MIXED NORM DECAY FOR THE KLEIN-GORDON EQUATION WITH INITIAL DATA IN L^{p}

BY
BERNARD MARSHALL

> AbSTRACT. This paper gives necessary conditions for mixed norm estimates from L^{p} to $L^{r}\left(L^{q}\right)$ for solutions of the Klein-Gordon equation

$$
u_{i t}=\Delta u+u=0 \quad u(x, 0)=0 \quad u_{t}(x, 0)=f(x)
$$

These conditions are best possible if $p=2$ or $r=\infty$ or $\frac{1}{p}+\frac{1}{q} \geq 1$.

The purpose of this paper is to examine estimates of the form

$$
\begin{equation*}
\left\|(1+t)^{\alpha} u\right\|_{q, r} \equiv\left(\int_{0}^{\infty}\left((1+t)^{\alpha}\|u(\cdot, t)\|_{q}\right)^{r} \mathrm{~d} t\right)^{1 / r} \leq C\|f\|_{p} \tag{1}
\end{equation*}
$$

where $u(x, t)$ is the solution of the following Cauchy problem for the Klein-Gordon equation

$$
\left\{\begin{array}{c}
u_{t t}-\Delta_{x} u+u=0 \\
u(x, 0)=0 \quad u_{t}(x, 0)=f(x)
\end{array}\right.
$$

where $x \in \mathbb{R}^{n}, t>0$. The expression $\alpha-1 / r$ gives a measure of the decay of the solution u. The operator $T_{t} f(x)=u(x, t)$ is a Fourier multiplier transformation: $\widehat{T_{t} f}(\xi)=\sin \left(t \sqrt{1+|\xi|^{2}}\right)\left(1+|\xi|^{2}\right)^{-1 / 2} \hat{f}(\xi)$.

Define

$$
\begin{aligned}
\alpha_{0}(x, y, z)= & \max \left\{n x+(n-2) y+z-n, n y+z-\frac{n}{2}, \frac{n}{2}-n x,\right. \\
-(n-2) x-n y-z+(n-2), & -\frac{n}{2} x+\frac{n}{2} y+z, \\
& \left.-n x+z+\frac{n-1}{2}\right\} .
\end{aligned}
$$

Define \mathscr{R} to be the region

$$
\mathscr{R}=\left\{(x, y, z): x \geq y, n x \leq y+\frac{n+1}{2}, n y+z \geq x+\frac{n-3}{2}, y \geq \frac{1}{2}-\frac{3}{2 n}\right\} .
$$

Received by the editors April 19, 1984 and, in revised form, August 30, 1984.
Research supported by NSERC Grant \#U0074.
AMS Subject Classification (1980): 35L15.
(C) Canadian Mathematical Society 1984.

Theorem. There can exist an estimate of the form (1) only if $(1 / p, 1 / q, 1 / r)$ is in the region \mathscr{R}. In addition, if $(1 / p, 1 / q, 1 / r)$ is in \mathscr{R} and (1) holds then $\alpha \geq$ $\alpha_{0}(1 / p, 1 / q, 1 / r)$.

This theorem gives necessary conditions on $(1 / p, 1 / q, 1 / r)$ and α for there to be an estimate of the form (1). Except possibly for some boundary points ($1 / p, 1 / q, 1 / r$) \in $\partial \mathscr{R}$ or $\alpha=\alpha_{0}$, the conditions of the theorem are both necessary and sufficient if either $p=2$ or $r=\infty$ or $1 / p+1 / q \geq 1$. At the boundary points, T_{t} may or may not be bounded if $\alpha=\alpha_{0}$. If $r=\infty, T_{t}$ is bounded with $\alpha=\alpha_{0}$ but condition 6 of the proof shows that (1) does not hold for $\alpha=\alpha_{0}$ in the region where $a_{0}(1 / p, 1 / q, 1 / r)=n / q$ $+1 / r-n / 2$ and $r<\infty$.

Estimates of the type (1) were needed to prove the existence of the scattering operator for the nonlinear Klien-Gordon equation $u_{t t}-\Delta_{x} u+u=|u|^{\gamma-1} u$ with small initial data. The estimates used in [5] by Strauss were of the form

$$
\begin{equation*}
\left\|T_{t} f\right\|_{q} \leq C t^{\alpha}\|f\|_{p} . \tag{2}
\end{equation*}
$$

This is the special case $r=\infty$, which was examined completely in [2]. Estimates of the form (1) when $p=2$ were used in ([5], II) to obtain the scattering operator for nonlinearities of the type $\left(V * u^{2}\right) u$. The case $p=2$ has been considered in [3] and [6]. Similar $p=2$ estimates, composed with differentiation operators in x and t, were used by Brenner in [1] to obtain the scattering operator for arbitrary data when the nonlinear term is $|u|^{\gamma-1} u$. Estimates with $p=2$ are also used in Pecher [4].

