(C) Canadian Mathematical Society 2010

## Multidimensional Exponential Inequalities with Weights

Dah-Chin Luor

Abstract. We establish sufficient conditions on the weight functions $u$ and $v$ for the validity of the multidimensional weighted inequality

$$
\left(\int_{E} \Phi\left(T_{k} f(x)\right)^{q} u(x) d x\right)^{1 / q} \leq C\left(\int_{E} \Phi(f(x))^{p} v(x) d x\right)^{1 / p},
$$

where $0<p, q<\infty, \Phi$ is a logarithmically convex function, and $T_{k}$ is an integral operator over star-shaped regions. The condition is also necessary for the exponential integral inequality. Moreover, the estimation of $C$ is given and we apply the obtained results to generalize some multidimensional Levin-Cochran-Lee type inequalities.

## 1 Introduction

We investigate the weighted modular inequality of the form

$$
\begin{equation*}
\left(\int_{E} \Phi\left(T_{k} f(x)\right)^{q} u(x) d x\right)^{1 / q} \leq C\left(\int_{E} \Phi(f(x))^{p} v(x) d x\right)^{1 / p} \tag{1.1}
\end{equation*}
$$

where $0<p, q<\infty, u$ and $v$ are weight functions, $\Phi$ is logarithmically convex, and $T_{k}$ is the integral operator defined by

$$
T_{k} f(x):=\int_{S_{x}} k(x, t) f(t) d t, \quad x \in E,
$$

which averages functions over dilations of a fixed star-shaped region $S$ in $\mathbb{R}^{n}$ (the terms $S, S_{x}$, and $E$ are defined below). The kernel $k$ is a positive function defined on $\Omega=\left\{(x, t) \in E \times E: t \in S_{x}\right\}$. A weight function is a measurable function which is positive and finite almost everywhere on $E$. The function $\Phi$ is said to be logarithmically convex on an open interval $I \subseteq(-\infty, \infty)$ if $\Phi$ is defined and positive on $I$ such that $\log \Phi$ is convex on $I$. We also assume that $\Phi$ takes its limits, finite or infinite, at the ends of $I$. In particular, if $\Phi(x)=e^{x}$ and we replace $f$ by $\log f$, then (1.1) can be reduced to

$$
\begin{equation*}
\left(\int_{E}\left(G_{k} f(x)\right)^{q} u(x) d x\right)^{1 / q} \leq C\left(\int_{E} f(x)^{p} v(x) d x\right)^{1 / p} \tag{1.2}
\end{equation*}
$$

[^0]Published electronically April 6, 2010.
This research is supported by the National Science Council, Taipei, ROC, under Grant NSC 95-2115-M-214-004.

AMS subject classification: 26D15, 26D10.
Keywords: multidimensional inequalities, geometric mean operators, exponential inequalities, starshaped regions.
where $f \geq 0$ and $G_{k}$ is the geometric mean operator defined by

$$
G_{k} f(x):=\exp \left(\int_{S_{x}} k(x, t) \log f(t) d t\right)
$$

In the one-dimensional case with $S_{x}=(0, x]$, inequality (1.1) has been considered by Levinson [18] for $k(x, t)=r(t) /\left(\int_{0}^{x} r(t) d t\right), p=q=1$, and $u(x)=v(x)=1$ with $C=e$, and by Heinig [ 9 , Theorem 2.2(ii)] for $k(x, t)=1 / x, p=q=1$, and $v(x)=$ $x^{\alpha} \int_{x}^{\infty} t^{-\alpha-1} u(t) d t, \alpha>0$ with $C=e^{\alpha}$. Inequality (1.2) has also been investigated by many authors (see $[2,4,7,8,10-13,15-17,19-21,23,24]$ and the references therein). The higher dimensional theory of (1.1) and (1.2) for $k(x, t)=\alpha\left|S_{x}\right|^{-\alpha}\left|S_{t}\right|^{\alpha-1}$ is discussed by Heinig [9], Drábek-Heinig-Kufner [5], Jain-Persson-Wedestig [14] for $\alpha=1$ and by Čižmešija-Pečarić-Perić [3] for $\alpha>0$. In these papers, $E=\mathbb{R}^{n}, S_{x}$ is the ball $B(|x|)$ in $\mathbb{R}^{n}$ centered at the origin and of radius $|x|$, and $\left|S_{x}\right|$ is the volume of $S_{x}$. Gupta et al. [6] also considered (1.2) for the case when $\alpha=1, E$ is a spherical cone in $\mathbb{R}^{n}$, and $S_{x}$ is the part of $E$ such that the length of every element in $S_{x}$ is less than $|x|$.

We call a region $S$ smoothly star-shaped if there exists a nonnegative, piece-wise- $C^{1}$ function $\psi$ defined on the unit sphere in $\mathbb{R}^{n}$ with $S=\left\{x \in \mathbb{R}^{n} \backslash\{0\}:|x| \leq \psi(x /|x|)\right\}$. Throughout this paper, we denote $E=\bigcup_{\alpha>0} \alpha S$, where $S \subseteq \mathbb{R}^{n}$ is a smoothly starshaped region. For nonzero $x \in E$, there is a least positive dilation $\alpha_{x} S$ that contains $x$. We write $S_{x}=\alpha_{x} S$. Let $B=\left\{x \in \mathbb{R}^{n} \backslash\{0\}:|x|=\psi(x /|x|)\right\}$ and note that $x / \alpha_{x} \in B$ so that $x$ is on the boundary of $S_{x}$. For nonzero $x, t \in E$, we make the changes of variables $x=s \sigma$ and $t=y \tau$, where $s, y \in(0, \infty)$ and $\sigma, \tau \in B$. Then $\alpha_{x}=s$, and for any measurable $g$, we have

$$
\begin{align*}
\int_{S_{x}} g(t) d t & =\int_{0}^{s} \int_{B} g(y \tau) y^{n-1} d \tau d y \\
\int_{E \backslash S_{x}} g(t) d t & =\int_{s}^{\infty} \int_{B} g(y \tau) y^{n-1} d \tau d y \tag{1.3}
\end{align*}
$$

The volume of $S_{x}$, denoted by $\left|S_{x}\right|$, is then $\left|S_{x}\right|=\int_{S_{x}} d t=s^{n}|B| / n$.
In this paper, we consider $k: \Omega \mapsto(0, \infty)$ and $k$ satisfies the following conditions.
(K1) $\int_{S_{x}} k(x, t) d t=1$ for all nonzero $x \in E$.
(K2) For any $\epsilon>0$, there exists $M(\epsilon)>0$ such that

$$
\exp \left(\int_{S_{x}} k(x, t) \log \left[k(x, t)^{-1}\left|S_{t}\right|^{\epsilon-1}\right] d t\right) \geq M(\epsilon)\left|S_{x}\right|^{\epsilon} \text { for all nonzero } x \in E
$$

