Canad. Math. Bull. Vol. 29 (1), 1986

MIXED NORM DECAY FOR THE KLEIN-GORDON EQUATION WITH INITIAL DATA IN L^p

BY

BERNARD MARSHALL

ABSTRACT. This paper gives necessary conditions for mixed norm estimates from L^p to $L^r(L^q)$ for solutions of the Klein-Gordon equation

$$u_{tt} = \Delta u + u = 0$$
 $u(x, 0) = 0$ $u_t(x, 0) = f(x).$

These conditions are best possible if p = 2 or $r = \infty$ or $\frac{1}{p} + \frac{1}{q} \ge 1$.

The purpose of this paper is to examine estimates of the form

(1)
$$\|(1+t)^{\alpha}u\|_{q,r} \equiv \left(\int_0^{\infty} ((1+t)^{\alpha}\|u(\cdot,t)\|_q)^r dt\right)^{1/r} \leq C \|f\|_p$$

where u(x, t) is the solution of the following Cauchy problem for the Klein-Gordon equation

$$\begin{cases} u_{tt} - \Delta_{x}u + u = 0 \\ u(x, 0) = 0 \quad u_{t}(x, 0) = f(x) \end{cases}$$

where $x \in \mathbb{R}^n$, t > 0. The expression $\alpha - 1/r$ gives a measure of the decay of the solution u. The operator $T_t f(x) = u(x, t)$ is a Fourier multiplier transformation: $\hat{T}_t f(\xi) = \sin(t\sqrt{1+|\xi|^2})(1+|\xi|^2)^{-1/2}\hat{f}(\xi)$.

Define

$$\alpha_0(x, y, z) = \max\left\{nx + (n-2)y + z - n, ny + z - \frac{n}{2}, \frac{n}{2} - nx, -(n-2)x - ny - z + (n-2), -\frac{n}{2}x + \frac{n}{2}y + z, -nx + z + \frac{n-1}{2}\right\}.$$

Define \Re to be the region

$$\Re = \left\{ (x, y, z) \colon x \ge y, \, nx \le y + \frac{n+1}{2}, \, ny + z \ge x + \frac{n-3}{2}, \, y \ge \frac{1}{2} - \frac{3}{2n} \right\}.$$

Research supported by NSERC Grant #U0074.

Received by the editors April 19, 1984 and, in revised form, August 30, 1984.

AMS Subject Classification (1980): 35L15.

[©] Canadian Mathematical Society 1984.

B. MARSHALL

THEOREM. There can exist an estimate of the form (1) only if (1/p, 1/q, 1/r) is in the region \Re . In addition, if (1/p, 1/q, 1/r) is in \Re and (1) holds then $\alpha \ge \alpha_0(1/p, 1/q, 1/r)$.

This theorem gives necessary conditions on (1/p, 1/q, 1/r) and α for there to be an estimate of the form (1). Except possibly for some boundary points $(1/p, 1/q, 1/r) \in \partial \Re$ or $\alpha = \alpha_0$, the conditions of the theorem are both necessary and sufficient if either p = 2 or $r = \infty$ or $1/p + 1/q \ge 1$. At the boundary points, T_t may or may not be bounded if $\alpha = \alpha_0$. If $r = \infty$, T_t is bounded with $\alpha = \alpha_0$ but condition 6 of the proof shows that (1) does not hold for $\alpha = \alpha_0$ in the region where $a_0(1/p, 1/q, 1/r) = n/q + 1/r - n/2$ and $r < \infty$.

Estimates of the type (1) were needed to prove the existence of the scattering operator for the nonlinear Klien-Gordon equation $u_{tt} - \Delta_x u + u = |u|^{\gamma-1}u$ with small initial data. The estimates used in [5] by Strauss were of the form

$$||T_t f||_q \le C t^{\alpha} ||f||_p.$$

This is the special case $r = \infty$, which was examined completely in [2]. Estimates of the form (1) when p = 2 were used in ([5], II) to obtain the scattering operator for nonlinearities of the type $(V * u^2)u$. The case p = 2 has been considered in [3] and [6]. Similar p = 2 estimates, composed with differentiation operators in x and t, were used by Brenner in [1] to obtain the scattering operator for arbitrary data when the nonlinear term is $|u|^{\gamma-1}u$. Estimates with p = 2 are also used in Pecher [4].