The application of these estimates follow the argument of Strauss in [5]. Suppose the nonlinear term is $P u$. To construct the solution of the nonlinear equation using (1) an auxiliary space Z, defined using norms of the form $L^{r_{1}}\left(\mathbb{R}, L^{q_{1}}\right)$, is chosen so that the perturbation

$$
\mathscr{P} u(x, t)=\int_{s}^{t} T_{t-\tau} P u(x, \tau) \mathrm{d} \tau
$$

is a contraction mapping on Z. The parameters p, q, r and α are chosen to suit the nonlinear term $P u$. It is useful to have as much freedom as possible in the choice of these parameters. The theorem also suggests estimates for T_{t}. These are given in the second section.

1. Proof of the Theorem. Many of the estimates given are modifications of arguments in [2], [3], or [6]. The calculations are therefore brief.

Condition 1. $(1 / p \geq 1 / q)$ See [3], p. 618. If $f_{s}(x)=s^{n / p} f(s x)$ and $u(x, t)$ is the solution with initial velocity $u_{t}(x, 0)=\cos \left(\sqrt{\ell^{2}-1} x_{1}\right) f_{s}(x)$ then $\left\|f_{s}\right\|_{p}=\|f\|_{p}$ but by [3]

$$
\left\|t^{-\alpha} u\right\|_{q, r} \geq C s^{n(1 / p-1 / q)} \text { for } s<\frac{1}{2 t} .
$$

Let s approach zero. Thus $\left\|t^{-\alpha} u\right\|_{q, r}$ can be bounded only if $1 / p \geq 1 / q$.

Condition 2. $(n / p \leq 1 / q+(n+1) / 2)$ See [2], p. 434. Again let $f_{s}(x)=$ $s^{n / p} f(s x)$. By [2] there exists a function f and constants a, b, c such that

$$
\begin{equation*}
\left|T_{t} f_{s}(x)\right| \geq c s^{n / p-(n+1) / 2} \tag{3}
\end{equation*}
$$

for $t-\frac{b}{s}<|x|<t-\frac{a}{s}, 1 \leq t \leq 2$, and $s \geq 1$. Then if $u_{s}=T_{t} f_{s}$,

$$
\left\|t^{-\alpha} u_{s}\right\|_{q, r} \geq\left(\int_{1}^{2}\left(\int_{\mathbb{R}^{n}}\left|t^{-\alpha} T_{t} f_{s}(x)\right|^{q} \mathrm{~d} x\right)^{r / q} \mathrm{~d} t\right)^{1 / r} \geq C s^{n / p-(n+1) / 2-1 / q} .
$$

For this to be bounded as s tends to infinity we need $n / p \leq 1 / q+(n+1) / 2$.
Condition 3. $(n / q+1 / r \geq 1 / p+(n-3) / 2)$. We will use (3) and a duality argument as in [3], p. 619. Let $A_{1}=\left\{x: 1-b_{1} / s \leq|x| \leq 1-a_{1} / s\right\}$ and $A_{2}=$ $\left\{t: 1-b_{2} / s<t<1-a_{2} / s\right\}$. Suppose that f is real-valued and g is the characteristic function of the set A_{1}. Define also $v(x, t)$ to be $f_{s}(x)$ times the characteristic function of A_{2}. Then it follows from (3) that

$$
\begin{align*}
\left|\int_{0}^{\infty} \int_{\mathbb{R}^{n}} t^{-\alpha} T_{t} g(x) v(x, t) \mathrm{d} x \mathrm{~d} t\right| & =\int_{A_{2}} \int_{A_{1}} t^{-\alpha}\left|T_{t} f_{s}\right| \mathrm{d} x \mathrm{~d} t \tag{4}\\
& \geq C s^{-2+n / p-(n+1) / 2} \text { for } s \geq 1
\end{align*}
$$

