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The nonlinear stability of viscous, immiscible multilayer flows in plane channels
driven both by a pressure gradient and gravity is studied. Three fluid phases are
present with two interfaces. Weakly nonlinear models of coupled evolution equations
for the interfacial positions are derived and studied for inertialess, stably stratified
flows in channels at small inclination angles. Interfacial tension is demoted and
high-wavenumber stabilisation enters due to density stratification through second-order
dissipation terms rather than the fourth-order ones found for strong interfacial
tension. An asymptotic analysis is carried out to demonstrate how these models arise.
The governing equations are 2 × 2 systems of second-order semi-linear parabolic
partial differential equations (PDEs) that can exhibit inertialess instabilities due to
interaction between the interfaces. Mathematically this takes place due to a transition
of the nonlinear flux function from hyperbolic to elliptic behaviour. The concept
of hyperbolic invariant regions, found in nonlinear parabolic systems, is used to
analyse this inertialess mechanism and to derive a transition criterion to predict the
large-time nonlinear state of the system. The criterion is shown to predict nonlinear
stability or instability of flows that are stable initially, i.e. the initial nonlinear fluxes
are hyperbolic. Stability requires the hyperbolicity to persist at large times, whereas
instability sets in when ellipticity is encountered as the system evolves. In the former
case the solution decays asymptotically to its uniform base state, while in the latter
case nonlinear travelling waves can emerge that could not be predicted by a linear
stability analysis. The nonlinear analysis predicts threshold initial disturbances above
which instability emerges.

Key words: interfacial flows (free surface), nonlinear instability, thin films

1. Introduction

Stratified multilayer plane channel flows involving more than one interface emerge
in a large number of industrial applications and exhibit unique nonlinear behaviour.
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Importantly, such geometrically complex flows raise physical and mathematical
issues that are not encountered in two-fluid single-interface channel flows, which
have been studied extensively. Flows with multiple interfaces depend on many
physical parameters, but more crucially their interfacial dynamics support nonlinear
mechanisms between the interacting interfaces and which, in turn, induce inertialess
instabilities, that are not found in two-fluid single-interface flows, (Chen 1995;
Pozrikidis 2004).

The stability of three-layer Couette flow was first studied by Li (1969), who
predicted that long-wave instability is possible even in the absence of inertia.
Motivated by Li’s study, Kliakhandler & Sivashinsky (1995) considered a three-layer
plane Poiseuille flow in the absence of inertia and identified two kinds of long-wave
instabilities in the weakly nonlinear regime. One (first kind) due to the coupled linear
advective terms supporting complex eigenvalues, and one (second kind) due to the
interaction between the linear advection and interfacial tension terms. The second
kind of inertialess instability can be understood mathematically as a generalised
Majda–Pego (Majda & Pego 1985) instability for fourth-order dissipation due to
interfacial tension. Note that in the case of open multilayer flows when one interface
and a free surface are present, it has been observed that the first kind of inertialess
instability is absent (Weinstein & Kurz 1991; Kliakhandler & Sivashinsky 1997).

Typically, the inertialess instabilities described above are assumed to emerge
exclusively due to linear mechanisms. However, it has been shown recently by
Papaefthymiou, Papageorgiou & Pavliotis (2013) that inertialess instabilities in
multilayer flows can also emerge due to nonlinear dynamics of the interfaces. Linear
theories (used extensively in the case of single-interface flows) are not sufficient
for stability when multiple interfaces are present. In this study we draw attention
to a nonlinear physical phenomenon encountered in multilayer flows, namely the
nonlinear transition of an initially stable flow to an unstable one driven by inertialess
instabilities that develop in time. We term this nonlinear phenomenon as transitional
instabilities (these are distinct from linear transient growth phenomena, see Trefethen
et al. (1993) for example).