The application of these estimates follow the argument of Strauss in [5]. Suppose the nonlinear term is Pu. To construct the solution of the nonlinear equation using (1) an auxiliary space Z, defined using norms of the form $L^{r_1}(\mathbb{R}, L^{q_1})$, is chosen so that the perturbation

$$\mathcal{P}u(x,t) = \int_{s}^{t} T_{t-\tau} Pu(x,\tau) \,\mathrm{d}\tau$$

is a contraction mapping on Z. The parameters p, q, r and α are chosen to suit the nonlinear term Pu. It is useful to have as much freedom as possible in the choice of these parameters. The theorem also suggests estimates for T_t . These are given in the second section.

1. **Proof of the Theorem**. Many of the estimates given are modifications of arguments in [2], [3], or [6]. The calculations are therefore brief.

CONDITION 1. $(1/p \ge 1/q)$ See [3], p. 618. If $f_s(x) = s^{n/p} f(sx)$ and u(x, t) is the solution with initial velocity $u_t(x, 0) = \cos(\sqrt{\ell^2 - 1}x_1)f_s(x)$ then $||f_s||_p = ||f||_p$ but by [3]

$$||t^{-\alpha}u||_{q,r} \ge C s^{n(1/p-1/q)}$$
 for $s < \frac{1}{2t}$

Let s approach zero. Thus $||t^{-\alpha}u||_{q,r}$ can be bounded only if $1/p \ge 1/q$.

CONDITION 2. $(n/p \le 1/q + (n + 1)/2)$ See [2], p. 434. Again let $f_s(x) = s^{n/p} f(sx)$. By [2] there exists a function f and constants a, b, c such that

(3)
$$|T_t f_s(x)| \ge c s^{n/p - (n+1)/2}$$

for $t - \frac{b}{s} < |x| < t - \frac{a}{s}$, $1 \le t \le 2$, and $s \ge 1$. Then if $u_s = T_t f_s$,

$$\|t^{-\alpha}u_s\|_{q,r} \ge \left(\int_1^2 \left(\int_{\mathbb{R}^n} |t^{-\alpha}T_t f_s(x)|^q \, \mathrm{d}x\right)^{r/q} \, \mathrm{d}t\right)^{1/r} \ge C \, s^{n/p - (n+1)/2 - 1/q}$$

For this to be bounded as s tends to infinity we need $n/p \le 1/q + (n + 1)/2$.

CONDITION 3. $(n/q + 1/r \ge 1/p + (n - 3)/2)$. We will use (3) and a duality argument as in [3], p. 619. Let $A_1 = \{x: 1 - b_1/s \le |x| \le 1 - a_1/s\}$ and $A_2 = \{t: 1 - b_2/s < t < 1 - a_2/s\}$. Suppose that f is real-valued and g is the characteristic function of the set A_1 . Define also v(x, t) to be $f_s(x)$ times the characteristic function of A_2 . Then it follows from (3) that

(4)
$$\left|\int_{0}^{\infty}\int_{\mathbb{R}^{n}}t^{-\alpha}T_{t}g(x)\nu(x,t)\,\mathrm{d}x\,\mathrm{d}t\right| = \int_{A_{2}}\int_{A_{1}}t^{-\alpha}|T_{t}f_{s}|\,\mathrm{d}x\,\mathrm{d}t$$
$$\geq C\,s^{-2+n/p-(n+1)/2} \text{ for }s\geq 1.$$

Note that for f real-valued $T_t f_s$ is always positive or always negative in the region $A_1 \times A_2$. This is why the absolute value could be brought inside the integral in (4). Since

$$\|v\|_{a',r'} = C s^{n/p - n/q' - 1/2}$$

and $||g||_2 = C s^{-1/p}$ this shows that

$$||t^{-\alpha}T_t|| \ge C s^{-2+n/p-(n+1)/2}/||v||_{q',r'}||g||_q = C s^{(n-3)/2+1/p-n/q-1/r}.$$

Here condition 3 follows by letting $s \rightarrow \infty$.