Note that for f real-valued $T_{t} f_{s}$ is always positive or always negative in the region $A_{1} \times A_{2}$. This is why the absolute value could be brought inside the integral in (4). Since

$$
\|v\|_{q^{\prime}, r^{\prime}}=C s^{n / p-n / q^{\prime}-1 / r^{\prime}}
$$

and $\|g\|_{2}=C s^{-1 / p}$ this shows that

$$
\left\|t^{-\alpha} T\right\| \geq C s^{-2+n / p-(n+1) / 2} /\|v\|_{q^{\prime}, r^{\prime}\|g\|_{q}=C s^{(n-3) / 2+1 / p-n / q-1 / r} .}
$$

Here condition 3 follows by letting $s \rightarrow \infty$.
Condition 4. $(n / q \geq(n-3) / 2)$ See [3], p. 619. Let $f(x)=\sin \{(|x|-1) / \sigma\}$ for $1 \leq|x| \leq M$ and $f(x)=0$ otherwise. Then $\|f\|_{p} \leq C M^{n / p}$. It follows from the calculations in [3] that

$$
\left\|t^{-\alpha} T_{t} f\right\|_{q, r} \geq C \sigma^{n / q-(n-3) / 2}\left(1+M^{-\alpha+(n-1) / 2+1 / r}\right)
$$

Let $\sigma \rightarrow 0$ or $M \rightarrow \infty$. Then for $t^{-\alpha} T_{t}$ to be bounded we need both

$$
\begin{equation*}
\frac{n}{q}-\frac{n-3}{2} \geq 0 \text { and }-\alpha+\frac{n-1}{2}+\frac{1}{r}-\frac{n}{p} \leq 0 \tag{5}
\end{equation*}
$$

Conditions $1-4$ show that estimates of the form $\left\|(1+t)^{-\alpha} T_{t} f\right\|_{q, r} \leq C\|f\|_{p}$ can occur only in the region \mathscr{R}.

Condition 5. $(\alpha \geq n / p+(n-2) / q+1 / r-n)$. A modification of Lemma 7 in [2] shows that there is a function f and constants $a_{1}, a_{2}, b_{1}, b_{2}$ such that

$$
\begin{equation*}
\left|T_{t} f_{s}(x)\right|>C t^{-n / p^{\prime}} \tag{6}
\end{equation*}
$$

for $t-b_{1} / s<|x|<t-a_{1} / s, a_{2} t<s<b_{2} t, s \geq 1$. Here as usual $f_{s}(x)=s^{n / p} f(s x)$.

As a result, if $u_{s}=t^{-\alpha} T_{t} f_{s}$ then

$$
\begin{aligned}
\left\|u_{s}\right\|_{q, r} & \geq C\left(\int_{s / b_{2}}^{s / a_{2}}\left(\int_{t-b_{1} / s}^{t-a_{1} / s}\left|t^{-\alpha-n / p^{\prime}}\right|^{q} R^{n-1} \mathrm{~d} R\right)^{r / q} \mathrm{~d} t\right)^{1 / r} \\
& =C s^{-\alpha-n / p^{\prime}+(n+2) / q+1 / r} .
\end{aligned}
$$

Letting $s \rightarrow \infty$ completes the proof of this condition.
Condition 6. $(\alpha>n / q+1 / r-n / 2$ if $r<\infty$ and $\alpha \geq n / q-n / 2$ if $r=\infty)$. Lemma 8 of [2] p. 434 shows that there exist a function f and constants a, b, c such that for any $\mathrm{t} \geq 1$ the subset of $\{x: a t<|x|<b t\}$ where

$$
\begin{equation*}
\left|T_{t} f(x)\right| \geq c t^{-n / 2} \tag{7}
\end{equation*}
$$

has measure at least $c t^{n}$. It follows therefore that

$$
\left\|t^{-\alpha} T_{t} f\right\|_{q, r} \geq C\left(\int_{1}^{\infty} t^{r(-\alpha+n / q-n / 2)} \mathrm{d} t\right)^{1 / r}=\infty
$$

if $r(-\alpha+n / q-n / 2) \geq-1$ and $r<\infty$. If $r=\infty$ then the conclusion still follows easily from (7): $t^{-\alpha} T_{t}$ is not bounded if $-\alpha+n / q-n / 2<0$.

