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Plane Poiseuille flow, the pressure-driven flow between parallel plates, shows a route
to turbulence connected with a linear instability to Tollmien–Schlichting (TS) waves,
and another route, the bypass transition, that can be triggered with finite-amplitude
perturbation. We use direct numerical simulations to explore the arrangement of
the different routes to turbulence among the set of initial conditions. For plates
that are a distance 2H apart, and in a domain of width 2πH and length 2πH,
the subcritical instability to TS waves sets in at Rec = 5815 and extends down
to ReTS ≈ 4884. The bypass route becomes available above ReE = 459 with the
appearance of three-dimensional, finite-amplitude travelling waves. Below Rec, TS
transition appears for a tiny region of initial conditions that grows with increasing
Reynolds number. Above Rec, the previously stable region becomes unstable via TS
waves, but a sharp transition to the bypass route can still be identified. Both routes
lead to the same turbulent state in the final stage of the transition, but on different
time scales. Similar phenomena can be expected in other flows where two or more
routes to turbulence compete.
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1. Introduction

The application of ideas from dynamical systems theory to the turbulence transition
in flows without linear instability of the laminar profile, such as pipe flow or plane
Couette flow, have provided a framework in which many of the observed phenomena
can be rationalized. This includes the sensitive dependence on initial conditions
(Darbyshire & Mullin 1995; Schmiegel & Eckhardt 1997), the appearance of exact
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coherent states around which the turbulent state can form (Nagata 1990; Clever &
Busse 1997; Waleffe 1998; Faisst & Eckhardt 2003; Wedin & Kerswell 2004; Gibson,
Halcrow & Cvitanović 2009), the transience of the turbulent state (Brosa 1989;
Bottin et al. 1998; Hof et al. 2006; Schneider & Eckhardt 2008; Kreilos & Eckhardt
2012), or the complex spatio-temporal dynamics in large systems (Bottin et al. 1998;
Barkley & Tuckerman 2005; Manneville 2009; Moxey & Barkley 2010; Avila et al.
2011). Extensions to open external flows, such as asymptotic suction boundary layers
(Kreilos et al. 2013; Khapko et al. 2013, 2014, 2016) and developing boundary layers
(Cherubini et al. 2011a; Duguet et al. 2012; Wedin et al. 2014), have been proposed.

Plane Poiseuille flow (PPF), the pressure-driven flow between parallel plates, shows
a transition to turbulence near a Reynolds number of approximately 1000 (Carlson,
Widnall & Peeters 1982; Lemoult, Aider & Wesfreid 2012; Tuckerman et al. 2014). In
the subcritical range the flow shows much of the transition phenomenology observed
in other subcritical flows, such as plane Couette flow or pipe flow, but it also has a
linear instability of the laminar profile at a Reynolds number of 5772 (Orszag 1971).
This raises a question about the relation between the transition via an instability
to the formation of Tollmien–Schlichting (TS) waves and the transition triggered
by large-amplitude perturbations that do not need the linear instability (henceforth
referred to as the ‘bypass’ transition) (Schmid & Henningson 2001). For instance,
one could imagine that the exact coherent structures related to the bypass transition
are connected to the TS waves in some kind of subcritical bifurcation. That, however,
would require a connection between the two very different flow structures: the exact
coherent structures that are dominated by downstream vortices (Zammert & Eckhardt
2014, 2015), and the TS waves that are dominated by spanwise vortices.

Many studies of the transition to turbulence have focused on the identification
of optimal perturbations that are distinguished by being the smallest ones that can
trigger the transition (Farrell 1988; Butler & Farrell 1992; Duguet, Brandt & Larsson
2010; Cherubini et al. 2011b; Monokrousos et al. 2011; Pringle, Willis & Kerswell
2012; Duguet et al. 2013). With a suitable choice of norm (for example, energy
density or dissipation) this leads to an optimization problem that can be solved
with suitable adjoint techniques (see Schmid (2007) and Kerswell, Pringle & Willis
(2014) for reviews of the method and the connection to the dynamics in the state
space of the system). In the presence of two possible routes to turbulence, via the
Tollmien–Schlichting states and the bypass transition, one can expect that there are
two different kinds of optimal perturbation, one for each route, but they have not
been determined.