Such transitional instabilities have been identified in the context of 2 × 2 systems
of conservation laws of mixed hyperbolic–elliptic type. By considering the initial
value problem of mixed hyperbolic–elliptic systems and starting with smooth initial
conditions that ensure the systems are everywhere hyperbolic (i.e. the Jacobian of
the flux function possesses real eigenvalues), these systems may remain hyperbolic
throughout their evolution or transition to ellipticity (i.e. develop complex conjugate
eigenvalues). This phenomenon has been encountered in different fluid applications –
(Bürger et al. 2002; Jackson & Blunt 2002; Talon et al. 2004; Chumakova et al.
2009; Boonkasame & Milewski 2012) – and has raised concern regarding the
physical relevance of the mathematical models. Due to the absence of dissipative
mechanisms in systems of conservation laws, the existence of ellipticity introduces
a catastrophic instability in the sense of Hadamard – (Joseph & Saut 1990). In the
problem of viscous multilayer channel flows presented here, the phenomenon of
hyperbolic–elliptic transition corresponds to the case when the first kind of inertialess
instability mentioned previously emerges. Importantly, the models derived and studied
here are regularised systems of conservation laws that are well-posed and perfect
physical candidates for the study of this transitional nonlinear behaviour.

In this paper we focus on the case of pressure- and gravity-driven three-layer
flows inside an inclined channel. We derive weakly nonlinear models (valid for long
waves of small amplitude) and analyse them in order to understand the nonlinear
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FIGURE 1. Schematic of a three-layer flow down an inclined plane channel.

phenomenon of transitional instability described above. The derived mathematical
models are 2× 2 semi-linear parabolic systems and one can distinguish two possible
physical dissipative mechanisms; fourth-order dissipation due to strong interfacial
tension, and/or second-order dissipation due to stable density stratification. In this
paper we focus on the latter case by considering small channel inclinations and
promoting second-order parabolic systems where rigorous nonlinear theory can
be applied. In channel flows (unlike open flows – see references above), weakly
nonlinear systems can be derived asymptotically correctly due to Galilean invariance,
i.e. equal eigenvalues. Note that Galilean invariance is related to the existence of
instability of the first kind (complex eigenvalues), since the system must cross
equal eigenvalues before they become complex. Finally, we stress that the deep
understanding and prediction of the behaviour of such complex flows demands the
departure from well-established linear theories (albeit sufficient in two-layer flows)
and the development of nonlinear methods.

2. Formulation and mathematical models

Consider a plane channel flow comprised of three immiscible incompressible
viscous Newtonian fluids, driven by gravity and an imposed pressure gradient along
the channel – see figure 1. The fluid dynamics are governed by the Navier–Stokes
equations in each phase, and sufficiently strong interfacial tension is present at the
two fluid–fluid interfaces – see Chang, Demekhin & Kopelevich (1993). At low and
moderate Reynolds numbers Re = ρ1U d/µ1, where U is a typical flow velocity,
d is the channel height and ρ1, µ1 are the density and viscosity of the upper
fluid, such multilayer flows remain immiscible and can become unstable, producing
two-dimensional interfacial wave dynamics. As discussed in the Introduction, it is
sufficient to consider inertialess flows (i.e. Re ≈ 0), and also long waves due to the
presence of interfacial tension and/or stable density stratification that act to damp
short waves. This leads to the nonlinear partial differential equations (PDEs) (2.3) that
are amenable to analysis and computations.

The boundary conditions are those of no-slip at the walls along with continuity of
velocities, balance of normal and tangential stresses, and kinematic conditions at the
interfaces. In addition, periodic boundary conditions are imposed in the direction along
the channel. Introducing a small parameter δ� 1 measuring the ratio of the channel
height d to a typical interfacial wavelength, and carrying out an asymptotic expansion
of the governing equations and boundary conditions to second order, leads to a system
that involves O(1) and O(δ) terms (for details of the analysis see Papaefthymiou et al.
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(2013)). The reduced system in terms of the dimensionless independent variables ξ
(spatial) and τ (temporal) reads

hτ +F(h, T)ξ + δ
[
(Re S(h, T)+ cot θG(h, T)) hξ +

1
Ca

D(h, T)hξξξ
]
ξ

= 0, (2.1)

and we emphasise that retention of δ terms is crucial in providing a dissipative
regularisation to prevent overturning or catastrophic short wave instabilities. In
(2.1) h(ξ , τ ) = (h2, h3)