Our main object is to find a condition on weight functions $u, v$ so that (1.1) holds with a finite constant $C$ independent of $f$. In particular, a characterization is established for (1.2) to hold. The estimation of $C$ is also given. Furthermore, we discuss some applications of our main results to the case $k(x, t)=\left|S_{x}\right|^{-1} \ell\left(\left|S_{t}\right| /\left|S_{x}\right|\right)$, which includes $k(x, t)=\alpha\left|S_{x}\right|^{-\alpha}\left|S_{t}\right|^{\alpha-1}$ and $\alpha\left|S_{x}\right|^{-\alpha}\left(\left|S_{x}\right|-\left|S_{t}\right|\right)^{\alpha-1}$ for $\alpha>0$. Our results are generalizations of works of $[3,5,6,14]$.

We assume that all functions involved in this paper are measurable on their domains. For $0<p<\infty$ and $\eta: E \mapsto[0, \infty]$, define

$$
L_{p, \eta}^{+}:=\left\{f: E \mapsto[0, \infty]:\|f\|_{p, \eta}=\left(\int_{E} f(x)^{p} \eta(x) d x\right)^{1 / p}<\infty\right\}
$$

If $\eta \equiv 1$, we write $L_{p}^{+}$instead of $L_{p, \eta}^{+}$. For $0<z<\infty$, we define $z^{*}$ by $1 / z+1 / z^{*}=1$. We also take $\exp (-\infty)=0, \log 0=-\infty$, and $0 \cdot \infty=0$.

## 2 Main Results

To prove the main results, we need the following Theorem A, which was proved by G. Sinnamon [26, Theorem 2.1]. The upper estimation of $C$ in (2.2) for $p \leq q$ is based on the results [26, Theorem 2.2] and [22, Lemma 3.2].
Theorem A (Sinnamon) Let $0<q<\infty, 1<p<\infty$, and $\rho$, $\eta$ are nonnegative functions on E. Then

$$
\begin{equation*}
\left(\int_{E}\left(\int_{S_{x}} f(t) d t\right)^{q} \rho(x) d x\right)^{1 / q} \leq C\left(\int_{E} f(x)^{p} \eta(x) d x\right)^{1 / p} \tag{2.1}
\end{equation*}
$$

holds for all $f \in L_{p, \eta}^{+}$if and only if $A<\infty$, where

$$
A= \begin{cases}\sup _{z \in E \backslash\{0\}}\left(\int_{S_{z}} \eta(x)^{1-p^{*}} d x\right)^{1 / p^{*}}\left(\int_{E \backslash S_{z}} \rho(x) d x\right)^{1 / q} & \text { if } p \leq q \\ \left\{\int_{E}\left(\int_{S_{z}} \eta(t)^{1-p^{*}} d t\right)^{r / p^{*}}\left(\int_{E \backslash S_{z}} \rho(t) d t\right)^{r / p} \rho(z) d z\right\}^{1 / r} \quad \text { if } q<p\end{cases}
$$

and $1 / r=1 / q-1 / p$. Moreover, the best constant $C$ in (2.1) satisfies

$$
\begin{cases}A \leq C \leq\left(1+q / p^{*}\right)^{1 / q}\left(1+p^{*} / q\right)^{1 / p^{*}} A & \text { if } p \leq q  \tag{2.2}\\ q^{1 / p}\left(p^{*}\right)^{1 / p^{*}}(1-q / p) A \leq C \leq p^{1 / p}\left(p^{*}\right)^{1 / p^{*}}(r / q)^{1 / r} A & \text { if } q<p\end{cases}
$$

Let $0<p, q<\infty, k: \Omega \mapsto(0, \infty), u, v$ be weight functions on $E$, and condition (2.3) hold.

$$
\begin{equation*}
\int_{S_{x}} k(x, t) \log (1 / v(t)) d t \text { is well defined and finite for all nonzero } x \in E \tag{2.3}
\end{equation*}
$$

Define $w(x)=G_{k}(1 / v)(x)^{q / p} u(x)$. For $p \leq q$, we define

$$
A_{\delta}:=\sup _{z \in E \backslash\{0\}}\left|S_{z}\right|^{(\delta-1) / p}\left(\int_{E \backslash S_{z}}\left|S_{t}\right|^{-\delta q / p} w(t) d t\right)^{1 / q}
$$

and if $q<p$, define

$$
A_{\delta}:=\left\{\int_{E}\left(\int_{E \backslash S_{z}}\left|S_{t}\right|^{-\delta q / p} w(t) d t\right)^{q /(p-q)}\left|S_{z}\right|^{q(\delta q-p) /\left(p^{2}-p q\right)} w(z) d z\right\}^{(p-q) /(p q)}
$$

Our main result is the following.

Theorem 2.1 Let $0<p, q<\infty, u$, $v$ be weight functions, $\Phi$ be logarithmically convex on an open interval $I, k: \Omega \mapsto(0, \infty)$, and let $k$ satisfy (K1), (K2), and (2.3). Suppose $A_{\delta}<\infty$ for some $\delta>1$. If the range of values of $f$ lies in the closure of $I$, $T_{k} f(x)$ exists for all nonzero $x \in E$, and $\Phi(f) \in L_{p, v}^{+}$, then (1.1) holds with

$$
\begin{equation*}
C \leq U_{\delta} A_{\delta} \tag{2.4}
\end{equation*}
$$

where

$$
U_{\delta}= \begin{cases}\inf _{s>1}\left(\frac{p+(s-1) q}{p}\right)^{1 / q}\left(\frac{p+(s-1) q}{(\delta-1) q}\right)^{(s-1) / p} M(\delta / s)^{-s / p} & \text { if } p \leq q  \tag{2.5}\\ \inf _{s>1}\left(\frac{p}{p-q}\right)^{1 / q-1 / p} s^{1 / p}\left(\frac{s}{\delta-1}\right)^{(s-1) / p} M(\delta / s)^{-s / p} & \text { if } q<p\end{cases}
$$

Before proving Theorem 2.1 we first deal with the existence of $G_{k} \Phi(f)(x)$.
Lemma 2.2 Let $p, v, k$ be given as in Theorem 2.1 Then for all $h \in L_{p, v}^{+}, G_{k} h(x)$ exists and is finite for all nonzero $x \in E$.