As an alternative to the determination of the optimal perturbations, we here use
direct numerical simulations to map out the regions of initial conditions that follow
one or the other path. Given the high dimensionality of the space, we can explore a
subset of initial conditions only, and choose a plane that contains both transition states.
Such explorations of the state space of a flow have been useful in the identification of
the sensitive dependence on initial conditions for the transition (Schmiegel & Eckhardt
1997; Faisst & Eckhardt 2004), and in the exploration of the bifurcations (Kreilos &
Eckhardt 2012; Kreilos, Eckhardt & Schneider 2014).

We start with a description of the system and the bifurcations of the relevant
coherent states in § 2. Afterwards, in § 3, we describe the exploration of the state
space of the system, and continue with an description of the influence of the operating
conditions in § 4. Conclusions are summarized in § 5.
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FIGURE 1. The exact coherent states for the transition to turbulence in plane Poiseuille
flow. (a) Visualization of the Tollmien–Schlichting wave TWTS. The yellow surface
indicates values of 0.3Qmax for the Q-vortex criterion. The red and blue surfaces
correspond to u = ±0.5umax, respectively. (b) Visualization of the edge state TWE for
the bypass transition. As before, the yellow surface indicates values of 0.3Qmax for the
Q-vortex criterion. The levels for the red and blue surfaces are now u = 0.008 and
u=−0.014, respectively.

2. Plane Poiseuille flow and its coherent structures

To fix the geometry, let x, y and z be the downstream, normal and spanwise
directions, and let the flow be bounded by parallel plates at y=±H. Dimensionless
units are formed with the height H and the centreline velocity U0 of the laminar
parabolic profile so that the unit of time is H/U0 and the Reynolds number becomes
Re = U0H/ν, with ν the fluid viscosity. In these units the laminar profile becomes
u0= (1− y2)ex. The equations of motion, the incompressible Navier–Stokes equations,
are solved using Channelflow (Gibson 2012), with a spatial resolution of Nx=Nz= 32
and Ny = 65 for a domain of length 2π and width 2π and at fixed mass flux. The
chosen resolution is sufficient to resolve the exact solutions and the transition process
but under-resolved in the turbulent case. In the studied domain, the linear instability
occurs at Rec = 5815, slightly higher than the value found by Orszag (1971), on
account of the slightly different domain size.

The full velocity field U = u0 + u can be written as the sum of the laminar flow
u0 and deviations u= (u, v,w). In the following we always mean u when we refer to
the velocity field. To characterize the size of perturbations we will use the root mean
square (r.m.s.) velocity in u,

a(u)= ‖u‖ =

√
1

LxLyLz

∫
u2 dx dy dz, (2.1)

or in one of the components, for example,

urms =

√
1

LxLyLz

∫
u2 dx dy dz, (2.2)

for the downstream component.
Tollmien–Schlichting (TS) waves are travelling waves formed by spanwise vortices.

They appear in a subcritical bifurcation that extends down to Re ≈ 2610 for a
streamwise wavenumber of 1.36. The TS wave is independent of spanwise position z
and consists of two spanwise vortices, as shown in figure 1(a).
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FIGURE 2. The bifurcation diagrams for TWE (red) and TWTS (blue) are shown in (a).
A solid line is used if the travelling wave has just one unstable eigenvalue, while a dashed
line is used when the wave has further unstable eigenvalues. The inset zooms in on the
region where both waves have only one unstable eigenvalue. The bifurcation points of
the waves are marked with black dots. In (b) the amplitude a(u) of TWE is shown in a
double-logarithmic plot, together with a power-law decay like Re−0.52 for large Re.

The Reynolds number range over which the transition to TS waves is subcritical
depends on the domain size. For our domain (streamwise wavenumber of 1.0) the
turning point is at Re ≈ 4685. A bifurcation diagram of this exact solution, referred
to as TWTS in the remainder of the paper, is shown in figure 2(a). The ordinate in
the bifurcation diagram is the amplitude of the deviation from laminar flow (2.1).
A study of the stability of the state in the full three-dimensional space shows that
this lower branch state has only one unstable direction in the used computational
domain for 5727 < Re < 5815 = Rec. Thus, for these Reynolds numbers the state is
an edge state whose stable manifold divides the state space in two parts (Skufca,
Yorke & Eckhardt 2006). For lower Re, there are secondary bifurcations that add
more unstable directions to the state. Specifically, near the turning point at Re= 4690,
the lower branch has acquired approximately 350 unstable directions. Because of the
high critical Reynolds numbers this state cannot explain the transition to turbulence
observed in experiments at Reynolds numbers around 1000 (Carlson et al. 1982;
Nishioka & Asai 1985; Lemoult et al. 2012; Lemoult, Aider & Wesfreid 2013) or
even lower (Sano & Tamai 2016).