Condition 7. $(\alpha \geq-(n-2) / p-n / q-1 / r+(n-2))$. Let $A_{1}=\{x: s-$ $\left.b_{1} / s<|x|<s-a_{1} / s\right\}$ and $A_{2}=\left\{t: s-b_{2} / s<t<s-a_{2} / s\right\}$. Suppose that f is real-valued. If g is the characteristic function of A_{1} and $v(x, t)$ is $f_{s}(x)=s^{n / p} f(s x)$ times the characteristic function of A_{2} then by (6),

$$
\begin{aligned}
\left|\int_{0}^{\infty} \int_{\mathbb{R}^{n}} t^{-\alpha} T_{t} g(x) v(x, t) \mathrm{d} x \mathrm{~d} t\right| & \geq C \int_{A_{1}} \int_{A_{2}} t^{-\alpha} t^{-n / p^{\prime}} \mathrm{d} x \mathrm{~d} t \\
& \geq C s^{n-3-\alpha-n / p^{\prime}} .
\end{aligned}
$$

Since $\|v\|_{q^{\prime}, r^{\prime}}=C s^{n / p-n / q^{\prime}-1 / r^{\prime}}$ then

$$
\left\|t^{-\alpha} T_{t} g\right\|_{q^{\prime}, r} \geq C s^{n-2-\alpha-n / q-1 / r} .
$$

Also $\|g\|_{p}=C s^{(n-2) / p}$, and so

$$
\left\|t^{-\alpha} T_{t}\right\| \geq C s^{(n-2) / p^{\prime}-n / q-1 / r-\alpha} \text { for } s \geq 1 .
$$

Again, letting $s \rightarrow \infty$ completes the proof.
Condition 8. $(\alpha \geq-n / 2 p+n / 2 q+1 / r)$ See [6] and [3], p. 620. Suppose that f is the inverse Fourier transform of the characteristic function of the set $A=\{x \in$ $\left.\mathbb{R}^{n}:\left|x_{j}\right| \leq \sqrt{\epsilon}, j=1,,, . n\right\}$ and v is the inverse Fourier transform of the characteristic function of the set $Q=\{(x, t): x \in A,|t| \leq \epsilon\}$. Then by the calculation in [3],

$$
\|f\|_{p} \geq C \epsilon^{n / 2 p^{\prime}}, \quad\left\|t^{\alpha} v\right\|_{q^{\prime}, r^{\prime}} \leq C \epsilon^{n / 2 q+1 / r-\alpha}
$$

and

$$
\left|\int_{0}^{\infty} \int_{\mathbb{R}^{n}} T_{t} f(x) v(x, t) \mathrm{d} x \mathrm{~d} t\right| \geq C \epsilon^{n / 2}
$$

Table

Vertex	decay $=\alpha_{0}-1 / r$	Conditions involved
$P_{0}=\left(\frac{1}{2}, \frac{1}{2}, 0\right)$	0	1,6,8,9
$P_{1}=\left(\frac{1}{2}+\frac{1}{n+1}, \frac{1}{2}-\frac{1}{n+1}, 0\right)$	$-\frac{n-1}{n+1}$	2, 3, 5, 7
$P_{2}=\left(\frac{1}{2}-\frac{1}{n-1}, \frac{1}{2}-\frac{1}{n-1}, 0\right)$	$\frac{n}{n-1}$	1,3, 9
$P_{3}=\left(\frac{1}{2}+\frac{1}{n-1}, \frac{1}{2}+\frac{1}{n-1}, 0\right)$	$\frac{n}{n-1}$	1,2,6
$P_{4}=\left(\frac{1}{2}, \frac{1}{2}-\frac{1}{n}, 0\right)$	0	3, 7, 9
$P_{5}=\left(\frac{1}{2}+\frac{1}{n}, \frac{1}{2}, 0\right)$	0	2, 5, 6
$P_{6}=\left(\frac{1}{2}+\frac{1}{n+2}, \frac{1}{2}-\frac{1}{n+2}, 0\right)$	$-\frac{n}{n+2}$	$5,6,7,8,9$
$P_{11}=\left(\frac{1}{2}+\frac{n-2}{n(n-1)}, \frac{1}{2}-\frac{1}{n-1}, \frac{2}{n}\right)$	-1	$2,3,5,7,8$
$P_{21}=\left(\frac{n-3}{2 n}, \frac{n-3}{2 n}, \frac{n-3}{2 n}\right)$	$1+\frac{3}{2 n}$	1,3,4,9
$P_{01}=\left(\frac{n-1}{2 n}, \frac{n-1}{2 n}, \frac{1}{2}\right)$	0	1, 8, 9, 10
$P_{22}=\left(\frac{n-3}{2 n}, \frac{n-3}{2 n}, \frac{1}{2}\right)$	1	1, 4, 9, 10
$P_{41}=\left(\frac{1}{2}, \frac{n-3}{2 n}, \frac{1}{2}\right)$	$-\frac{1}{2}$	$3,4,7,9,10$
$P_{61}=\left(\frac{n+3}{2(n+2)}, \frac{n^{2}-n-4}{2 n(n+2)}, \frac{1}{2}\right)$	$-\frac{n+1}{n+2}$	$7,8,9,10$
$P_{62}=\left(\frac{n+1}{2 n}, \frac{n-3}{2 n}, \frac{n+1}{2 n}\right)$	-1	$3,4,8,10$
$P_{63}=\left(\frac{(n+3)(n-1)}{2 n^{2}}, \frac{n-3}{2 n}, \frac{(n+3)(n-1)}{2 n^{2}}\right)$	$-\frac{5 n+3}{4 n}$	2, 3, 4, 8
$P_{0}^{\prime}=\left(\frac{1}{2}, \frac{1}{2}, 1\right)$	0	1,6,8
$P_{01}^{\prime}=\left(\frac{n-1}{2 n}, \frac{n-1}{2 n}, 1\right)$	0	1,8,10
$P_{3}^{\prime}=\left(\frac{1}{2}+\frac{1}{n-1}, \frac{1}{2}+\frac{1}{n-1}, 1\right)$	$\frac{n}{n-1}$	1,2,8