Proof Let $x$ be a nonzero element in $E$. We first prove that if $h \in L_{1}^{+}$, then $G_{k} h(x)$ exists. Suppose $\int_{E} h(t) d t<\infty$. Then $\int_{S_{x}} k(x, t) k(x, t)^{-1} h(t) d t=\int_{S_{x}} h(t) d t<\infty$. By [7, Theorem 187], $\int_{S_{x}} k(x, t) \log \left[k(x, t)^{-1} h(t)\right] d t$ is well defined and

$$
\exp \left(\int_{S_{x}} k(x, t) \log \left[k(x, t)^{-1} h(t)\right] d t\right)=\lim _{r \rightarrow 0^{+}}\left\{\int_{S_{x}} k(x, t)\left(k(x, t)^{-1} h(t)\right)^{r} d t\right\}^{1 / r}
$$

exists and is finite. Since condition (K2) ensures that $\int_{S_{x}} k(x, t) \log k(x, t) d t$ is finite, we have

$$
\int_{S_{x}} k(x, t) \log h(t) d t=\int_{S_{x}} k(x, t) \log k(x, t) d t+\int_{S_{x}} k(x, t) \log \left[k(x, t)^{-1} h(t)\right] d t
$$

Therefore

$$
G_{k} h(x)=\exp \left(\int_{S_{x}} k(x, t) \log k(x, t) d t\right) \exp \left(\int_{S_{x}} k(x, t) \log \left[k(x, t)^{-1} h(t)\right] d t\right)
$$

exists and is finite. For $h \in L_{p, v}^{+}$, let $\tilde{h}=h^{p} v$ and hence $\tilde{h} \in L_{1}^{+}$. Since $p \log h(t)=$ $\log \tilde{h}(t)+\log (1 / v(t))$ and $G_{k} \tilde{h}(x), G_{k}(1 / v)(x)$ both exist and are finite, we have $G_{k} h(x)=G_{k} \tilde{h}(x)^{1 / p} G_{k}(1 / v)(x)^{1 / p}$ exists and is finite.

Proof of Theorem 2.1 By Lemma 2.2, $G_{k} \Phi(f)(x)$ exists and is finite for all nonzero $x \in E$. Since $\Phi$ is logarithmically convex on $I$, Jensen's inequality implies that $\Phi\left(T_{k} f(x)\right) \leq G_{k} \Phi(f)(x)$. For any $s>1$, let $h^{s}=\Phi(f)^{p} v$. Then $h \in L_{s}^{+}$. By a similar argument to that given in the proof of Lemma 2.2, we see that $G_{k} \Phi(f)(x)=$ $G_{k} h(x)^{s / p} G_{k}(1 / v)(x)^{1 / p}$. Therefore,

$$
\begin{equation*}
\left(\int_{E} \Phi\left(T_{k} f(x)\right)^{q} u(x) d x\right)^{1 / q} \leq\left(\int_{E}\left(G_{k} h(x)\right)^{s q / p} w(x) d x\right)^{1 / q} \tag{2.6}
\end{equation*}
$$

where $w(x)=G_{k}(1 / v)(x)^{q / p} u(x)$. Suppose $A_{\delta}<\infty$ for some $\delta>1$. Hölder's inequality implies that

$$
\int_{S_{x}}\left|S_{t}\right|^{\delta / s-1} h(t) d t \leq\left(\int_{S_{x}}\left|S_{t}\right|^{(\delta-s)\left(s^{*}-1\right)} d t\right)^{1 / s^{*}}\left(\int_{S_{x}} h(t)^{s} d t\right)^{1 / s}
$$

For non-zero $t \in E$, we write $t=y \tau$, where $y \in(0, \infty)$ and $\tau \in B$. By choosing $g(t)=\left|S_{y \tau}\right|^{(\delta-s)\left(s^{*}-1\right)}=\left(y^{n}|B| / n\right)^{(\delta-s)\left(s^{*}-1\right)}$ in (1.3), we have

$$
\int_{S_{x}}\left|S_{t}\right|^{(\delta-s)\left(s^{*}-1\right)} d t=\left(\frac{s-1}{\delta-1}\right)\left|S_{x}\right|^{(\delta-1) /(s-1)}
$$

This shows that $\int_{S_{x}}\left|S_{t}\right|^{\delta / s-1} h(t) d t<\infty$ and hence

$$
\exp \left(\int_{S_{x}} k(x, t) \log \left[k(x, t)^{-1}\left|S_{t}\right|^{\delta / s-1} h(t)\right] d t\right)
$$

is finite. By Jensen's inequality and (K2), we have

$$
\begin{aligned}
G_{k} h(x) & \leq \exp \left(-\int_{S_{x}} k(x, t) \log \left[k(x, t)^{-1}\left|S_{t}\right|^{\delta / s-1}\right] d t\right) \int_{S_{x}}\left|S_{t}\right|^{\delta / s-1} h(t) d t \\
& \leq M(\delta / s)^{-1}\left|S_{x}\right|^{-\delta / s} \int_{S_{x}}\left|S_{t}\right|^{\delta / s-1} h(t) d t
\end{aligned}
$$

Hence the integral in the right-hand side of (2.6) is less than

$$
M(\delta / s)^{-s q / p} \int_{E}\left(\int_{S_{x}}\left|S_{t}\right|^{\delta / s-1} h(t) d t\right)^{s q / p}\left|S_{x}\right|^{-\delta q / p} w(x) d x
$$

Replace $p, q, \rho(x), \eta(x)$, and $f(t)$ in Theorem A by $s, s q / p,\left|S_{x}\right|^{-\delta q / p} w(x),\left|S_{x}\right|^{s-\delta}$, and $\left|S_{t}\right|^{\delta / s-1} h(t)$, respectively. Then

$$
\begin{equation*}
\left(\int_{E}\left(G_{k} h(x)\right)^{s q / p} w(x) d x\right)^{p /(s q)} \leq C^{p / s}\left(\int_{E} h(x)^{s} d x\right)^{1 / s} \tag{2.7}
\end{equation*}
$$

holds with

$$
C \leq \begin{cases}\left(\frac{p+(s-1) q}{p}\right)^{1 / q}\left(\frac{p+(s-1) q}{(\delta-1) q}\right)^{(s-1) / p} M(\delta / s)^{-s / p} A_{\delta} & (p \leq q)  \tag{2.8}\\ \left(\frac{p}{p-q}\right)^{1 / q-1 / p} s^{1 / p}\left(\frac{s}{\delta-1}\right)^{(s-1) / p} M(\delta / s)^{-s / p} A_{\delta} & (q<p)\end{cases}
$$

Putting (2.6) and (2.7) together yields (1.1) with $C$ satisfying (2.8). Since (2.8) is true for arbitrary $s>1$, we have (2.4) and (2.5).