The states that are relevant to the bypass transition can be found using the method
of edge tracking (Toh & Itano 2003; Schneider, Eckhardt & Yorke 2007; Schneider
et al. 2008). Starting from an arbitrary turbulent initial condition at Re = 1400,
trajectories in the laminar–turbulent boundary that are followed with the edge-tracking
algorithm converge to a travelling wave (Zammert & Eckhardt 2014), which we
referred to as TWE in the following. After its initial identification, the state can be
tracked easily to higher Reynolds numbers. The visualization in figure 1(b) shows
that this state has a strong narrow upstream streak, a weaker but more extended
downstream streak, and streamwise vortices. Moreover, TWE has a wall-normal
reflection symmetry

sy : [u, v,w](x, y, z)= [u,−v,w](x,−y, z), (2.3)
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a shift-and-reflect symmetry

szτx : [u, v,w](x, y, z)= [u, v,−w](x+ 0.5 · Lx, y,−z), (2.4)

and exists for a wide range in Reynolds numbers. It is created in a saddle-node
bifurcation near Re ≈ 459 (see the bifurcation diagram in figure 2a); for other
combinations of spanwise and streamwise wavelengths the state appears at an even
lower Reynolds numbers of 319 (Zammert & Eckhardt 2017).

The corresponding lower branch state can be continued to Reynolds numbers far
above 3×105, and its amplitude decreases with increasing Reynolds number, as shown
in figure 2(b). A fit to the amplitude for large Reynolds numbers gives a scaling like
Re−0.52, similar to that of the solution embedded in the edge of plane Couette flow
(Itano et al. 2013). A stability analysis of the lower branch of TWE shows that the
travelling wave has one unstable eigenvalue for 510< Re< 5850. Therefore, TWE is
a second travelling wave with a stable manifold that can divide the state space into
two disconnected parts. How the two edge states interact and divide up the state space
will be discussed in § 3.

At Re = 510 the lower branch undergoes a supercritical pitchfork bifurcation that
breaks the sy symmetry and adds a second unstable eigenvalue for Re < 510. The
upper branch of the travelling wave has three unstable eigenvalues for Re < 1000.
Investigation of different systems which show subcritical turbulence revealed that
bifurcations of exact solutions connected to the edge state of the system lead to
the formation of a chaotic saddle that shows transient turbulence with exponential
distributed lifetimes (Kreilos & Eckhardt 2012; Ritter, Mellibovsky & Avila 2016).
In the present systems the formation of chaotic saddles cannot be studied in detail
since it takes place in an unstable subspace. However, previous investigations in
a symmetry-restricted system did show that the states follow such a sequence
of bifurcations to the formation of a chaotic saddle (Zammert & Eckhardt 2015,
2017), so that we expect that also the states in the unstable subspace follow this
phenomenology.

The edge state TWE discussed here is not identical to the travelling waves identified
by Waleffe (2001) or Nagata & Deguchi (2013), as they appear at considerably higher
Reynolds numbers (even for their optimal wavenumbers) and are not edge states of
the system.

The two travelling waves described above are clearly related to the two different
transition mechanisms that exist in the flow. For Reynolds numbers below the linear
instability (here, Rec = 5815), initial conditions that start close to TWE in the state
space will either decay or become turbulent without showing any approach to a TS
wave: they will follow the bypass transition to turbulence. Initial conditions that start
close to TWTS can also either decay or swing up to turbulence, but they will first form
TS waves. Above Rec all initial conditions will show a transition to turbulence, but
it will still be possible to distinguish whether they follow the bypass or TS route to
turbulence, as we will see.

