
Multi-scale (time and mass) dynamics of space objects
Proceedings IAU Symposium No. 364, 2022
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Abstract. This paper provides a study on the weak stability transition region in the framework
of the planar elliptic restricted three-body problem. We define the lower boundary curve of the
weak stability transition region and as a particular case, we determine this curve in the Sun-
Earth system. The orbit of the Moon is near the lower boundary of the weak stability transition
region.
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1. Introduction

The capture of small bodies by major planets is an important phenomenon in planetary
systems. The phenomenon has applications to the study of comets, asteroids, irregular
satellites of the giant planets and different types of low energy planetary transfers, as
well.

Ballistic capture (or weak capture) is analytically defined for the n-body problem,
and it monitors the sign of the Kepler energy with respect to a massive primary. Weak
capture occurs in special regions of the phase space, namely around one of the two
primaries (e.g. the Earth in the case of the Sun–Earth system), which are referred to
as the Weak Stability Boundaries (WSB). These regions are the boundary of the stable
regions, delimiting stable and unstable orbits.

WSB was first introduced by Belbruno (1987) to design low energy transfers to
the Moon and it is rigorously defined in Belbruno (2004). Garćıa & Gómez (2007)
proposed a more general definition, which generalizes the concept of WSB given by
Belbruno, and expanded the range of the WSB. The concept of WSB was extended
in more accurate models by Belbruno, Topputo & Gidea (2008); Belbruno, Gidea
& Topputo (2008); Belbruno, Gidea & Topputo (2013), Topputo & Belbruno (2009),
Romagnoli & Circi (2009). Ceccaroni, Biggs & Biasco (2012) gave an analytical defini-
tion of the WSB. The effect of primaries’ true anomaly on the structure of WSB was
treated by Hyeraci & Topputo (2013) and Makó et al. (2010) in the model of elliptic
restricted three-body problem (ER3BP).

In these articles, dedicated to the study of WSB properties, certain parameters (for
example, the true anomaly of Earth, the initial eccentricity of the test particle, the
direction of velocity vector at the initial time of the test particle) are considered constant
and the initial position r2 of the test particle relative to the primary P2 is considered a
variable parameter. The modulus of initial velocity v2(r2) of the massless particle relative
to the primary P2 is determined, and then the weak stability of the orbit with the initial
values (r2, v2 (r2)) is examined. In these cases, the variable parameter is r2.
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The aim of this article is to study the properties of the transition zone where the
weakly stable region switches over to weakly unstable region if v2 is considered as a
variable parameter also. In Section 2 we recall the definition of the WSB. Section 3
contains the definition of the lower boundary curve of weak stability transition region. In
Section 4, as a case study, we determine the lower boundary curve of the weak stability
transition region around the Earth in the Sun-Earth system in the framework of ER3BP.
We compare the position of the boundary curve to the Earth-Moon mean distance and to
the radius of the Earth’s Hill sphere. The concluding remarks are described in Section 5.

We choose the planar elliptic restricted three-body problem (PER3BP) model to study
the dynamics, since even a small change of the eccentricity of the secondary influences the
weak stability of the orbits. This model also takes into consideration the weak stability
dependence on the true anomaly of the Earth.

In the PER3BP two massive primaries P1 and P2, with masses m1 and m2 revolve
on elliptical orbits under their mutual gravitational attraction. Apart from these two
bodies, the motion of a third, massless particle P3 is investigated. The variation of the
distance R= ‖P1P2‖ with respect to the true anomaly f of the primary P2 is given by
R= a

(
1− e2

)
/(1 + e cos f), where a is the semi-major axis, e is the eccentricity and P

is the orbital period of the elliptical orbit of P2 around P1. The motion of P3 is restricted
to the orbital plane of the primaries. The mass ratio is μ=m2/(m1 +m2), if m1 >m2.

The origin O of this system is considered to be the center of mass of the two massive
primaries, where the ξ̃ axis is directed towards P2, and the ξ̃η̃ coordinate-plane rotates
with a variable angular velocity, in such a way that the two massive primaries are always
on the ξ̃ axis and the period of the rotation is 2π. Beside the rotation, the system also
pulsates in order to keep the primaries in fixed positions (ξ̃1 = −μ, η̃1 = 0, ξ̃2 = 1− μ,
η̃2 = 0). To obtain a relatively simple set of equations, we use a nonuniform rotating and
pulsating coordinate system (Szebehely (1967)).