If $\Phi$ is strictly monotone, then $\Phi^{-1}$ exists. Replacing $f$ by $\Phi^{-1}(f)$ in (1.1), where $f \in L_{p, v}^{+}$, we obtain the inequality of the form

$$
\begin{equation*}
\left(\int_{E} \Phi\left(T_{k} \Phi^{-1}(f)(x)\right)^{q} u(x) d x\right)^{1 / q} \leq C\left(\int_{E} f(x)^{p} v(x) d x\right)^{1 / p} \tag{2.9}
\end{equation*}
$$

In the case $\Phi(x)=e^{x}, I=(-\infty, \infty)$ and $\Phi^{-1}(x)=\log x$. If $f \in L_{p, v}^{+}$, then by Lemma 2.2, $\Phi\left(T_{k} \Phi^{-1}(f)(x)\right)=G_{k} f(x)$ exists and is finite for all non-zero $x \in E$. Inequality (2.9) then can be reduced to (1.2). Theorem 2.1 shows that $A_{\delta}<\infty$ for some $\delta>1$ is a sufficient condition for (1.2) to hold for all $f \in L_{p, v}^{+}$. Theorem 2.3 proves that this condition is also necessary.

Theorem 2.3 Let $0<p, q<\infty, k, u$, and $v$ be given as in Theorem 2.1 Then (1.2) holds for all $f \in L_{p, v}^{+}$if and only if $A_{\delta}<\infty$ for all $\delta>1$. Moreover,

$$
\begin{equation*}
\sup _{\delta>1} L_{\delta} A_{\delta} \leq C \leq \inf _{\delta>1} U_{\delta} A_{\delta} \tag{2.10}
\end{equation*}
$$

where $U_{\delta}$ is given by (2.5) and

$$
L_{\delta}= \begin{cases}\left(\frac{\delta-1}{\delta}\right)^{1 / p} & \text { if } p \leq q  \tag{2.11}\\ \left(\frac{\delta q-q}{p}\right)^{1 / p} \min \left(d_{1}^{\frac{\delta q-p}{p(p-q)}}, d_{2}^{\frac{\delta q-p}{p(p-q)}}\right) & \text { if } q<p\end{cases}
$$

Here $d_{1}, d_{2}$ are positive constants that satisfy $d_{1}\left|S_{x}\right| \leq \exp \left(\int_{S_{x}} k(x, t) \log \left|S_{t}\right| d t\right) \leq$ $d_{2}\left|S_{x}\right|$ for all nonzero $x \in E$.

Proof If $A_{\delta}<\infty$ for all $\delta>1$, then by Theorem 2.1 and (2.9) with $\Phi(x)=e^{x}$, inequality (1.2) holds for all $f \in L_{p, v}^{+}$and the estimation of $C$ satisfies (2.4)-(2.5) for all $\delta>1$. This gives us the upper estimation of $C$ in (2.10). Suppose that (1.2) holds for all $f \in L_{p, v}^{+}$. Let $h=f^{p} v$. Then

$$
\begin{equation*}
\left(\int_{E}\left(G_{k} h(x)\right)^{q / p} w(x) d x\right)^{1 / q} \leq C\left(\int_{E} h(x) d x\right)^{1 / p} \tag{2.12}
\end{equation*}
$$

holds for all $h \in L_{1}^{+}$, where $w(x)=G_{k}(1 / v)(x)^{q / p} u(x)$ and $C$ is the same as in (1.2). We first consider the case $p \leq q$. Let $\delta>1, \xi$ is a nonzero element in $E$, and

$$
h(t)=\chi_{s_{\xi}}(t)\left|S_{\xi}\right|^{-1}+\chi_{E \backslash S_{\xi}}(t)\left|S_{\xi}\right|^{\delta-1}\left|S_{t}\right|^{-\delta}
$$

Then we have

$$
\begin{align*}
\int_{E} h(x) d x & =1+\left|S_{\xi}\right|^{\delta-1} \int_{E \backslash S_{\xi}}\left|S_{t}\right|^{-\delta} d t \\
& =1+\left|S_{\xi}\right|^{\delta-1}\left(\frac{|B|}{n}\right)^{-\delta} \int_{\alpha_{\xi}}^{\infty} \int_{B} y^{-n \delta+n-1} d \tau d y=\frac{\delta}{\delta-1} \tag{2.13}
\end{align*}
$$

On the other hand, for non-zero $x \in E \backslash S_{\xi}$ we have

$$
\begin{aligned}
\int_{S_{x}} k(x, t) \log h(t) d t & =-\log \left|S_{\xi}\right|+\delta \int_{S_{x} \backslash S_{\xi}} k(x, t) \log \left[\frac{\left|S_{\xi}\right|}{\left|S_{t}\right|}\right] d t \\
& \geq-\log \left|S_{\xi}\right|+\delta\left(\int_{S_{x} \backslash S_{\xi}} k(x, t) d t\right) \log \left[\frac{\left|S_{\xi}\right|}{\left|S_{x}\right|}\right] \\
& \geq \log \left[\left|S_{\xi}\right|^{\delta-1}\left|S_{x}\right|^{-\delta}\right],
\end{aligned}
$$

and this implies $G_{k} h(x) \geq\left|S_{\xi}\right|^{\delta-1}\left|S_{x}\right|^{-\delta}$. Hence

$$
\begin{equation*}
\int_{E}\left(G_{k} h(x)\right)^{q / p} w(x) d x \geq\left|S_{\xi}\right|^{(\delta-1) q / p} \int_{E \backslash S_{\xi}}\left|S_{x}\right|^{-\delta q / p} w(x) d x \tag{2.14}
\end{equation*}
$$

By (2.12), (2.13), and (2.14), we have

$$
\begin{equation*}
C\left(\frac{\delta}{\delta-1}\right)^{1 / p} \geq\left|S_{\xi}\right|^{(\delta-1) / p}\left(\int_{E \backslash S_{\xi}}\left|S_{x}\right|^{-\delta q / p} w(x) d x\right)^{1 / q} \tag{2.15}
\end{equation*}
$$

Since (2.15) holds for all nonzero $\xi \in E$,

$$
\begin{equation*}
C \geq\left(\frac{\delta-1}{\delta}\right)^{1 / p} A_{\delta} \tag{2.16}
\end{equation*}
$$

Inequality (2.16) is true for all $\delta>1$, so we have the lower estimation given in (2.10) and (2.11).