Vertex	decay $=\alpha_{0}-1 / r$	Conditions involved
$P_{5}^{\prime}=\left(\frac{1}{2}+\frac{1}{n}, \frac{1}{2}, 1\right)$	0	$2,5,6$
$P_{6}^{\prime}=\left(\frac{1}{2}+\frac{1}{n+2}, \frac{1}{2}-\frac{1}{n+2}, 1\right)$	$-\frac{n}{n+2}$	$5,6,8$
$P_{11}^{\prime}=\left(\frac{1}{2}+\frac{n-2}{n(n-1)}, \frac{1}{2}-\frac{1}{n-1}, 1\right)$	-1	$2,5,8$
$P_{21}^{\prime}=\left(\frac{n-3}{2 n}, \frac{n-3}{2 n}, 1\right)$	1	$1,4,10$
$P_{62}^{\prime}=\left(\frac{n+1}{2 n}, \frac{n-3}{2 n}, 1\right)$	-1	$4,8,10$
$P_{63}^{\prime}=\left(\frac{(n+3)(n-1)}{2 n^{2}}, \frac{n-3}{2 n}, 1\right)$	$-\frac{5 n+3}{4 n}$	$2,4,8$

Therefore

$$
\left\|t^{-\alpha} T\right\| \geq C \epsilon^{n / 2} /\|f\|_{p}\left\|t^{\alpha} v\right\|_{q^{\prime}, r^{\prime}} \geq C \epsilon^{n / 2 p-n / 2 q-1 / r+\alpha}
$$

Since ϵ can be arbitrarily small this shows that $\left\|t^{-\alpha} T\right\|$ is not bounded if $n / 2 p-$ $n / 2 q-1 / r+\alpha<0$.

Condition 9. ($\alpha \geq n / 2-n / p$). Let f be the function in (7). Suppose that g is the characteristic function of $A=\{x: s+a s<|x|<s+b s\}$ and $v(x, t)$ is $f(x)$ multiplied by the characteristic function of $A_{2}=\{t: s+d<t<s+c\}$. Then

$$
\left|\int_{0}^{\infty} \int_{\mathbb{R}^{n}} t^{-\alpha} T_{t} g(x) v(x, t) \mathrm{d} x \mathrm{~d} t\right| \geq \int_{A_{2}} \int_{A_{1}}\left|T_{t} f\right| t^{-\alpha} \mathrm{d} t \geq C s^{-\alpha+n / 2} .
$$

Hence

$$
\begin{aligned}
\left\|t^{-\alpha} T_{t} g\right\|_{q, r} & \geq C s^{-\alpha+n / 2} /\|v\|_{q^{\prime}, r^{\prime}}=C s^{-\alpha+n / 2} \\
& =C s^{-\alpha+n / 2-n / p}\|g\|_{p} \text { for } s \geq 1 .
\end{aligned}
$$

Now let $s \rightarrow \infty$.
Condition 10. $(\alpha \geq-n / p+1 / r+(n-1) / 2)$. This condition was obtained already in (5).