To investigate the weak stability, we need a new coordinate system P2xy, where the
center P2 is continuously moving and the axis P2x is always parallel with the initial
direction of the axis Oξ̃. The connections between these two reference frames are given
in (Makó et al. (2010)).

If the normalized units are a (1− e) = 1 and 2π/P = 1, then the Keplerian energy of
the massless particle related to P2 (Makó et al. (2010)) is

H2 =
v22
2

− Gm2

r2
=
v22
2

− 1

(1 − e)
3

μ

r2
=

(1 + e cos f)
2

2 (1 + e) (1 − e)
3 ·[(

ξ̃′ +D(f)
(
ξ̃ + μ− 1

)− η̃
)2

+
(
η̃′ +D(f)η̃ + ξ̃ + μ− 1

)2 − 1

1 + e cos f
· 2μ

r̃2

]
,

where the derivatives are taken with respect to the true anomaly f of the primary P2,

D (f) = e sin f/ (1 + e cos f) , and r̃2 =

√(
ξ̃ + μ− 1

)2
+ η̃2.

2. The algorithmic definition of WSB in PER3BP

We recall the construction procedure of WSB introduced by Belbruno (2004) and
improved by Garćıa & Gómez (2007) and Ceccaroni, Biggs & Biasco (2012).

For a fixed initial value of the true anomaly f = f0 of P2, we consider the half-line
l(α, f0) starting from P2 and making an angle α∈ [0, 360o) with the axis P1P2 (see
Fig. 1). The initial position of P3 is on l(α, f0). The initial eccentricity e3 of the test
particle P3 is fixed. The direction of velocity vector of P3 at the initial time is perpendic-
ular to the line l(α, f0). The initial distance between P2 and P3 in the coordinate system
P2xy is r2 and the semi-major axis is a3 = r2/ (1− e3).

https://doi.org/10.1017/S1743921322000011 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921322000011
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Figure 1. Construction procedure of WSB.

The modulus of velocity vector of P3 at the initial time with respect to the reference
frame P2xy is

v22 (r2, e3) =
Gm2 (1 + e3)

r2
=

μ (1 + e3)

(1− e)
3 · r2

∈ [v2c (r2) , v2e (r2)
]
,

where vc (r2) = v2 (r2, 0) is the circular initial velocity and ve (r2) = v2 (r2, 1) is the
escape initial velocity with respect to primary P2 in the context of the two-body problem.

We transform the initial position (r2 cos α, r2 sin α) and initial velocity
±(−v2 sin α, v2 cos α) of P3 (+ for direct, − for retrograde direction) from refer-

ence frame P2xy into the reference frame Oξ̃η̃, where (ξ̃0, η̃0) is the initial position and

(ξ̃′0, η̃
′
0) is the initial velocity of P3 given by formulas (7) and (9) in Makó et al. (2010).

The motion of a particle is said to be weakly stable relative to P2, under the PER3BP
dynamics, if after leaving l(α, f0) the particle P3 makes a full cycle around P2 without
going near to P1 or crashing into P2 and returns to a point on l(α, f0) with Kepler energy
H2 (γ (T )) ≤ 0 at the first return time T to half-line l(α, f0). Otherwise, the motion will
be weakly unstable.

Garćıa & Gómez (2007) show, that for each fixed (α, e3) ∈ [0o, 360o) × [0, 1) there are
many changes from weak stability to weak instability and that the set of weakly stable
points is a Cantor set.

The Garćıa & Gómez (2007) definition of WSB in the PER3BP model, taking into
consideration Ceccaroni, Biggs & Biasco (2012) is the following.

Definition 1. For all fixed (f0, α, e3) ∈ [0o, 360o) × [0o, 360o) × [0, 1) we set

S∗ (f0, α, e3) = {r2 > 0 : the orbit of test particle with initial condition

(r2, v2 (r2, e3)) is weakly stable and the angular velocity ϑ̇ (T )> 0

at the first return time T to half-line l(α, f0)} .
Then the WSB for fixed value of f0 ∈ [0o, 360o) and e3 ∈ [0, 1) is defined as:

W (f0, e3) =
{

(r2 cos α, r2 sin α) ∈R
2 : α∈ [0, 360o) and r2 ∈ ∂S∗ (f0, α, e3)

}
.