T is the vector of the dimensionless interfacial positions
(the superscript T denotes transpose) and is always positive and 2L-periodic,
i.e. h(ξ + 2L, τ )= h(ξ , τ ). The 2× 1 nonlinear flux vector F and the 2× 2 matrices
S, G and D have terms that are rational polynomial functions of the interfacial
deformations h2,3, as well as the vector of the dimensionless physical parameters of
the problem T. The latter is defined as

T≡ (H2,H3,m2,m3, r2, r3)
T, (2.2)

where m2,3 and r2,3 are the viscosity and density ratios in regions 2 and 3
non-dimensionalised with respect to the properties of the top layer region 1, while H2,3
are the undisturbed interfacial positions, i.e. the spatial means of h2(ξ , τ ) and h3(ξ , τ ).
The dimensionless channel height is 1. The scaled capillary number Ca=O(1) derives
from strong interfacial tension so that Ca= δ2Ca, where Ca= 2Uµ1/σ is the capillary
number, and σ is the interfacial tension taken to be the same at the two interfaces;
θ measures the angle of the channel with respect to the horizontal as shown in
figure 1. The system (2.1) is a generalisation of the scalar Benney equation (Benney
1966) that was derived for two-fluid flows with a single interface, and incorporates
inertia, buoyancy and interfacial tension effects through the matrices S, G and D,
respectively.

Our goal is to understand the fundamental nonlinear inertialess instabilities of
(2.1). Inspection shows a competition between second- and fourth-order spatial
derivatives. In what follows we derive and study equations that retain second-order
dissipative terms alone – physically this can be achieved if interfacial tension is
negligible and the combination of inertial and gravitational buoyancy terms provide
dissipation. When Re is negligible, the gravitational buoyancy term is dissipative if
the layers are stably stratified. Mathematically, second-order dissipation in systems
is preferable due to the existence of rigorous analytical results that do not extend
to fourth-order dissipation. We will construct nonlinear stability criteria based on
rigorous mathematics, and subsequently use these as conjectures that can be checked
numerically, for higher-order equations when interfacial tension is present.

We simplify (2.1) by taking θ =O(δ), i.e. cot θ ≈Θ/δ where Θ > 0 is an order-one
constant, which in turn implies that inertial and interfacial tension terms are higher
order. The resulting system becomes

hτ +F(h, T)ξ + (Θ G(h, T)hξ )ξ = 0, (2.3)

and incorporates first-order nonlinear flux functions and second-order nonlinear
dissipation due to stable density stratification (r3 > r2 > 1) – i.e. matrix G is negative
definite. Similar long-wave models have been derived by Kliakhandler & Sivashinsky
(1997) for open multilayer flows down slightly inclined planes. In the present channel
flow case, there exist two kinds of long-wave inertialess instabilities supported
by system (2.3): (i) when the Jacobian of the flux function possesses complex
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eigenvalues, and (ii) when these eigenvalues are real but there exists a Majda–Pego
instability (Majda & Pego 1985), i.e. an interaction between the flux function and the
dissipative term. Finally, we emphasise that the well-posedness of system (2.3) is an
open mathematical problem.

One of the most crucial aspects of the kind of interfacial model equations presented
above is that linear stability analysis can be misleading regarding the long-time
stability of the flow; multilayer flows can encounter instabilities as they evolve
nonlinearly in time. This is in contrast to the single-interface scalar case, where
linear theory can sufficiently predict instability that can develop into nonlinear states.
Consequently, one can raise the following question: given initial conditions for the
system (2.3) that are hyperbolic and do not support Majda–Pego instability, under
what criteria will the system remain nonlinearly stable throughout its spatiotemporal
evolution?

We will address this question under the additional assumption of weakly nonlinear
dynamics along with the scenario where the layers close to the walls of the channel
are thin compared to the middle layer. This simplifies system (2.1) (i.e. matrix
G becomes now a multiple of the identity matrix) and enables us to apply a
mathematical theory to derive sufficient conditions for nonlinear stability. Such
conditions provide insight and directions for future studies regarding the more
challenging case of the full nonlinear systems (2.1) and (2.3).