Consider the case $q<p$. For $m \in \mathbb{N}$, let $x_{m} \in m B$ and we simply write $S_{m}$ for $S_{x_{m}}$. Define

$$
w_{m}(x)=[\min (w(x), m)] \chi_{S_{m}}(x)+\left[\min \left(w(x),\left|S_{x}\right|^{-2 q / r}\right)\right] \chi_{E \backslash S_{m}}(x),
$$

where $1 / r=1 / q-1 / p$. For $\delta>1$, define

$$
h_{m}(x)=\left|S_{x}\right|^{(\delta q-p) /(p-q)}\left(\int_{E \backslash S_{x}}\left|S_{t}\right|^{-\delta q / p} w_{m}(t) d t\right)^{p /(p-q)} .
$$

We first show that $h_{m} \in L_{1}^{+}$. By (1.3) with $g(t)=\left|S_{t}\right|^{-\delta q / p} w_{m}(t)$, we have

$$
\begin{equation*}
\int_{E} h_{m}(x) d x=\left(\frac{|B|}{n}\right)^{-p /(p-q)}|B| \int_{0}^{\infty}\left(\int_{s}^{\infty} g(y) d y\right)^{p /(p-q)} s^{n q(\delta-1) /(p-q)-1} d s \tag{2.17}
\end{equation*}
$$

where $g(y)=\int_{B} y^{-\delta n q / p+n-1} w_{m}(y \tau) d \tau$. The dual Hardy inequality and Hölder's
inequality show that for some finite constants $c$ and $d$,

$$
\begin{aligned}
\int_{E} h_{m}(x) d x & \leq c \int_{0}^{\infty} g(y)^{p /(p-q)} y^{q(n \delta-n+1) /(p-q)} d y \\
& =c \int_{0}^{\infty}\left(\int_{B} w_{m}(y \tau) d \tau\right)^{p /(p-q)} y^{n-1} d y \\
& \leq c \int_{0}^{\infty}\left(\int_{B} w_{m}(y \tau)^{p /(p-q)} d \tau\right)|B|^{q /(p-q)} y^{n-1} d y \\
& =d \int_{E} w_{m}(t)^{p /(p-q)} d t \\
& \leq d \int_{S_{m}} m^{p /(p-q)} d t+d \int_{E \backslash S_{m}}\left|S_{t}\right|^{-2} d t<\infty
\end{aligned}
$$

Hence $G_{k} h_{m}(x)$ exists and is finite for all non-zero $x \in E$. Replace $h$ by $h_{m}$ in (2.12). Since $w_{m} \leq w$, we have

$$
\begin{equation*}
\left(\int_{E}\left(G_{k} h_{m}(x)\right)^{q / p} w_{m}(x) d x\right)^{1 / q} \leq C\left(\int_{E} h_{m}(x) d x\right)^{1 / p} \tag{2.18}
\end{equation*}
$$

Condition (K2) implies that $d_{1}\left|S_{x}\right| \leq \exp \left(\int_{S_{x}} k(x, t) \log \left|S_{t}\right| d t\right) \leq d_{2}\left|S_{x}\right|$ for some positive constants $d_{1}$ and $d_{2}$. Therefore

$$
\exp \left(\int_{S_{x}} k(x, t) \log \left[\left|S_{t}\right|^{(\delta q-p) /(p-q)}\right] d t\right) \geq \tilde{d}^{p}\left|S_{x}\right|^{(\delta q-p) /(p-q)}
$$

where $\tilde{d}=\min \left(d_{1}^{\frac{\delta_{q}-p}{p(p-q)}}, d_{2}^{\frac{\delta_{q}-p}{p(p-q)}}\right)$. This implies

$$
G_{k} h_{m}(x) \geq \tilde{d}^{p}\left|S_{x}\right|^{(\delta q-p) /(p-q)}\left(\int_{E \backslash S_{x}}\left|S_{t}\right|^{-\delta q / p} w_{m}(t) d t\right)^{p /(p-q)}
$$

and hence

$$
\left(\int_{E}\left(G_{k} h_{m}(x)\right)^{q / p} w_{m}(x) d x\right)^{1 / q} \geq \tilde{d} B_{\delta, m}^{1 / q}
$$

where

$$
B_{\delta, m}=\int_{E}\left(\int_{E \backslash S_{x}}\left|S_{t}\right|^{-\delta q / p} w_{m}(t) d t\right)^{q /(p-q)}\left|S_{x}\right|^{\left(\delta q^{2}-p q\right) /\left(p^{2}-p q\right)} w_{m}(x) d x
$$

On the other hand, by [25, Lemma 1] we have

$$
\begin{aligned}
& \int_{0}^{\infty}\left(\int_{s}^{\infty} g(y) d y\right)^{p /(p-q)} s^{n q(\delta-1) /(p-q)-1} d s \\
&=\frac{p}{n q(\delta-1)} \int_{0}^{\infty}\left(\int_{s}^{\infty} g(y) d y\right)^{q /(p-q)} g(s) s^{n q(\delta-1) /(p-q)} d s
\end{aligned}
$$

Hence (2.17) implies

$$
\begin{aligned}
\int_{E} h_{m}(x) d x= & \left(\frac{|B|}{n}\right)^{-p /(p-q)} \frac{p|B|}{n q(\delta-1)} \\
& \quad \times \int_{0}^{\infty} \int_{B}\left(\int_{s}^{\infty} \int_{B} y^{-\delta n q / p+n-1} w_{m}(y \tau) d \tau d y\right)^{q /(p-q)} \\
& \quad \times s^{n\left(\delta q^{2}-p^{2}\right) /\left(p^{2}-p q\right)+2 n-1} w_{m}(s \sigma) d \sigma d s \\
= & \frac{p}{q(\delta-1)} B_{\delta, m} .
\end{aligned}
$$

Therefore (2.18) implies $C \geq \tilde{d}((\delta q-q) / p)^{1 / p} B_{\delta, m}^{(p-q) /(p q)}$. Let $m \rightarrow \infty$. Since $w_{m} \rightarrow w$, we have $C \geq((\delta q-q) / p)^{1 / p} \tilde{d} A_{\delta}$. This holds for all $\delta>1$, so we have the lower estimation given in (2.10) and (2.11). This completes the proof.

