rotation matrix R(U).

As an example, the SU(2) matrix

U = exp[i(θ/2)σ 3] = cos(θ/2)I + i sin(θ/2)σ 3 =
(

eiθ/2 0
0 e−iθ/2

)
, (B.12)

where we have used (B.9), corresponds to the rotation matrix R03(θ ) of equation (B.2).
This may be verified by direct matrix multiplication.

The matrices U and −U give the same transformation (B.11), and hence correspond to
the same rotation matrix: to every element of SO(3) there correspond two elements of
SU(2), differing by a factor of −1. In the example (B.12) above, rotations of θ and θ + 2π
about the 03 axis correspond to the same rotation matrix, but give matrices U and −U,
respectively in SU(2).
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B.4 The group SL(2,C) and the proper Lorentz group

The set of all 2 × 2 matrices with complex elements and with determinant equal to 1
evidently forms a group under matrix multiplication. This group is denoted by SL(2,C). It
is related to the group of proper Lorentz transformations in much the same way as the
group SU(2) is related to the group of proper rotations.

We now associate with each point x = (x0, x) in space-time the general Hermitian
matrix

X(x) =
(

x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
(B.13)

which has

det X = (x0)2 − xk xk .

Consider an element M of SL(2,C) and the matrix X′ given by

M†X′M = X or X′ = (M−1)†XM−1. (B.14)

Then X′ is also Hermitian and hence we can write

X′ =
(

x ′0 + x ′3 x ′1 − ix ′2
x ′1 + ix ′2 x ′0 − x ′3

)
,

where the x ′μ are related to the xμ(μ = 0, 1, 2, 3) by a real linear transformation. Also

det M†X′M = det M† det X′ det M = det X′ = det X

so that

(x ′0)2 − x ′k x ′k = (x0)2 − xk xk .

Hence the matrix M corresponds to a Lorentz transformation matrix L(M). The matrices
L(M) form a group that includes the identity transformation L(I) = I, and hence by
continuity correspond to proper Lorentz transformations.

A general proper Lorentz transformation between frames K and K′ is specified by six
parameters: three parameters to give the velocity v of K′ relative to K and three parameters
to give the orientation of K′ relative to K. A general 2 × 2 complex matrix is defined by
eight real parameters. The condition det M = 1 reduces this number to six. Hence a matrix
M can be found corresponding to every proper Lorentz transformation. The matrices M
and −M give the same transformation (B.14): two elements of SL(2,C) correspond to each
element of the proper Lorentz group.

The matrix

P = exp[(θ/2)σ 3] = cosh(θ/2)I + sinh(θ/2)σ 3 =
(

eθ/2 0
0 e−θ/2

)
(B.15)

corresponds to the Lorentz boost (2.3) of Chapter 2, as may be verified by direct matrix
multiplication.

More generally, a Lorentz boost from a frame K to a frame K′ moving with velocity
ν = tanh θ in the direction of the unit vector v̂ is given by

P = exp[(θ/2)v̂·σ] = cosh(θ/2)I + sinh(θ/2)v̂·σ
where σ = (

σ 1, σ 2, σ 3
)
.

Note that, since the matrices σ k are Hermitian, so also is any matrix P corresponding to
a Lorentz boost.
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B.5 Transformations of the Pauli matrices

In discussing Lorentz transformations, it is convenient to write I = σ 0 and introduce the
notation

σμ = (σ 0, σ 1, σ 2, σ 3), σ̃ μ = (σ 0, −σ 1, −σ 2, −σ 3). (B.16)

Then from (B.13)

X(x) = x0σ 0 + xkσ k = xμσ̃ μ, X′(x ′) =x ′
μσ̃ μ.

The relation

M†X′M = X

gives

x ′
μM†σ̃ μM =xν σ̃

ν = Lμ
νσ̃

νx ′
μ

(see Problem 2.2). Since the x ′
μ are arbitrary, we can deduce

M†σ̃ μM =Lμ
νσ̃

ν . (B.17)

Also (Problem B.6)

Lμ
ν = 1

2
Tr(σ̃ ν M†σ̃ μM).

Similarly, by considering the matrix

X1(x) = x0σ 0 − xkσ k = xνσ
ν,

which also has det X1 = (x0)2 − xk xk , we can show that there exists a matrix N belonging
to SL(2,C) such that

N†σμN = Lμ
νσ

ν. (B.18)

The matrices M and N are evidently related. The reader may verify directly that when
M = P, where P is given by (B.15) and corresponds to a Lorentz boost, we can take
N = P−1, and this will be true for a Lorentz boost in any direction. For a pure rotation of
axes, we take M = N = U, where U is a unitary matrix. A general M can be constructed
as a product of a rotation followed by a boost: M = PU. The corresponding N is given by
N = P−1U.

Now U satisfies UU† = I, and we noted that P is Hermitian, P = P†. Hence

NM† = (P−1U)(U†P) = I, (B.19)

so that N is the inverse of M†.
The results (B.17) and (B.18), together with (B.19), are useful in constructing Lorentz

scalars, vectors and higher order tensors.