2.1. Weakly nonlinear dynamics
Weakly nonlinear dynamics emerge for sufficiently small interfacial amplitudes.
In appendix A, we start with (2.1) and provide detailed physical and asymptotic
justifications for stably stratified flows with negligible inertia and interfacial tension,
to derive the weakly nonlinear models studied in this paper. This scenario yields the
following semi-linear parabolic system

ηt + f (η, Z)ηx − νIηxx = 0, (2.4)

where the scaled interfacial amplitudes η = (η1, η2)
T are 2π-periodic and have zero

spatial mean, I is the identity matrix (which is of course symmetric and positive
definite) which excludes the possibility of Majda–Pego instability. Furthermore, the
matrix f and the bifurcation parameter ν > 0 are defined in appendix A. The only
instability present in (2.4) arises when the matrix f possesses complex conjugate
eigenvalues (ellipticity). This is possible for certain values of the perturbed physical
parameters Z (see appendix A for a definition of this constant vector) and the
dependent variables η for some values of x and t. Complex eigenvalues induce
instability that depends on the evolving solutions; we emphasise that linear stability
analysis about uniform states is unable to predict the long-time behaviour of system
(2.4) when the eigenvalues are initially real (hyperbolicity). Next we will present a
nonlinear theory to derive a criterion that can answer the question posed previously,
but for the weakly nonlinear system (2.4). In the case of instability, numerical
solutions will be used to construct the ultimate nonlinear states.

3. Nonlinear stability theory for multilayer flows

At this stage it is important to briefly introduce the concept of invariant regions
that has been developed in the context of second-order nonlinear parabolic systems
by Chueh, Conley & Smoller (1977). Their theorems prove the existence of invariant
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regions in the solution state space of certain nonlinear parabolic systems, implying
solutions are confined to these regions for all times. We will use these results to
develop a nonlinear stability theory for the present multilayer flow systems; these are
distinguished from those studied by Chueh et al. (1977) in that they can transition
from hyperbolicity to ellipticity.

Geometrically, invariant regions are formed due to the convexity of two families
of integral curves that span the hyperbolic state space (η1, η2) of system (2.4). These
parametric curves are tangent to the vector field produced by the right eigenvectors
of the matrix f , and therefore are solutions of the following ordinary differential
equations (ODEs):

dη2

dη1
=

2f 21

f 11 − f 22 ±
√
(f 11 − f 22)2 + 4f 12f 21

, (3.1)

when f 21, f 12 6= 0 and where f ij are the elements of matrix f and (−) corresponds
to the first family of the integral curves, while (+) corresponds to the second
family. In fluid mechanics language, the families of integral curves introduced above
are mathematically equivalent to the geometrical concept of streamlines in a flow,
i.e. they are defined as a family of integral curves that are tangent to the velocity
vector field of a flow. Furthermore, such curves are known as rarefaction curves or
wave curves in the context of hyperbolic conservation laws, (Smoller 1994).

Importantly, we observe that one can identify special bounded invariant regions in
the state space, when the matrix f possesses real eigenvalues. In particular, given
initial conditions contained within these bounded hyperbolic invariant regions, then the
evolution of the system remains confined to them, thus preventing crossing into elliptic
regions. This in turn implies nonlinear stability of the system, with solutions decaying
to trivial steady states (η = 0) at large times. In the present study we use spatially
periodic initial conditions which mainly correspond to closed curves in the state space
(typically circles for sinusoidal varicose initial data, for example). Nonlinear stability
follows if there exist four rarefaction curves, two from each family, that tangentially
bound the initial conditions, and so defining minimal invariant regions – examples are
illustrated below.

To fix and demonstrate ideas, we consider the physical scenario where the density
and viscosity of the configuration decrease from the bottom to the top layer of the
channel. Furthermore the outer layers are thinner than the middle layer. Specifically,
following the analysis presented in appendix A, we consider the perturbed parameter
vector Z= (−7/8, 9/16, 27/16)T, and the matrix f in system (2.4) is calculated to be

f =

[
−

3
8 − 2η1 −

1
4

1
8 −1+ 2η2

]
. (3.2)