CONDITION 4. $(n/q \ge (n-3)/2)$ See [3], p. 619. Let $f(x) = \sin\{(|x| - 1)/\sigma\}$ for $1 \le |x| \le M$ and f(x) = 0 otherwise. Then $||f||_p \le CM^{n/p}$. It follows from the calculations in [3] that

$$\|t^{-\alpha}T_tf\|_{q,r} \ge C \,\sigma^{n/q-(n-3)/2} (1 + M^{-\alpha+(n-1)/2+1/r})$$

Let $\sigma \to 0$ or $M \to \infty$. Then for $t^{-\alpha}T_t$ to be bounded we need both

(5)
$$\frac{n}{q} - \frac{n-3}{2} \ge 0$$
 and $-\alpha + \frac{n-1}{2} + \frac{1}{r} - \frac{n}{p} \le 0$

Conditions 1-4 show that estimates of the form $||(1 + t)^{-\alpha}T_t f||_{q,r} \le C ||f||_p$ can occur only in the region \Re .

CONDITION 5. $(\alpha \ge n/p + (n-2)/q + 1/r - n)$. A modification of Lemma 7 in [2] shows that there is a function f and constants a_1 , a_2 , b_1 , b_2 such that

$$(6) |T_t f_s(x)| > C t^{-n/p}$$

for $t - b_1/s < |x| < t - a_1/s$, $a_2t < s < b_2t$, $s \ge 1$. Here as usual $f_s(x) = s^{n/p} f(sx)$.

13

1986]

As a result, if $u_s = t^{-\alpha}T_t f_s$ then

$$\|u_s\|_{q,r} \ge C \left(\int_{s/b_2}^{s/a_2} \left(\int_{t-b_1/s}^{t-a_1/s} |t^{-\alpha-n/p'}|^q R^{n-1} dR \right)^{r/q} dt \right)^{1/r}$$

= $C s^{-\alpha-n/p'+(n+2)/q+1/r}.$

Letting $s \rightarrow \infty$ completes the proof of this condition.

CONDITION 6. $(\alpha > n/q + 1/r - n/2 \text{ if } r < \infty \text{ and } \alpha \ge n/q - n/2 \text{ if } r = \infty)$. Lemma 8 of [2] p. 434 shows that there exist a function f and constants a, b, c such that for any $t \ge 1$ the subset of $\{x: at < |x| < bt\}$ where

$$(7) |T_t f(x)| \ge c t^{-n/2}$$

has measure at least ct^n . It follows therefore that

$$||t^{-\alpha}T_if||_{q,r} \ge C \left(\int_1^\infty t^{r(-\alpha+n/q-n/2)} dt\right)^{1/r} = \infty$$

if $r(-\alpha + n/q - n/2) \ge -1$ and $r < \infty$. If $r = \infty$ then the conclusion still follows easily from (7): $t^{-\alpha}T_t$ is not bounded if $-\alpha + n/q - n/2 < 0$.

CONDITION 7. $(\alpha \ge -(n-2)/p - n/q - 1/r + (n-2))$. Let $A_1 = \{x: s - b_1/s < |x| < s - a_1/s\}$ and $A_2 = \{t: s - b_2/s < t < s - a_2/s\}$. Suppose that f is real-valued. If g is the characteristic function of A_1 and v(x, t) is $f_s(x) = s^{n/p} f(sx)$ times the characteristic function of A_2 then by (6),

$$\left|\int_{0}^{\infty}\int_{\mathbb{R}^{n}}t^{-\alpha}T_{t}g(x)v(x,t)\,\mathrm{d}x\,\mathrm{d}t\right|\geq C\,\int_{A_{1}}\int_{A_{2}}t^{-\alpha}t^{-n/p'}\,\mathrm{d}x\,\mathrm{d}t$$
$$\geq C\,s^{n-3-\alpha-n/p'}.$$

Since $||v||_{q',r'} = C s^{n/p - n/q' - 1/r'}$ then

$$\|t^{-\alpha}T_tg\|_{q',r} \geq C s^{n-2-\alpha-n/q-1/r}$$

Also $||g||_p = C s^{(n-2)/p}$, and so

$$||t^{-\alpha}T_t|| \ge C s^{(n-2)/p'-n/q-1/r-\alpha}$$
 for $s \ge 1$.

Again, letting $s \rightarrow \infty$ completes the proof.