The WSB lies in the transition zone from the connected part of the weakly stable
region to the connected part of the weakly unstable region.

Definition 2. The weak stability transition region (WSTR) is the transition zone from
the connected part of the weakly stable region to the connected part of the weakly
unstable region in the fixed reference frame P2xy.
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Figure 2. Stable and unstable points for a given true anomaly f0 and distance r2 with
respect to the value of initial velocities in the system P2xy.

3. The lower boundary curve in the weak stability transition region

Let f0 and e3 be given, and α, r2 be the variable parameters. In the procedure of
constructing the WSB, first, we calculate v2 (r2, e3), the magnitude of the velocity and
then we examine the weak stability of trajectories for initial values (r2, v2 (r2, e3)). In
this case, the variable parameter is r2.

The question is: what are the properties of WSTR if v2 is a variable parameter and
belongs to an interval

[
vmin
2 (r2), vmax

2 (r2)
]
?

For a given r2, the smallest value of v2 is vmin
2 (r2). In Fig. 2 it can be observed that for

a given true anomaly f0 and distance r2, as the velocity increases, the orbits are weakly
stable for a while (green dots), and after reaching a certain value, the orbits become
weakly unstable (red dots). We can also observe that neither the weakly stable domain
nor the weakly unstable domain are connected. By increasing the velocity, in the weakly
stable region, they will appear weakly unstable parts.

We observe the following property of the WSTR (see Fig. 2).
Property A: There exist distances r2 from P2, such that the maximum velocity where

the orbit remains weakly stable is strictly larger than the smallest velocity where the
orbit becomes weakly unstable.

Next, for a fixed real anomaly f0, we define the lower boundary curve of WSTR in the
P2xy coordinate system.

Definition 3. The lower boundary curve LB (f0) of the WSTR is

LB (f0) =
{

(r∗2 cos α, r∗2 sin α) ∈R
2 : α∈ [0o, 360o) and r∗2 is the smallest

distance from P2 on half-line l(α, f0), where property A appears} .
For a fixed value of f0, the defined set LB (f0) is two dimensional in WSTR, and it

has two components corresponding to the direct and retrograde motions.
The Hill sphere (or Roche sphere) of primary P2 is the region where the gravitational

attraction of P2 dominates. In the model of PER3BP, with normalized unit a (1 − e) = 1,
the radius of the Hill sphere of primary P2 can be approximated (Hamilton & Burns

(1992)) by RP2
= 3
√
μ/ [3 (1− μ)]. The Hill circle HB around P2 is

HB =
{

(RP2
cos α, RP2

sin α) ∈R
2 : α∈ [0o, 360o)

}
.

4. Case study for Sun-Earth system

In this section, we investigated the weak stability in the PER3BP model of the Sun-
Earth system. For the Sun-Earth system, the mass ratio is μ= 3.003158242 · 10−6 and
the eccentricity of the elliptical orbit of Earth is e= 0.0167.

First, we classify the weak stability of the orbits based on the initial distance r2 and
initial velocity v2, where f0 = 0o and α= 45o (Fig. 3). The initial velocities are directly
guided. Initial conditions for weakly unstable orbits are marked with red, the initial
values for weakly stable orbits with green. The yellow points give the initial values of the
collision orbits with the Earth (the trajectories where the distance between the massless
particle and Earth will be equal to the radius of the Earth at some time: ‖P3P2‖ =RE
= 6378 km). The second panel of Fig. 3 is an enlarged part of the first panel.
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Figure 3. Weak stability in system (r2, v2). Initial values for weakly unstable orbits are marked
with the color red, the initial values for weakly stable orbits with the color green. The yellow
points give the initial values of the collision orbits with the Earth. The second panel is the
enlarged part of the first panel.

Figure 4. The lower boundary curve of WSTR in the Sun-Earth system for direct and retro-
grade initial velocities in P2xy coordinate system, where f0 ∈ {0o, 180o}. The points of LB(f0)
are marked by color red. The inner circle is the orbit of the Moon and the outer circle plots the
Hill circle. The curve near the red dots shows the best fitting lemniscate.