This physical scenario supports real eigenvalues of f when η1 = η2 = 0; as a
result, linear stability analysis predicts that disturbances proportional to eikx+st decay
exponentially in time for all wavenumbers k. Now let us apply the nonlinear stability
theory described above when f is given by (3.2). The bounding integral curves
produced by ODEs (3.1) in the hyperbolic (η1, η2)-space are depicted in figure 2(a,b)
for two different periodic initial conditions indicated by circles (even though it may be
possible to solve (3.1) in closed form, it is straightforward to solve them numerically).
Note that regions denoted by (ε) in the figures are elliptic (complex eigenvalues) and
the dashed lines denote the boundaries between hyperbolic and elliptic regions. In
the case of sufficiently small initial conditions, i.e. η = (0.028 cos(x), 0.028 sin(x))T,
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FIGURE 2. Bounding integral curves given by ODEs (3.1) in the (η1, η2)-space of
system (2.4), where grey curves correspond to the first family of the integral curves and
black ones to the second family. Initial hyperbolic conditions are depicted by circles, the
dashed lines are the boundaries of the elliptic region (ε), while shaded regions denote
the minimum invariant region for the corresponding initial conditions. (a,b) correspond to
matrix f given by (3.2), while in the case of (c), matrix f is given by (3.3).

figure 2(a) depicts the integral curves that form a bounded hyperbolic invariant
region (grey shaded region). Hence, solutions of system (2.4) will not cross the
hyperbolic–elliptic boundary. However, in the case of larger hyperbolic initial
conditions η= (0.09 cos(x), 0.09 sin(x))T, the minimal invariant region shaded grey in
figure 2(b) is unbounded, and hence the solutions can cross into the elliptic region
as they evolve in time depending on the amount of dissipation that is present – this
is discussed in detail later.

Before we proceed to our next scenario, we would like to illustrate the effect of
different initial conditions having the same initial energy, when f is given by (3.2).
The energy is chosen to be 0.1629 and the hyperbolic initial conditions are: case (i)
η = (0.065 cos(x), 0.065 sin(x))T, and case (ii) η = (0.065 cos(x), 0.065 cos(x))T. The
integral curves, constructed as above, are given in figure 3(a,b) for cases (i) and (ii),
respectively. For case (i) there is no bounded invariant region and the system can
transition into the elliptic region for a sufficiently small value of dissipation ν. For
case (ii), however, figure 3(b) shows that the initial condition lies inside a bounded
invariant region, and this guarantees that the system will not cross into the elliptic
region, and hence will be stable for arbitrarily small values of ν. Therefore, our
nonlinear analysis predicts that nonlinear stability depends crucially on the geometrical
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FIGURE 3. Equal energy initial conditions illustrating the different behaviour that exists,
when f is given by (3.2). (a) Initial conditions η= (0.065 cos(x), 0.065 sin(x))T; (b) initial
conditions η= (0.065 cos(x), 0.065 cos(x))T.

structure of the initial conditions in the (η1, η2)-space. Potentially, nonlinear stability
can be achieved for classes of initial conditions of arbitrary energy. However, if we
restrict the initial conditions to be of the sinusoidal varicose form used to produce
the results of figure 2 (i.e. circles), then we can compute the minimum seed that may
trigger transition to ellipticity, depending on the amount of dissipation. This minimal
energy was found to be above 0.072, correct to three decimals, as can be predicted
by figure 2(a).

For our next scenario we introduce a slightly different matrix

f =

[
−

3
8 − 2η1 −

1
4

1
8

3
4 + 2η2

]
, (3.3)

which corresponds to the perturbed parameter vector Z= (0, 9/16, 27/16)T; physically,
we have slightly increased the width of the bottom layer (this is the most viscous
layer) compared to the previous physical configuration. Matrix f once again possesses
real eigenvalues about η = 0. However, as shown in figure 2(c), the second family
of integral curves do not cross the hyperbolic–elliptic boundary but only reach it
asymptotically. Importantly, such behaviour guarantees the formation of bounded
hyperbolic invariant regions for any strictly hyperbolic initial conditions (here strictly
means that points on the hyperbolic–elliptic boundary are excluded from the initial
conditions). In figure 2(c) we present the minimal invariant region when the initial
conditions are given by η = (0.25 cos(x), 0.25 sin(x))T. Therefore, we can conclude
that in the case of matrix (3.3), system (2.4) is nonlinearly stable for arbitrarily
large strictly hyperbolic initial conditions (it is understood that the weakly nonlinear
assumption remains valid), i.e. the solutions will decay to zero at large times without
encountering ellipticity. Finally, we would like to emphasise that the two distinct
scenarios presented in this section constitute the canonical behaviour of the system.
The present theory shows how to predict nonlinear stability by studying the integral
curves of system (2.4).