3. State space structure

In order to explore the arrangement of the different routes to turbulence in the space
of initial conditions we pick initial conditions and integrate them until the flow either
becomes turbulent or until it returns to the laminar profile. The initial conditions are
taken in a two-dimensional slice of the high-dimensional space, spanned by two flow
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FIGURE 3. Visualizations of the velocity fields for perturbations with parameter α = 0.2,
0.4, 0.6 and 0.8 (a–d, respectively) at Reynolds number 5720. The states are scaled
to have an amplitude A of 0.0105. The visualizations use iso-contours of the Q-vortex
criterion for Q= 2× 10−5, shown in yellow. In addition, iso-surfaces for the streamwise
velocity u= 0.002 and u=−0.01 are shown in red and blue, respectively.

fields u1 and u2. The choice of the flow fields allows one to explore different cross-
sections of state space. For the most part, we will use u1 and u2 to be the travelling
waves TWE and TWTS, so that both states are part of the cross-section. The initial
conditions are then parametrized by a mixing parameter α and an amplitude A, i.e.,

u(α, A)= A
(1− α)u1 + αu2

‖(1− α)u1 + αu2‖
. (3.1)

For α = 0 one explores the state space along velocity field u1 and for α = 1 along
velocity field u2. If the upper and lower branch of TWE are used to span such a slice,
one finds that the regions in initial conditions that become turbulent have shapes that
are similar to the ones in plane Couette flow (Kreilos & Eckhardt 2012; Zammert &
Eckhardt 2015).

Lower branch states are on the boundary between laminar flow and turbulence, so
we begin by exploring the slice spanned by the lower branches of TWE and TWTS. In
figure 3, visualization for different values of α are shown. The plots illustrate how
the topology of the initial flow state changes from a state dominated by streamwise
streaks and vortices to a state where streaks and vortices are aligned perpendicular to
the flow direction. As quantitative measures of the states, we use the r.m.s. velocity
(2.2) of the individual velocity components, and the turbulent intensity

Tu=
√

1
3(〈u〉

2 + 〈v〉2 + 〈w〉2). (3.2)

Figure 4(a) shows the dependence of these quantities on α. For small values of α
the contribution of the streamwise component is much stronger than that of the other
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FIGURE 4. (a) Turbulence intensities Tu and r.m.s.-velocities 〈u〉, 〈v〉 and 〈w〉 and
(b) mean profiles for the initial fields shown in figure 3 for different parameters α
at Reynolds number 5720, and turbulence intensity Tu (red) in dependence on α. The
streamwise, wall-normal and spanwise components are shown in blue, green and yellow,
respectively. For α= 0 the contribution of the wall-normal component does not vanish but
is only of order 10−5. (b) Mean streamwise velocity profiles (deviation from laminar) for
different values of α.

components, due to the strong low-speed streak contained in TWE. With increasing α
the relative contribution of the wall-normal component becomes larger until for α= 1,
where we have pure spanwise rolls, it is nearly as strong as the streamwise component.
In figure 4(b), streamwise velocity profiles for different α are shown. For low α there
is a pronounced minimum in the centre of the channel, which is related to the low-
speed streak of TWE, and there are maxima close to the wall. When α is increased
the profile becomes nearly inverted. For large values of α there is a maximum in the
centre of the channel, and minima close to the walls.

We assign to each initial condition the time it takes to become turbulent, with
an upper cutoff for initial conditions that either take longer or that never become
turbulent because they return to the laminar profile. Colour-coded transition-time plots
are shown in figure 5(a–e) for different Reynolds numbers below Rec. The boundary
between initial conditions that relaminarize and those that become turbulent stands out
clearly. They are formed by the stable manifold of the states and their crossings with
the cross-section. The part of the laminar–turbulent boundary connected with TWE can
be distinguished from that connected with TWTS by the huge differences in transition
times: for TWTS, transition times are significantly longer and even exceed 2× 104 time
units. The slow growth rates of TS waves has been known for a long time. An stability
analysis of the base profile shows that there is an optimal Reynolds number around
Re= 40.000 for which the largest growth rate is obtained. But even for this Reynolds
number a growth by only a factor of 10 within 300 viscous time units is achieved
(Bayly, Orszag & Herbert 1988).