CONDITION 8. $(\alpha \ge -n/2p + n/2q + 1/r)$ See [6] and [3], p. 620. Suppose that f is the inverse Fourier transform of the characteristic function of the set $A = \{x \in \mathbb{R}^n : |x_j| \le \sqrt{\epsilon}, j = 1, ..., n\}$ and v is the inverse Fourier transform of the characteristic function of the set $Q = \{(x, t): x \in A, |t| \le \epsilon\}$. Then by the calculation in [3],

$$||f||_p \ge C \epsilon^{n/2p'}, \quad ||t^{\alpha}v||_{q',r'} \le C \epsilon^{n/2q+1/r-\alpha}$$

and

$$\left|\int_0^{\infty}\int_{\mathbb{R}^n} T_t f(x)v(x,t)\,\mathrm{d}x\,\mathrm{d}t\right| \geq C\,\epsilon^{n/2}.$$

[March

Table

Vertex	$decay = \alpha_0 - 1/r$	Conditions involved
$P_0 = \left(\frac{1}{2}, \frac{1}{2}, 0\right)$	0	1, 6, 8, 9
$P_1 = \left(\frac{1}{2} + \frac{1}{n+1}, \frac{1}{2} - \frac{1}{n+1}, 0\right)$	$-\frac{n-1}{n+1}$	2, 3, 5, 7
$P_2 = \left(\frac{1}{2} - \frac{1}{n-1}, \frac{1}{2} - \frac{1}{n-1}, 0\right)$	$\frac{n}{n-1}$	1, 3, 9
$P_3 = \left(\frac{1}{2} + \frac{1}{n-1}, \frac{1}{2} + \frac{1}{n-1}, 0\right)$	$\frac{n}{n-1}$	1, 2, 6
$P_{4} = \left(\frac{1}{2}, \frac{1}{2} - \frac{1}{n}, 0\right)$	0	3, 7, 9
$P_5 = \left(\frac{1}{2} + \frac{1}{n}, \frac{1}{2}, 0\right)$	0	2, 5, 6
$P_6 = \left(\frac{1}{2} + \frac{1}{n+2}, \frac{1}{2} - \frac{1}{n+2}, 0\right)$	$-\frac{n}{n+2}$	5, 6, 7, 8, 9
$P_{11} = \left(\frac{1}{2} + \frac{n-2}{n(n-1)}, \frac{1}{2} - \frac{1}{n-1}, \frac{2}{n}\right)$	- 1	2, 3, 5, 7, 8
$P_{21} = \left(\frac{n-3}{2n}, \frac{n-3}{2n}, \frac{n-3}{2n}\right)$	$1+\frac{3}{2n}$	1, 3, 4, 9
$P_{01} = \left(\frac{n-1}{2n}, \frac{n-1}{2n}, \frac{1}{2}\right)$	0	1, 8, 9, 10
$P_{22} = \left(\frac{n-3}{2n}, \frac{n-3}{2n}, \frac{1}{2}\right)$	1	1, 4, 9, 10
$P_{41} = \left(\frac{1}{2}, \frac{n-3}{2n}, \frac{1}{2}\right)$	$-\frac{1}{2}$	3, 4, 7, 9, 10
$P_{61} = \left(\frac{n+3}{2(n+2)}, \frac{n^2 - n - 4}{2n(n+2)}, \frac{1}{2}\right)$	$-\frac{n+1}{n+2}$	7, 8, 9, 10
$P_{62} = \left(\frac{n+1}{2n}, \frac{n-3}{2n}, \frac{n+1}{2n}\right)$	- 1	3, 4, 8, 10
$P_{63} = \left(\frac{(n+3)(n-1)}{2n^2}, \frac{n-3}{2n}, \frac{(n+3)(n-1)}{2n^2}\right)$	$-\frac{5n+3}{4n}$	2, 3, 4, 8
$P'_0 = \left(\frac{1}{2}, \frac{1}{2}, 1\right)$	0	1, 6, 8
$P'_{01} = \left(\frac{n-1}{2n}, \frac{n-1}{2n}, 1\right)$	0	1, 8, 10
$P'_{3} = \left(\frac{1}{2} + \frac{1}{n-1}, \frac{1}{2} + \frac{1}{n-1}, 1\right)$	$\frac{n}{n-1}$	1, 2, 8