3.1. Numerical experiments
In this section we investigate numerically the evolution of the canonical cases
presented above. We start with transitional cases (unbounded invariant regions) as
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FIGURE 4. Numerical experiments for system (2.4) when matrix f is given by (3.2) and
initial conditions are hyperbolic and are given by the vector η= (0.09 cos(x), 0.09 sin(x))T.
(a) Depicts the evolution of the energy of the system, which is defined as E(t) =√∫ π

−π
(η2

1 + η
2
2) dx for various values of the bifurcation parameter ν. (b) Shows the

spatiotemporal evolution of the system for ν = 0.01 in the (η1, η2)-space up to a time
where transition occurs; bold circle marks initial conditions and ε indicates the elliptic
region.

exemplified by matrix (3.2) and fixed hyperbolic initial conditions. As expected, if
the dissipation ν is sufficiently large, the solutions remain hyperbolic and decay
exponentially to trivial states at large times. On the other hand, decreasing ν to
moderate values allows the system to transition into the elliptic region, causing
growth of the energy initially, before the solutions eventually decay to trivial states
once again. This is due to the dissipation pulling the system back to the hyperbolic
region. A further decrease of ν enables ellipticity to persist for all time and the
system evolves to non-trivial steady-state travelling waves. These three dynamical
behaviours are illustrated in the numerical solutions shown in figure 4(a), for ν = 1
(dashed curve), ν = 0.1 (dash-dotted curve) and ν = 0.01 (solid curve), respectively.
In all cases the initial conditions are η= (0.09 cos(x), 0.09 sin(x))T and with energy at
0.2256, corresponding to figure 2(b). These initial conditions are illustrative. Extensive
numerical experiments suggest that the system always attains the zero state at large
times when ν = 0.1 or ν = 1 for various amplitude sinusoidal initial conditions with
fixed energy at 0.2256. However, note that this behaviour is attributed to the role of
dissipation and it is beyond the validity of our criterion, since for the initial conditions
considered, one cannot find bounded invariant regions. The initial stages of transition
for ν= 0.01 in the (η1, η2) state space is included in figure 4(b). The full evolution in
the state space (until travelling waves emerge) is included as supplementary movie 1
available at https://doi.org/10.1017/jfm.2017.605. The corresponding spatiotemporal
evolution of the solutions can be found in supplementary movie 2. These numerical
results are in full accord with the nonlinear theory described previously and verify
the limitations of the linear theory to predict the long-time behaviour of the physical
problem.

The no-transition predictions yielding nonlinear stability for the canonical case of
matrix (3.3), were verified numerically for the set-up of figure 2. The evolution in
the state space for ν = 0.1 is included as supplementary movie 3. We can conclude,
therefore, that the interfacial dynamics are confined to the hyperbolic region for any
value of ν (i.e. arbitrarily small) and cannot encounter inertialess instability attaining
trivial states at large times.
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4. Conclusions

In this paper, we investigated the problem of a three-layer flow inside a slightly
inclined channel. The flow is driven by a pressure gradient and gravity, and the
fluid layers have different viscosities and densities, the latter having values that
provide stably stratified flows. We derived asymptotically correct evolution PDE
models capable of describing the nonlinear inertialess evolution of the two interfaces
in the long-wave regime. The additional weakly nonlinear limit was analysed to
derive systems that incorporate nonlinear flux functions and second-order dissipation.
Numerical experiments and nonlinear analysis of these models suggest that multilayer
flows can exhibit transitional inertialess instabilities during their evolution. In the
nonlinear regime the instabilities saturate to form steady-state interfacial travelling
waves. Mathematically, this kind of inertialess instability can be identified through
the temporal transition of the flux function from hyperbolicity to ellipticity. We also
presented a nonlinear theory which shows that nonlinear stability depends on the
existence of bounded invariant regions in the hyperbolic state space of the interfacial.
These invariant regions play a crucial role in the nonlinear dynamics in the sense
that they prevent transition from occurring.