## 3 Applications

Suppose that $\ell:(0,1) \mapsto(0, \infty)$ satisfies the following.
$(\mathrm{KH} 1) \int_{0}^{1} \ell(t) d t=1$.
(KH2) $M_{1}=\exp \left(\int_{0}^{1} \ell(t) \log \ell(t) d t\right)<\infty$.
$(\mathrm{KH} 3) M_{2}=\exp \left(\int_{0}^{1} \ell(t) \log t d t\right)>0$.
We apply Theorem 2.3 to the case $k(x, t)=\left|S_{x}\right|^{-1} \ell\left(\left|S_{t}\right| /\left|S_{x}\right|\right)$. For such a case,

$$
\int_{S_{x}} k(x, t) d t=\frac{1}{\left|S_{x}\right|} \int_{0}^{\alpha_{x}} \int_{B} \ell\left(\frac{y^{n}}{\alpha_{x}^{n}}\right) y^{n-1} d \tau d y=\int_{0}^{1} \ell(u) d u=1
$$

and

$$
\begin{aligned}
\int_{S_{x}} k(x, t) & \log \left[k(x, t)^{-1}\left|S_{t}\right|^{\epsilon-1}\right] d t \\
& =\frac{1}{\left|S_{x}\right|} \int_{0}^{\alpha_{x}} \int_{B} \ell\left(\frac{y^{n}}{\alpha_{x}^{n}}\right) \log \left[\left|S_{x}\right| \ell^{-1}\left(\frac{y^{n}}{\alpha_{x}^{n}}\right)\left(\frac{y^{n}|B|}{n}\right)^{\epsilon-1}\right] y^{n-1} d \tau d y \\
& =\int_{0}^{1} \ell(z) \log \left[\left|S_{x}\right| \ell^{-1}(z)\left(\frac{\alpha_{x}^{n} z|B|}{n}\right)^{\epsilon-1}\right] d z=\log \left[\left|S_{x}\right|^{\epsilon} M_{1}^{-1} M_{2}^{\epsilon-1}\right]
\end{aligned}
$$

Hence (K1)-(K2) are satisfied with $M(\epsilon)=M_{1}^{-1} M_{2}^{\epsilon-1}$. Similarly, $d_{1}=d_{2}=M_{2}$ in (2.11). The following Theorem 3.1 can be obtained by Theorem 2.3

Theorem 3.1 Let $0<p, q<\infty$, $u$ and $v$ be given as in Theorem 2.1] and let $\ell:(0,1) \mapsto(0, \infty)$ satisfy (KH1)-(KH3). Define $k: \Omega \mapsto(0, \infty)$ by $k(x, t)=$ $\left|S_{x}\right|^{-1} \ell\left(\left|S_{t}\right| /\left|S_{x}\right|\right)$. Suppose that (2.3) holds. Then (1.2) holds for all $f \in L_{p, v}^{+}$if and only if $A_{\delta}<\infty$ for all $\delta>1$. The estimation of $C$ can be obtained by (2.10), (2.5), and (2.11) with

$$
\begin{equation*}
M(\delta / s)=M_{1}^{-1} M_{2}^{\delta / s-1}, \quad d_{1}=d_{2}=M_{2} \tag{3.1}
\end{equation*}
$$

By taking limits $s \rightarrow 1$ in (2.5), the upper estimation of $C$ satisfies

$$
C \leq \begin{cases}\inf _{\delta>1} M_{1}^{1 / p} M_{2}^{(1-\delta) / p} A_{\delta} & \text { if } p \leq q  \tag{3.2}\\ \inf _{\delta>1}\left(\frac{p}{p-q}\right)^{1 / q-1 / p} M_{1}^{1 / p} M_{2}^{(1-\delta) / p} A_{\delta} & \text { if } q<p\end{cases}
$$

Consider the particular case $u(x)=\left|S_{x}\right|^{a}$ and $v(x)=\left|S_{x}\right|^{b}$. Then

$$
w(x)=G_{k}(1 / v)(x)^{q / p} u(x)=M_{2}^{-b q / p}\left|S_{x}\right|^{a-(b q / p)}
$$

For $q<p, A_{\delta}=\infty$ for all $\delta>1$. If $p \leq q$ and $(a+1) / q=(b+1) / p$, then

$$
\begin{aligned}
A_{\delta} & =M_{2}^{-b / p} \sup _{z \in E \backslash\{0\}}\left|S_{z}\right|^{(\delta-1) / p}\left(\int_{E \backslash S_{z}}\left|S_{t}\right|^{a-(b+\delta) q / p} d t\right)^{1 / q} \\
& =M_{2}^{-b / p} \sup _{s>0}\left(\frac{s^{n}|B|}{n}\right)^{(\delta-1) / p}\left(\int_{s}^{\infty} \int_{B}\left(\frac{y^{n}|B|}{n}\right)^{a-(b+\delta) q / p} y^{n-1} d \tau d y\right)^{1 / q} \\
& =M_{2}^{-b / p} n^{1 / q} \sup _{s>0} s^{n(\delta-1) / p}\left(\int_{s}^{\infty} y^{n q(1-\delta) / p-1} d y\right)^{1 / q}=M_{2}^{-b / p}\left(\frac{p}{\delta q-q}\right)^{1 / q} .
\end{aligned}
$$

By (3.2) we have

$$
C \leq M_{1}^{1 / p} M_{2}^{-b / p} \inf _{\delta>1} M_{2}^{(1-\delta) / p}\left(\frac{p}{\delta q-q}\right)^{1 / q}=M_{1}^{1 / p} M_{2}^{-b / p}\left(-e \log M_{2}\right)^{1 / q}
$$

Therefore,

$$
\begin{align*}
&\left(\int_{E}\left(G_{k} f(x)\right)^{q}\left|S_{x}\right|^{a} d x\right)^{1 / q}  \tag{3.3}\\
& \leq M_{1}^{1 / p} M_{2}^{-b / p}\left(-e \log M_{2}\right)^{1 / q}\left(\int_{E} f(x)^{p}\left|S_{x}\right|^{b} d x\right)^{1 / p}
\end{align*}
$$

The following corollary considers the case $\ell(t)=\alpha t^{\alpha-1}$, where $\alpha>0$. For such a case,

$$
\begin{equation*}
M_{1}=\alpha e^{1 / \alpha-1}, \quad M_{2}=e^{-1 / \alpha} \tag{3.4}
\end{equation*}
$$

Corollary 3.2 Let $0<p, q<\infty$, and $\alpha>0$. Define $k: \Omega \mapsto(0, \infty)$ by $k(x, t)=$ $\alpha\left|S_{t}\right|^{\alpha-1} /\left|S_{x}\right|^{\alpha}$. Suppose that $u, v$ are weight functions, and (2.3) holds. Then

$$
\begin{align*}
\left(\int_{E}\left\{\exp \left(\frac{\alpha}{\left|S_{x}\right|^{\alpha}} \int_{S_{x}}\left|S_{t}\right|^{\alpha-1} \log f(t) d t\right)\right\}^{q} u(x)\right. & d x)^{1 / q}  \tag{3.5}\\
& \leq C\left(\int_{E} f(x)^{p} v(x) d x\right)^{1 / p}
\end{align*}
$$

holds for all $f \in L_{p, v}^{+}$if and only if $A_{\delta}<\infty$ for all $\delta>1$. The estimation of $C$ can be obtained by (2.10), (2.5), and (2.11) with (3.1) and (3.4).