B.6 Spinors

We define a left-handed spinor

l =
(

l1

l2

)

as a complex two-component entity that transforms under a Lorentz transformation with
matrix L(M) by the rule

l′ = Ml (B.20)

i.e. l ′a = Mablb, where a and b take on the values 1, 2.
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We similarly define a right-handed spinor

r =
(

r1

r2

)
(B.21)

as a two-component entity that transforms by

r′ = Nr.

Electrons, and all other fermions in the Standard Model, are described by spinor fields.
The nomenclature of ‘left-handed’ and ‘right-handed’ is elucidated in Section 6.3.

Spinors have the remarkable property that they can be combined in pairs to make
Lorentz scalars, Lorentz four-vectors and higher order Lorentz tensors. For example,
l†r =l∗ ara is a (complex) Lorentz scalar, since

l′†r′ = (MI)
†Nr = l†M†Nr = l†r, (B.22)

where we have used (B.19).
The quantities

l†σ̃ l = l†(σ 0, −σ 1, − σ 2, − σ 3)l,
r†σr = r†(σ 0, σ 1σ 2,σ 3)r,

transform like (real) contravariant four-vectors, since

l′†σ̃ μl′ = l†M†σ̃ μMl =Lμ
ν(l†σ̃ ν l), (B.23)

using (B.17), and

r′†σμr′ = r†N†σμNr =Lμ
ν(r†σ νr), (B.24)

using (B.18).

B.7 The group SU(3)

The special unitary group SU(3) is the group of all 3 × 3 unitary matrices with
determinant equal to 1. Our discussion will parallel our discussion of the group SU(2) in
Section B.3. An element of SU(3) can be expressed as

U = exp(iH)

where H is a 3 × 3 Hermitian matrix. A general 3 × 3 Hermitian matrix is specified by
32 = 9 real parameters (Appendix A). The condition det U = 1, or equivalently TrH = 0
(Problem B.1), reduces this number to 8. In place of the σ k matrices used in Section B.3,
we have the eight traceless Hermitian matrices introduced by Gell-Mann:

λ1 =
(

0 1 0
1 0 0
0 0 0

)
, λ2 =

(
0 −i 0
i 0 0
0 0 0

)
λ3 =

(
1 0 0
0 −1 0
0 0 0

)
,

λ4 =
(

0 0 1
0 0 0
1 0 0

)
, λ5 =

(
0 0 −i
0 0 0
i 0 0

)
, λ6 =

(
0 0 0
0 0 1
0 1 0

)
,

λ7 =
(

0 0 0
0 0 −i
0 i 0

)
, λ8 = (1/

√
3)

(
1 0 0
0 1 0
0 0 −2

)
.

(B.25)
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A general traceless Hermitian matrix is of the form

H = α1λ1 + α2λ2 + · · · + α8λ8

=
⎛
⎝α3 + α8/

√
3 α1 − iα2 α4 − iα5

α1 + iα2 −α3 + α8/
√

3 α6 − iα7

α1 + iα5 α6 + iα7 −2α8/
√

3

⎞
⎠ (B.26)

The matrices λa satisfy the commutation relations

[λa, λb] = 2i
8∑

c=1

fabcλc (B.27)

where the fabc are the structure constants (cf. equations (B.7)). The fabc are odd in the
interchange of any pair of indices, and the non-vanishing fabc are given by the
permutations of f123 = 1, f147 = f246 = f257 = f345 = f516 = f637 = 1/2, f458 =
f678 = √

3/2.
The matrices also have the property

Tr(λaλb) = 2δab, (B.28)

where δab is the Kronecker δ.
These results may be verified by direct calculation.

Problems

B.1 Show that if U = exp(iH) and Tr H = 0, then det U =1. (Make H diagonal with a
unitary transformation. U is then also diagonal.)

B.2 Verify that the SU(2) matrices exp[i(θ/2)σ 1] and exp [i(θ/2)σ 2] correspond to rota-
tions R01(θ ) and R02(θ ), respectively.

B.3 Show that the SU(2) matrix corresponding to the rotation R(ψ, θ, φ) (equation (B.5))
is (

eiψ/2 cos(θ/2)eiφ/2

−e−iψ/2 sin(θ/2)eiφ/2

eiψ/2 sin(θ/2)e−iφ/2

e−iψ/2 cos(θ/2)e−iφ/2

)
.

B.4 Show that l†σ̃ μσ νr transforms as a tensor and l†(σ̃ μσ ν+σ̃ νσμ)r = 2gμν l†r.

B.5 Show that the rotation matrix Ri
j of equation (B.1) is related to the SU(2) matrix U

of (B.11) by

Ri
j=

1

2
Tr(Uσ i U†σ j).

B.6 Show from (B.17) that

Lμ
ν=

1

2
Tr(σ̃ ν M†σ̃ μM).
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