The proof of the theorem is now complete.
2. Sufficient conditions. To examine the boundedness of $(1+t)^{-\alpha} T_{t}$ we now look at the "vertices" determined by \mathscr{R} and α_{0}. Those are the points $P=(1 / p, 1 / q, 1 / r)$ and values of $\alpha_{0}=\alpha_{0}(P)$ such that if estimates $\left\|(1+t)^{-\alpha_{0}} T_{t} f\right\|_{q, r} \leq C\|f\|_{p}$ can be

Figure $1 \mathrm{n}=3,1 / \mathrm{r}=0$
obtained at the vertices then all the other estimates will follow by interpolation. The vertices suggested by the theorem are given in the table.
The cross-sections $1 / r=0, n=3$ and $1 / r=1 / 2, n=3$ are drawn in diagrams 1 and 2 . As $1 / r$ increases the region determined by condition 8 grows from the line segment $P_{0} P_{6}$. For $1 / r \geq 1 / 2$ condition 10 replaces condition 9 .

As pointed out earlier condition 6 implies that in some cases the estimate at P with $\alpha=\alpha_{0}$ might not be possible (for example, at $P_{0}^{\prime}, P_{2}^{\prime}, P_{4}^{\prime}$, or P_{6}^{\prime}). We will therefore be willing to settle for estimates arbitrarily close to P, in the interior of \mathscr{R} with $\alpha>$ α_{0}. For example, the estimate near P_{41} was obtained in [3]. Specifically it was shown that $\left\|T_{t} f\right\|_{q, r} \leq C\|f\|_{2}$ holds for a set of points $(1 / 2,1 / q, 1 / r)$ which contains P_{41} in its closure.

The estimates at $P_{0}, P_{1}, P_{2}, P_{3}, P_{4}, P_{5}$, and P_{6} are all contained in [2]. Estimates near the primed vertices can be obtained from those at or near the unprimed vertices by using

Figure $2 n=3,1 / r=1 / 2$

Hölder's inequality since

$$
\int_{0}^{\infty}\left\|(1+t)^{-\alpha} T_{t} f\right\|_{q} \frac{\mathrm{~d} t}{(1+t)} \leq C\left(\int_{0}^{\infty}\left\|(1+t)^{-\beta} T_{t} f\right\|_{q}^{r} \frac{\mathrm{~d} t}{(1+r)}\right)^{1 / r}
$$

whenever $\beta<\alpha$. The vertices that still require estimates are therefore $P_{11}, P_{21}, P_{01}, P_{22}$, P_{61}, P_{62}, and P_{63}.

When $n=3$ this simplifies because $P_{21}=P_{2}, P_{11}=P_{62}=P_{63}=\left(\frac{2}{3}, 0, \frac{2}{3}\right), P_{01}=$ $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{2}\right), P_{22}=\left(0,0, \frac{1}{2}\right), P_{61}=\left(\frac{3}{5}, \frac{1}{15}, \frac{1}{2}\right)$. Of these the most interesting for scattering are P_{62} and P_{61}.

When $n=2$ the unresolved vertices are $P_{11}=\left(\frac{3}{4}, 0, \frac{1}{4}\right), P_{6 *}=\left(\frac{2}{3}, 0, \frac{1}{3}\right), P_{01}=\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{2}\right)$, and $P_{22}=\left(0,0, \frac{1}{2}\right)$. Here $\alpha_{0}\left(P_{11}\right)=-\frac{1}{4}$ and $\alpha_{0}\left(P_{6 *}\right)=-\frac{1}{3}$.

In the case $n=1$ the remaining points are $P_{01}=\left(0,0, \frac{1}{2}\right)$ and $P_{6 *}=\left(\frac{2}{3}, 0, \frac{1}{6}\right)$. In this case $\alpha\left(P_{01}\right)=\frac{1}{2}$ and $\alpha\left(P_{6 *}\right)=-\frac{1}{6}$.

References

1. P. Brenner, On space-time means and everywhere defined scattering operators for nonlinear KleinGordon equations, preprint.
2. B. Marshall, W. Strauss, and S. Wainger, $L^{p}-L^{4}$ estimates for the Klein-Gordon equation, J. Math. Pures et Appl. 59 (1980), pp. 417-440.
3. B. Marshall, Mixed norm estimates for the Klein-Gordon equation, Proceedings of Conference in Harmonic Analysis for A. Zygmund, part 2, (1982), pp. 614-625.
4. H. Pecher, Nonlinear small data scattering for the wave and Klein-Gordon equation, preprint.
5. W. A. Strauss, Nonlinear scattering theory at low energy, I, J. Funct. Anal. 41 (1981), pp. 110-113. II, ibid. 43 (1981), pp. 281-293.
6. R. S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), pp. 705-714.

McGill University
Montréal, Québec