For the multilayer models studied here, one can distinguish two canonical nonlinear
stability cases. The first, when stability depends on the amplitude and/or the
geometrical structure of the strictly hyperbolic initial conditions and/or the amount of
the dissipation – note that the threshold initial disturbances above which instability can
emerge can be predicted by the theory. And, the second, when the flow is nonlinearly
stable for all times and for arbitrarily large strictly hyperbolic initial conditions (it
is understood that the weakly nonlinear assumption remains valid). Interestingly, the
theory predicts that the latter nonlinear stability does not depend on the amount of
dissipation present in the flow. Finally, a natural but highly challenging extension of
the present work is the study of the phenomenon of nonlinear transition in the case
of the fully nonlinear long-wave systems, e.g. (2.1) and (2.3), which account for large
interfacial dynamics scaled on the channel height. This is an open problem requiring
the development of new techniques that are being considered by the authors.
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Supplementary movies

Supplementary movies are available at https://doi.org/10.1017/jfm.2017.605.

Appendix A. The physical derivation of the weakly nonlinear model (2.4)

We carry out a weakly nonlinear analysis of system (2.1) about the flat interface
uniform flow, i.e. we write h2,3(ξ , τ )=H2,3+ δ

3/2η1,2(ξ , τ ) where δ� 1. Furthermore,
we impose a symmetric configuration with the layers close to the walls being thin
and of order δ1/4 compared to the middle layer; the uniform state is described by
the physical parameter vector T = T = (1 − (δ1/4)/3, (δ1/4)/3, 1, 1, 1, 1) – see (2.2)
for the definition of T – i.e. the three fluids have the same viscosity and density in
the base configuration. We proceed by perturbing this base configuration to a nearby
steady state that retains stable density stratification but loses the other symmetries due
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to layer thicknesses and viscosities. More specifically we let T = T + δT̃1 + δ
5/4T̃2 +

δ3/2T̃3 + δ
2T̃4, where T̃1 = (H̃2,−H̃2, m̃2, m̃3, 0, 0), T̃2 = (0, (m̃3)/3, 0, 0, 0, 0), T̃3 =

(0,−H̃3, 0, 0, 0, 0) and T̃4 = (0, 0, 0, 0, 2, 4). Now, by introducing small angles θ of
order δ9/4 (i.e. cot θ ≈Θ/δ9/4 with Θ = O(1)), we promote second-order dissipation
to arrive at the following asymptotically correct equation:

ητ + [(λ1δ
1/4
+ λ2δ

1/2
+ λ3δ+ λ4δ

5/4)I + δ3/2A]ηξ + 3δ3/2Bηξ −
4Θ
81
δ3/2Iηξξ + h.o.t.= 0,

(A 1)
where η = (η1, η2)

T, I is the identity matrix, λ1,2,3,4 are variables of the physical
parameter vector and the matrices A and B are given by

A=
2
3

[
(2m̃3 − 9m̃2) (−m̃3 + m̃2)

m̃2 (5m̃3 − 9m̃2 + 9H̃3)

]
, B=

[
−2η1 0

0 2η2

]
. (A 2a,b)

To obtain the final form of the governing equations, we perform a Galilean
transformation by introducing new independent variables t′= 3δ3/2τ , x′= ξ − (λ1δ

1/4
+

λ2δ
1/2
+ λ3δ + λ4δ

5/4)τ . Furthermore, we normalise the equations to 2π-periodic
domains by considering new scaled variables t′′ = (π/L)2t′, x′′ = (π/L)x′ and
defining the bifurcation parameter ν = 4πΘ/243 L which controls the strength of
the dissipation in the flow. Finally, dropping double primes and retaining the leading
order terms (of size δ3/2), yields the following scaled weakly nonlinear system:

ηt + f (η, Z)ηx − νIηxx = 0, (A 3)

f (η, Z)=
[( 4

9 m̃3 − 2m̃2 − 2η1
)

2
9(−m̃3 + m̃2)

2
9 m̃2

(
10
9 m̃3 − 2m̃2 + 2H̃3 + 2η2

)] , (A 4)

where we have introduced a new parameter vector defined as Z≡ (H̃3, m̃2, m̃3).
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