Consider the particular case $\alpha=1$. In [5, Theorem 4.1], Drábek-Heinig-Kufner proved (3.5) for the case $p=q=1, E=\mathbb{R}^{n}$, and $S_{x}=B(|x|)$. They showed that (3.5) holds if and only if $A_{2}<\infty$. Hence Corollary 3.2 is a generalization of [5, Theorem 4.1]. Another type of characterizations for the case that $0<p \leq q<\infty$ and $E$ is a spherical cone in $\mathbb{R}^{n}$ can also be found in [6, Theorem 3.1]. If $p \leq q$, $u(x)=\left|S_{x}\right|^{a}, v(x)=\left|S_{x}\right|^{b}$, and $(a+1) / q=(b+1) / p$, then by (3.3),

$$
\begin{align*}
&\left(\int_{E}\left\{\exp \left(\frac{\alpha}{\left|S_{x}\right|^{\alpha}} \int_{S_{x}}\left|S_{t}\right|^{\alpha-1} \log f(t) d t\right)\right\}^{q}\left|S_{x}\right|^{a} d x\right)^{1 / q}  \tag{3.6}\\
& \leq \alpha^{1 / p-1 / q} e^{1 / q+(b-\alpha+1) /(\alpha p)}\left(\int_{E} f(x)^{p}\left|S_{x}\right|^{b} d x\right)^{1 / p}
\end{align*}
$$

Since $e^{1 / q-1 / p} \leq(p / q)^{1 / q}$ for $p \leq q$, the constant given in (3.6) is better than that given in [6, Proposition 3.6] and [14, Theorem 2]. If $p=q=1, a=b, E=\mathbb{R}^{n}$, and $S_{x}=B(|x|)$, then (3.6) reduces to [3, (23)].

We can also apply Theorem 3.1 to the case $\ell(t)=\alpha(1-t)^{\alpha-1}$, where $\alpha>0$. In this case,

$$
\begin{equation*}
M_{1}=\alpha e^{1 / \alpha-1}, \quad M_{2}=e^{-\gamma-\Gamma^{\prime}(\alpha+1) / \Gamma(\alpha+1)} \tag{3.7}
\end{equation*}
$$

where $\gamma$ is the Euler constant and $\Gamma(x)$ is the Gamma function. The constant $M_{2}$ can be obtained by the following equalities

$$
\log M_{2}=\alpha \int_{0}^{1} z^{\alpha-1} \log (1-z) d z=-\alpha \int_{0}^{1} \sum_{n=1}^{\infty} \frac{z^{n+\alpha-1}}{n} d z=-\gamma-\frac{\Gamma^{\prime}(\alpha+1)}{\Gamma(\alpha+1)}
$$

The last equality is based on [1, Theorem 1.2.5]. We have the following corollary.
Corollary 3.3 Let $0<p, q<\infty$ and $\alpha>0$. Define $k: \Omega \mapsto(0, \infty)$ by $k(x, t)=$ $\alpha\left(\left|S_{x}\right|-\left|S_{t}\right|\right)^{\alpha-1} /\left|S_{x}\right|^{\alpha}$. Suppose that $u$, $v$ are weight functions, and (2.3) holds. Then

$$
\begin{aligned}
&\left(\int_{E}\left\{\exp \left(\frac{\alpha}{\left|S_{x}\right|^{\alpha}} \int_{S_{x}}\left(\left|S_{x}\right|-\left|S_{t}\right|\right)^{\alpha-1} \log f(t) d t\right)\right\}^{q} u(x) d x\right)^{1 / q} \\
& \leq C\left(\int_{E} f(x)^{p} v(x) d x\right)^{1 / p}
\end{aligned}
$$

holds for all $f \in L_{p, v}^{+}$if and only if $A_{\delta}<\infty$ for all $\delta>1$. The estimation of $C$ can be obtained by (2.10), (2.5), and (2.11) with (3.1) and (3.7).

If $p \leq q, u(x)=\left|S_{x}\right|^{a}, v(x)=\left|S_{x}\right|^{b}$, and $(a+1) / q=(b+1) / p$, then by (3.3),

$$
\begin{aligned}
&\left(\int_{E}\left\{\exp \left(\frac{\alpha}{\left|S_{x}\right|^{\alpha}} \int_{S_{x}}\left(\left|S_{x}\right|-\left|S_{t}\right|\right)^{\alpha-1} \log f(t) d t\right)\right\}^{q}\left|S_{x}\right|^{a} d x\right)^{1 / q} \\
& \leq C\left(\int_{E} f(x)^{p}\left|S_{x}\right|^{b} d x\right)^{1 / p}
\end{aligned}
$$

where

$$
C=\alpha^{1 / p} e^{1 / q+(1-\alpha+\alpha \gamma b) /(\alpha p)+b \Gamma^{\prime}(\alpha+1) /(p \Gamma(\alpha+1))}\left(\gamma+\frac{\Gamma^{\prime}(\alpha+1)}{\Gamma(\alpha+1)}\right)^{1 / q}
$$

Remark In our Theorem 2.1 and Theorem 2.3, we suppose that the kernel $k$ satisfies (K1) and (K2). In the following, we replace (K2) by the condition (K2*).
(K2*) There exists $M>0$ such that $\exp \left(\int_{S_{x}} k(x, t) \log \left[k(x, t)^{-1}\right] d t\right) \geq M\left|S_{x}\right|$ for all non-zero $x \in E$.