The interaction between the two domains is rather intricate. For Reynolds number
5780, shown in figure 5(d), it seems that the borders do not cross, but rather wind
around each other in a spiral shape down to very small scales. Although the wave
TWTS has still only one unstable eigenvalue, the size of the structure that is directly
connected to TWTS shrinks with decreasing Re and is not visible in this kind of
projection for Re < 5727, where TWTS has more than one unstable eigenvalue. In
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FIGURE 5. Two-dimensional slices of the state space for various Reynolds numbers. In
(a–e), where Re < Rec = 5815, the parameter α interpolates between the flow fields of
both travelling waves, and both are indicated by white dots in the figures. In ( f ), where
Re > Rec the plane is spanned by the flow field of TWE and by the unstable TS mode
of the laminar state. In all panels the colour indicates the time it takes to reach the
turbulent states, up to a maximum integration time of 70 000 time units. Accordingly,
initial conditions that do not become turbulent or return to the laminar state are indicated
by dark blue. In ( f ) the dashed white line indicates the stable manifold of TWE. The
coloured triangles and dots in (d) mark initial conditions whose time evolution is shown
in figure 6.

particular, a zoom of the area around TWTS for Re = 5720, which is included as an
inset in figure 5(a), shows that initial conditions which pass near TWTS appear for
α = 1 only. Thus, the number of initial conditions in this projection that undergoes
TS transition is of measure zero.
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FIGURE 6. Time evolution of the velocity amplitude a(u) for the initial conditions marked
in figure 5(d) for Re=5780. The initial conditions for the trajectories drawn with solid and
dashed lines are marked in figure 5(b) with triangles and circles, respectively. The black
line indicates the amplitude of the lower branch of the TS state TWTS at Re= 5780. Some
of the initial conditions that miss the bypass transition become turbulent nevertheless,
because they are captured by the TS instability (for example, the full blue, and both green
lines).

In figure 6 the evolution of the amplitude for different initial conditions marked
in figure 5(d) is shown. The green and blue lines are typical representatives of the
slow TS transition. Starting with a three-dimensional initial condition, their amplitude
decays and the two-dimensional TS wave TWTS, whose amplitude is marked by the
black line, is approached.

Afterwards, they depart from TWTS again, which is a slow process because of the
small growth rate. As commonly known, the transition in the case of the TS transition
is eventually caused by secondary instabilities of the TS waves (Herbert 1988).

The solid yellow line in figure 6 is an initial condition that undergoes bypass
transition. It quickly swings up to higher amplitudes and does not approach the TS
wave on its way to turbulence. The dashed yellow line is of an intermediate type.
It takes a long time to become turbulent but it does not come very close to the TS
wave. The relation between time evolution, transient amplification and final state is
complicated and non-intuitive. For instance, the dashed red and green trajectories
share a transient increase near t ≈ 4000, but differ in their final state: the red curve,
with the higher maximum, eventually returns to the laminar profile, but the green
curve, with the smaller maximum, approaches the TS level and eventually becomes
turbulent following the TS route. Similarly, the red, blue and green continuous lines
start with high amplitude slightly below the threshold for the bypass route. They all
decay, but while the red initial conditions ends up on the decaying side of the TS
wave, the green and blue cases eventually become turbulent via the TS route.

For plane Couette flow it was found that a small chaotic saddle can appear inside of
existing larger ones (Kreilos et al. 2014). There, trajectories that escape from the inner
saddle are still captured by the outer saddle and thus they cannot decay directly. There
is evidence that the appearance of TS transition in PPF follows a comparable but
slightly different mechanism. At Reynolds number lower than 1000, the chaotic saddle
related to bypass transition is created and subcritical turbulence exists. With increasing
Reynolds number the chaotic saddle gets partly enclosed by the stable manifold of
the TS wave, which above Re= 5727 can separate two parts of the state space and
therefore prevent trajectories in the interior from becoming laminar.
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With increasing Reynolds number the number of initial conditions becoming
turbulent increases. Finally, for Re> Rec, initial conditions that return to the laminar
state no longer exist. Nevertheless, also in this supercritical regime a sudden change
in the type of transition can be identified: when the amplitude increases and crosses
the stable manifold of TWE, the transition time drops dramatically and turbulence is
reached via the bypass route. In the state space visualization for Re = 5855, which
is shown in figure 5( f ), the change of the transition type presents itself in the rapid
drop of the transition time with increasing A for α values between 0 and 0.6.

In the supercritical range the stable manifold of the bypass edge state TWE separates
initial conditions undergoing the quick bypass transition from initial conditions that
become turbulent by TS transition. The state space picture at a higher Reynolds
number of 6000 looks qualitatively similar to the one shown in figure 5(c), including
the switch from TS to bypass transition when the stable manifold of TWE is crossed.