Table (Concinuca)		
Vertex	decay = $\alpha_0 - 1/r$	Conditions involved
$P'_{5} = \left(\frac{1}{2} + \frac{1}{n}, \frac{1}{2}, 1\right)$	0	2, 5, 6
$P'_{6} = \left(\frac{1}{2} + \frac{1}{n+2}, \frac{1}{2} - \frac{1}{n+2}, 1\right)$	$-\frac{n}{n+2}$	5, 6, 8
$P'_{11} = \left(\frac{1}{2} + \frac{n-2}{n(n-1)}, \frac{1}{2} - \frac{1}{n-1}, 1\right)$	- 1	2, 5, 8
$P'_{21} = \left(\frac{n-3}{2n}, \frac{n-3}{2n}, 1\right)$	1	1, 4, 10
$P_{62}' = \left(\frac{n+1}{2n}, \frac{n-3}{2n}, 1\right)$	- 1	4, 8, 10
$P'_{63} = \left(\frac{(n+3)(n-1)}{2n^2}, \frac{n-3}{2n}, 1\right)$	$-\frac{5n+3}{4n}$	2, 4, 8

Table (Concluded)

Therefore

$$\|t^{-\alpha}T\| \geq C \epsilon^{n/2} / \|f\|_p \|t^{\alpha}v\|_{q',r'} \geq C \epsilon^{n/2p-n/2q-1/r+\alpha}.$$

Since ϵ can be arbitrarily small this shows that $||t^{-\alpha}T||$ is not bounded if $n/2p - n/2q - 1/r + \alpha < 0$.

CONDITION 9. ($\alpha \ge n/2 - n/p$). Let f be the function in (7). Suppose that g is the characteristic function of $A = \{x: s + as < |x| < s + bs\}$ and v(x, t) is f(x) multiplied by the characteristic function of $A_2 = \{t: s + d < t < s + c\}$. Then

$$\left|\int_0^{\infty}\int_{\mathbb{R}^n}t^{-\alpha}T_tg(x)v(x,t)\,\mathrm{d}x\,\mathrm{d}t\right|\geq\int_{A_2}\int_{A_1}|T_tf|t^{-\alpha}\,\mathrm{d}t\geq C\,s^{-\alpha+n/2}.$$

Hence

$$\begin{aligned} \|t^{-\alpha}T_{t}g\|_{q,r} &\geq C \, s^{-\alpha+n/2} / \|v\|_{q',r'} = C \, s^{-\alpha+n/2} \\ &= C \, s^{-\alpha+n/2-n/p} \|g\|_{p} \quad \text{for} \quad s \geq 1. \end{aligned}$$

Now let $s \to \infty$.

CONDITION 10. ($\alpha \ge -n/p + 1/r + (n - 1)/2$). This condition was obtained already in (5).

The proof of the theorem is now complete.

2. Sufficient conditions. To examine the boundedness of $(1 + t)^{-\alpha}T_t$ we now look at the "vertices" determined by \Re and α_0 . Those are the points P = (1/p, 1/q, 1/r)and values of $\alpha_0 = \alpha_0(P)$ such that if estimates $||(1 + t)^{-\alpha_0}T_t f||_{q,r} \le C||f||_p$ can be

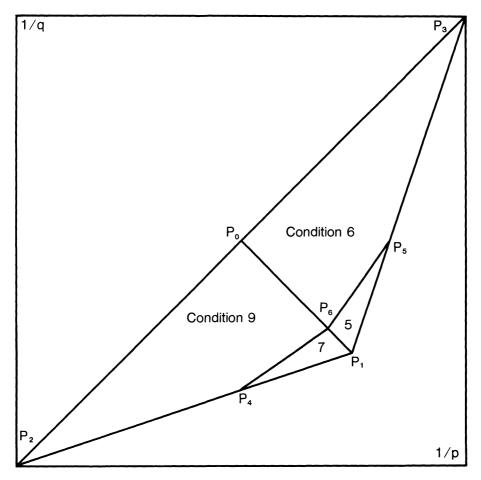


Figure 1 n = 3, 1/r = 0

obtained at the vertices then all the other estimates will follow by interpolation. The vertices suggested by the theorem are given in the table.

The cross-sections 1/r = 0, n = 3 and 1/r = 1/2, n = 3 are drawn in diagrams 1 and 2. As 1/r increases the region determined by condition 8 grows from the line segment P_0P_6 . For $1/r \ge 1/2$ condition 10 replaces condition 9.