The two black curves represent the circular (C) and escape (E) velocity for a given
distance in two body problem regarding to the planet Earth. The first vertical line (red
line) indicates the position of boundary point corresponding to the angle α= 45o of
LB(0o). At this distance r∗2 , the property A appears for the first time. The second
vertical line indicates the position corresponding to the radius of the Hill sphere.

Fig. 4 illustrates the lower boundary curve LB (f0) in coordinate system P2xy, when
f0 ∈ {0o, 180o} and the initial conditions give direct or retrograde motions. The points of
LB(f0) are marked by color red. The inner circle is the orbit of the Moon and the outer
circle plots the Hill circle.

Remark 4. In Fig. 4 it can be observed, that the approximation of the lower boundary
curve in analytical form can be obtained by fitting a quadratic plane curve to the deter-
mined points (red dots). Moreover, in the case of direct motion, the red dots are more
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Table 1. The optimal fitting parameters

f 0 L L L L δ δ δ δ

inf sup width inf sup width

D. 0o 495318 483949 506538 22589 42.78 41.48 44.08 2.6

D. 180o 476020 468690 483500 14810 43.11 42.22 44 1.78

R. 0o 590462 574605 606320 31715 36.44 34.91 37.97 3.06

R. 180o 490681 476020 505491 29471 35.78 34.06 37.5 3.44

dispersed for f0 = 0o than for f0 = 180o. In the case of retrograde motion, the bound-
ary curves become blurred (with greater dispersion). The points of the LB (f0) are very
important in the design of ballistic escape trajectories in the Sun-Earth system. In the
graph of direct motion on Fig. 4, we observe weakly unstable points (red dots) around
the Moon’s orbit in the vicinity of α= 45o.

The LB(f0) is approximated by a Bernoulli lemniscate (Fig. 4). Thus, an analytical
formula is obtained to estimate the lower bound of WSTR. If we fit the lemniscate of
Bernoulli : r2 =L2 cos2 (α− δ) to the points of LB(f0) then we obtain the optimal fitting
parameters reported in Tab. 1. When d is the half-distance between the focal points F1

and F2 of the lemniscate then L= d
√

2. The δ is the angle between the line F1F2 and
axis Ox.

The first column of Table 1 indicates that the motion is direct (D.) or retrograde (R.).
In the second column the value of the true anomaly and in the third column the length
(L[km]) of the best-fitting lemniscate are given. The fourth and fifth columns give the
upper and lower limits of the confidence interval of L at a 95% confidence level. The
sixth column gives the width of the confidence interval in km.

The seventh column gives the angle δ[o] between the semi major-axis of the lemniscate
and the axis Ox. The eighth and ninth columns represent the upper and lower limits of
the confidence interval of δ at 95% confidence level. The last column gives the width of
the confidence interval of δ in degrees.

5. Concluding remarks

In this paper, the velocity is also considered as a variable parameter in the study
of weak stability. The lower boundary curve is defined in the weak stability transition-
region (WSTR). As an application, the lower boundary curve of WSTR is numerically
determined in the PER3BP model of the Sun-Earth system. The location of the lower
boundary curve is compared to the Earth-Moon mean distance. We show that the lower
boundary curve can be approximated by a Bernoulli lemniscate.

The analysis shows that, if we ignore the mean inclination of Moon’s orbit from the
ecliptic (i= 5.15o), the orbit of the Moon is near to the lower boundary of the WSTR
in the system P2xy (the first two panel of Fig. 4). The orbit of the Moon intersects
LB (f0) at four points, approximately: α1 = 410, α2 = 450, α3 = 2210, α4 = 2250. If the
true anomaly of the Moon relative to Earth is approximately in

[
410, 450

]∪ [2210, 2250
]
,

then the Moon is below the lower boundary of the WSTR (i.e. the motion is weakly
stable), otherwise, it is in the weak stability transition region.

Another interesting situation is when the angle between the directions of Sun-Earth
and Earth-test particle is 135o. In this case, the weakly unstable points are very close to
Earth. From these points escape trajectories can be designed even if the initial velocity
is smaller than the escape velocity.

The simplicity and enough precise estimation of the lower boundary curve raises the
question on whether the equation of the lower boundary curve can be analytically derived
in the ER3BP or CR3BP model.
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