According to the proof of Theorem[2.1, we see that Theorem 2.1] still holds with (2.4) being replaced by the following estimation.

$$
C \leq \begin{cases}\left(\frac{p+(\delta-1) q}{p}\right)^{1 / q}\left(\frac{p+(\delta-1) q}{(\delta-1) q}\right)^{(\delta-1) / p} M^{-\delta / p} A_{\delta} & (p \leq q) \\ \left(\frac{p}{p-q}\right)^{1 / q-1 / p} \delta^{1 / p}\left(\frac{\delta}{\delta-1}\right)^{(\delta-1) / p} M^{-\delta / p} A_{\delta} & (q<p)\end{cases}
$$

Similarly, according to the proof of Theorem 2.3, we obtain a characterization for (1.2) to hold for all $f \in L_{p, v}^{+}$, which is given as follows.
(i) In the case $p \leq q, A_{\delta}<\infty$ for all $\delta>1$ and

$$
\begin{align*}
\sup _{\delta>1}\left(\frac{\delta-1}{\delta}\right)^{1 / p} A_{\delta} & \leq C  \tag{3.8}\\
& \leq \inf _{\delta>1}\left(\frac{p+(\delta-1) q}{p}\right)^{1 / q}\left(\frac{p+(\delta-1) q}{(\delta-1) q}\right)^{(\delta-1) / p} M^{-\delta / p} A_{\delta}
\end{align*}
$$

(ii) In the case $q<p, A_{p / q}<\infty$ and

$$
\begin{equation*}
\left(\frac{p-q}{p}\right)^{1 / p} A_{p / q} \leq C \leq\left(\frac{p}{p-q}\right)^{2(1 / q-1 / p)}\left(\frac{p}{q}\right)^{1 / p} M^{-1 / q} A_{p / q} \tag{3.9}
\end{equation*}
$$

We now apply the above results to the case $k(x, t)=\left|S_{x}\right|^{-1} \ell\left(\left|S_{t}\right| /\left|S_{x}\right|\right)$, where $\ell:(0,1) \mapsto(0, \infty)$. Then we see that the condition (KH3) in Theorem 3.1 can be removed and the estimation of $C$ can be obtained by (3.8) and (3.9) with $M=M_{1}^{-1}$.

## References

[1] G. E. Andrews, R. Askey, and R. Roy, Special Functions. Encyclopedia of Mathematics and its Applications 71. Cambridge University Press, Cambridge, 1999.
[2] A. Čižmešija and J. Pečarić, Some new generalisations of inequalities of Hardy and Levin-Cochran-Lee. Bull. Austral. Math. Soc. 63(2001), no. 1, 105-113. doi:10.1017/S000497270001916X
[3] A. Čižmešija, J. Pečarić, and I. Perić, Mixed means and inequalities of Hardy and Levin-Cochran-Lee type for multidimensional balls. Proc. Amer. Math. Soc. 128(2000), no. 9, 2543-2552. doi:10.1090/S0002-9939-99-05408-8
[4] J. A. Cochran and C.-S. Lee, Inequalities related to Hardy's and Heinig's. Math. Proc. Cambridge Philos. Soc. 96(1984), no. 1, 1-7. doi:10.1017/S0305004100061879
[5] P. Drábek, H. P. Heinig, and A. Kufner, Higher dimensional Hardy inequality. In: General Inequalities, 7. Internat. Ser. Num. Math. 123. Birkhäuser, Basel, 1997, pp. 3-16.
[6] B. Gupta, P. Jain, L.-E. Persson, and A. Wedestig, Weighted geometric mean inequalities over cones in $\mathbb{R}^{n}$. J. Inequal. Pure Appl. Math. 4(2003), Article 68.
[7] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities. Second edition. Cambridge, at the University Press, 1952.
[8] H. P. Heinig, Weighted inequalities in Fourier analysis. In: Nonlinear Analysis, Function Spaces and Applications, Vol. 4. Teubner-Texte Math. 119. Teubner, Leipzig, 1990, pp. 42-85.
[9] , Modular inequalities for the Hardy averaging operator. Math. Bohem. 124(1999), no. 2-3, 231-244.
[10] , Exponential inequalities for a class of operators. Int. J. Math. Math. Sci. 31(2002), no. 5, 283-290. doi:10.1155/S0161171202112245
[11] H. P. Heinig, R. Kerman, and M. Krbec, Weighted exponential inequalities. Georgian Math. J. 8(2001), no. 1, 69-86.
[12] P. Jain, L.-E. Persson, and A. P. Singh, On geometric mean inequalities with exponential weights. Soochow J. Math. 30(2004), no. 4, 391-400.
[13] P. Jain, L.-E. Persson, and A. Wedestig, Carleman-Knopp type inequalities via Hardy inequalities. Math. Inequal. Appl. 4(2001), no. 3, 343-355.
[14] , Multidimensional Cochran and Lee type inequalities with weights. Proc. A. Razmadze Math. Inst. 129(2002), 17-27.
[15] P. Jain and A. P. Singh, A characterization for the boundedness of geometric mean operator. Appl. Math. Lett. 13(2000), no. 8, 63-67. doi:10.1016/S0893-9659(00)00097-5
[16] A. M. Jarrah and A. P. Singh, A limiting case of Hardy's inequality. Indian J. Math. 43(2001), no. 1, 21-36.
[17] S. Kaijser, L. Nikolova, L.-E. Persson, and A. Wedestig, Hardy-type inequalities via convexity. Math. Inequal. Appl. 8(2005), no. 3, 403-417.
[18] N. Levinson, Generalizations of an inequality of Hardy. Duke Math. J. 31 (1964), 389-394. doi:10.1215/S0012-7094-64-03137-0
[19] E. R. Love, Inequalities related to those of Hardy and of Cochran and Lee. Math. Proc. Cambridge Philos. Soc. 99(1986), no. 3, 395-408. doi:10.1017/S0305004100064343
[20] , Inequalities related to Knopp's inequality. J. Math. Anal. Appl. 137(1989), no. 1, 173-180. doi:10.1016/0022-247X(89)90281-3
[21] B. Opic and P. Gurka, Weighted inequalities for geometric means. Proc. Amer. Math. Soc. 120(1994), no. 3, 771-779. doi:10.2307/2160469
[22] B. Opic and A. Kufner, Hardy-type inequalities. Pitman Research Notes in Mathematics Series 219. Longman Scientific \& Technical, Harlow, 1990.
[23] L.-E. Persson and V D. Stepanov, Weighted integral inequalities with the geometric mean operator. J. Inequal. Appl. 7(2002), no. 5, 727-746. doi:10.1155/S1025583402000371
[24] L. Pick and B. Opic, On the geometric mean operator. J. Math. Anal. Appl. 183(1994), no. 3, 652-662. doi:10.1006/jmaa.1994.1172
[25] G. Sinnamon, Weighted Hardy and Opial-type inequalities. J. Math. Anal. Appl. 160(1991), no. 2, 434-445. doi:10.1016/0022-247X(91)90316-R
[26] , One-dimensional Hardy-type inequalities in many dimensions. Proc. Roy. Soc. Edinburgh Sect. A 128(1998), no. 4, 833-848.

Department of Applied Mathematics, I-Shou University, Ta-Hsu, Kaohsiung 84008, Taiwan
e-mail: dclour@isu.edu.tw


[^0]:    Received by the editors May 2, 2007.