As pointed out earlier condition 6 implies that in some cases the estimate at P with $\alpha = \alpha_0$ might not be possible (for example, at P'_0, P'_2, P'_4 , or P'_6). We will therefore be willing to settle for estimates arbitrarily close to P, in the interior of \Re with $\alpha > \alpha_0$. For example, the estimate near P_{41} was obtained in [3]. Specifically it was shown that $||T_t f||_{q,r} \le C ||f||_2$ holds for a set of points (1/2, 1/q, 1/r) which contains P_{41} in its closure.

The estimates at P_0 , P_1 , P_2 , P_3 , P_4 , P_5 , and P_6 are all contained in [2]. Estimates near the primed vertices can be obtained from those at or near the unprimed vertices by using

1986]

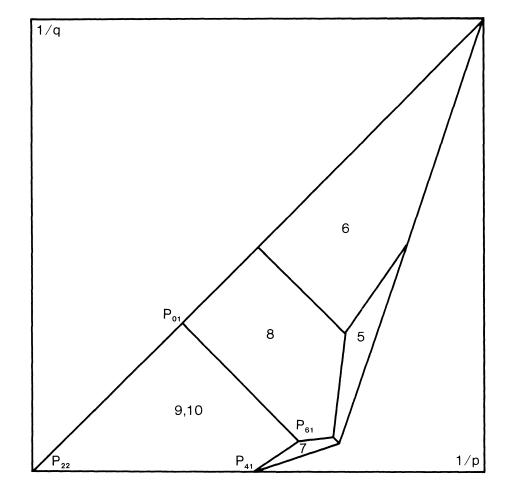


Figure 2 n = 3, 1/r=1/2

Hölder's inequality since

$$\int_0^\infty \|(1+t)^{-\alpha}T_tf\|_q \frac{\mathrm{d}t}{(1+t)} \le C \left(\int_0^\infty \|(1+t)^{-\beta}T_tf\|_q^r \frac{\mathrm{d}t}{(1+r)}\right)^{1/r}$$

whenever $\beta < \alpha$. The vertices that still require estimates are therefore P_{11} , P_{21} , P_{01} , P_{22} , P_{61} , P_{62} , and P_{63} .

When n = 3 this simplifies because $P_{21} = P_2$, $P_{11} = P_{62} = P_{63} = (\frac{2}{3}, 0, \frac{2}{3})$, $P_{01} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{2})$, $P_{22} = (0, 0, \frac{1}{2})$, $P_{61} = (\frac{3}{5}, \frac{1}{15}, \frac{1}{2})$. Of these the most interesting for scattering are P_{62} and P_{61} .

When n = 2 the unresolved vertices are $P_{11} = (\frac{3}{4}, 0, \frac{1}{4}), P_{6*} = (\frac{2}{3}, 0, \frac{1}{3}), P_{01} = (\frac{1}{4}, \frac{1}{4}, \frac{1}{2}),$ and $P_{22} = (0, 0, \frac{1}{2})$. Here $\alpha_0(P_{11}) = -\frac{1}{4}$ and $\alpha_0(P_{6*}) = -\frac{1}{3}$.

In the case n = 1 the remaining points are $P_{01} = (0, 0, \frac{1}{2})$ and $P_{6*} = (\frac{2}{3}, 0, \frac{1}{6})$. In this case $\alpha(P_{01}) = \frac{1}{2}$ and $\alpha(P_{6*}) = -\frac{1}{6}$.

MIXED NORM DECAY

References

1. P. Brenner, On space-time means and everywhere defined scattering operators for nonlinear Klein-Gordon equations, preprint.

2. B. Marshall, W. Strauss, and S. Wainger, $L^{p} - L^{q}$ estimates for the Klein-Gordon equation, J. Math. Pures et Appl. **59** (1980), pp. 417–440.

3. B. Marshall, *Mixed norm estimates for the Klein-Gordon equation*, Proceedings of Conference in Harmonic Analysis for A. Zygmund, part 2, (1982), pp. 614-625.

4. H. Pecher, Nonlinear small data scattering for the wave and Klein-Gordon equation, preprint.

5. W. A. Strauss, *Nonlinear scattering theory at low energy*, I, J. Funct. Anal. **41** (1981), pp. 110–113. II, ibid. **43** (1981), pp. 281–293.

6. R. S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), pp. 705-714.

MCGILL UNIVERSITY MONTRÉAL, QUÉBEC