4. State space for constant pressure gradient

Up to this point all results were obtained by simulations which keep the bulk
velocity constant. Since previous studies showed differences between the system
operating at constant bulk velocity and at constant pressure gradient (Barkley 1990;
Soibelman & Meron 1991), we here analyse the changes in the state space structure
when forces driving the flow are changed.

If the pressure gradient is fixed the Reynolds number ReP can be defined by using
the centreline velocity of the laminar flow corresponding to the pressure gradient,
together with the half-channel width and the viscosity. In dimensionless form the
pressure gradient then is given by dP/dx =−2/ReP. This definition ensures that for
the laminar base flow, the pressure- and bulk-based Reynolds numbers coincide.

We chose a Reynolds number of 5780 for a comparison of two constraints. For this
Reynolds number the state space structure shows the highest complexity for the case
of constant bulk velocity. Using the same parametrization of initial conditions, we
obtain the transition-time plot shown in figure 7. Although there are small differences
from the case of constant bulk velocity – for example, the tongue-like structure
connected to TWTS appears to be slightly thinner – the main features are unchanged.

The relative stability to a change of the operating conditions can be rationalized
by the large distance to the turning points of the solution branches. Lower branch
states commonly differ only slightly between pressure and bulk Reynolds number if
the distance to the turning point is large. However, these differences can become huge
close to the turning point of the solution branch (e.g. Zammert 2015, chap. 3.2).

These results show that organization of the state space depends only weakly on
driving with constant pressure difference or constant bulk flow, and that the slices are
similar. Furthermore, since the flow states used to generate the state space slice are
also solutions for the case of constant bulk velocity, but for slightly different values of
the bulk Reynolds number, the calculations suggest that the obtained state space slices
are to some degree robust to small disturbances of the flow fields used to generate the
slices.

5. Conclusions

We have explored the coexistence of two types of transition in subcritical plane
Poiseuille flow connected with the existence of states dominated by streamwise and
spanwise vortices (bypass and TS transition). Probing the state space by scanning
initial conditions in two-dimensional cross-sections gave information on the sets of

880 R2-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

72
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.724


Tollmien–Schlichting and bypass route to turbulence

0

0.002

0.004

0.006

0.008

0.010

0.012

A

TWE

TWTS

0

10 000

20 000

30 000

40 000

50 000

60 000

Tr
an

sit
io

n 
tim

e

0 0.5
å

1.0

FIGURE 7. Two-dimensional slice of the state space for a pressure-based Reynolds number
(ReP) of 5780.

initial conditions that follow one or the other route to turbulence. The results show
that the transition via TS waves initially occupies a tiny region of state space. As
this region expands, it approaches the bypass-dominated regions, but a boundary
between the two remains visible because of the very different times needed to reach
turbulence. This extends to the parameter range where the laminar profile is unstable
to the formation of TS waves. The investigated state TWE lies on the border between
the two transition types also for Reynolds number far above the critical one. Since
its amplitude scales approximately as Re−0.5 for high Reynolds numbers, the minimal
threshold required to trigger bypass transition must decrease with this power or even
faster.

The results shown here are obtained for small domains, where the extensive
numerical computations for very many initial conditions are feasible. For larger
domains, the corresponding exact coherent structures are localized, as shown by
Jiménez (1990) and Mellibovsky & Meseguer (2015) for TS waves and by Zammert
& Eckhardt (2014) for the bypass transition. Since the bifurcation diagrams for the
localized states are similar to that of the extended states, we anticipate a similar
phenomenology also for localized perturbations in spatially extended states.

The methods presented here can also be used to explore the relation between bypass
transition and TS waves in boundary layers (Duguet et al. 2012; Kreilos et al. 2016).
More generally, they can be applied to any kind of transition where two different paths
compete: examples include shear-driven or convection-driven instabilities in thermal
convection (Clever & Busse 1992; Zammert, Fischer & Eckhardt 2016), the interaction
between transitions driven by different symmetries (Faisst & Eckhardt 2003; Wedin
& Kerswell 2004; Schneider et al. 2008), or the interaction between the established
subcritical scenario and the recently discovered linear instability in Taylor–Couette
flow with a rotating outer cylinder (Deguchi 2017).
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