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1. INTRODUCTION AND STATEMENT OF PROBLEMS
Suppose that xv x2, ...,xt represent the numbers of subjects in which an all-or-

none response (e.g. death) is observed to occur amongst the nv n2, ...,nt subjects
independently tested at t different dose levels d1; d2, ..., d( of a certain substance
(e.g. drug or hormone). The problems of quantal response in bioassay may be
formulated as follows. If F(d) represents an assumed distribution, or the pro-
portion Ti expected to react at a dose d or less, then the x's each have independent
binomical distributions

for i = 1, 2, ..., t and 0 < xi < n{.
Principal interest has been shown thus far in estimation of the parameters and

the dose-response relation from the assumed distribution

i.e. the cumulative normal distribution (e.g. Finney, 1952), and also from the
'logistic' distribution

F(d) = [l+exV[-(a + /?d)]-1] (3)
(e.g. Berkson, 1953).

When nothing is assumed about the nature of the probabilities in the form
of a specified response distribution F(d) as above, Thompson (1947) proposed the
use of 'moving averages' as a method of estimating the median effective or lethal
dose (= LD 50). An (unweighted) 'moving average' of span k is defined as the
successive sums

**= 1 s OH = I s *«*• (4)

in terms of the sample proportions p, and an associated dose

In order to estimate LD 50 Thompson used ordinary linear interpolation between
consecutive values of the moving average p' on either side of 0-50. Finney (1952,
ch. 20) has discussed the efficiency of these unweighted moving averages with
reference to the integrated normal distribution (2).
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The present author (1952) has made one modification in moving averages by
introducing weights proportional to the n's for odd-numbered spans of 3, 5, etc.
Thus, for example, for three-term moving averages

and a corresponding dose d\ in terms of the harmonic mean nt defined by

and the author has also discussed the efficiency of this form of moving averages in
estimating LD 50. If the n's all happen to be equal, then the average (6) above
coincides with the averages defined by Thompson.

I t is the purpose of this paper to present some further theoretical aspects of
determining new optimum forms of moving averages in estimation of LD 50
together with their approximate sampling errors.

2. GENERALITIES ON MOVING AVERAGES

For the (2k +1) sample proportions {pi+r}(r = 0, + 1, ..., ±k), consider the
minimization of the weighted sums of squares

St = S Ai+,(^+r-7r,)2 (7)

r=-k

with respect to ni for each i = k+1, ..., (t — k), and subject to the further condition

+k
2 \+r = I-

r=-fc
+k

This minimization results in estimates of the form p\ = ni = 2 Ai+r pi+r, which
r=-k

will be called a moving average of span (2k + 1).
It should be mentioned that the condition 2 \+r = 1 results from the natural

r

requirement that if the observed proportions happen to coincide, i.e. if pi+r = p\,
r = 0, + 1, ..., ± k, t h e n ^ = p\ as a reasonable condition of the moving average.

If then the variance of each p\
+k - 7 1

iV(p't)= S %+r~+r\ l+T> (8)
r = -k ni+r

is minimized for variation in the A's, it is easy to verify that this occurs when

^_ _ ni+rni I y. ni+r /gv
7Ti+r (1 - 7Ti+r)/ r = _fc 7Ti+r (1 - 7Ti+r) '

i.e. the weights are proportional to the reciprocals of the (binomial) weights for
each sample proportion. The resulting minimum variance is

r +k
V(P!i) =
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If the true proportions n are known, then LD 50 is to be estimated by linear inter-
polation between the two consecutive p"s on either side of 0-5 in terms of the
transformed doses

+k ^

r = -k

In particular, if the original doses are equally spaced, i.e. if d{ = do + (i— l)d in
terms of an initial (log) dose level ( = d0) and uniform spacing d, the resulting
spacing for the d"s is

^d (10)

which will be in fact equal only in case of a completely symmetric set of the
weights, i.e. A _̂r = Ai+r, for r = 1,2, ...,1c. This can occur when equal numbers
are used with a symmetric dose-response or in terms of the population pro-
portions, 77i_r = TTi+r.

3. UNBIASED MOVING AVERAGES

If now it is required only that each successive p't be an unbiased estimate of
the corresponding n^ i.e.

EM) = S ^i+r"i+r = "i,
r = -k

the weights resulting from minimizing the variance (8) subject to the condition of
unbiasedness are

*»" r^/LL-d^)]

in terms of the usual 'logit' transformation Yt = loge [^(1 — T^)"1]. The minimum
variance is then

V(p't) = W
lr=-k \l-%r/J L-fc

If the requirements on the A's of being both unbiased and such that

r

are superimposed, then minimum variance is attained whenever

_ (Pir

where

Pt
[ t * ni+i(ni+j-TTj){ni+i-ni+r)~\

r U-* "we-"™) r
A =

1

25-2
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It is seen that the weights or coefficients X obtained in equations (11) and (12)
are parametric multiples of the binomial weights in (9).

In view then of the sampling complications of weights based on equations (11)
or (12), it is felt that successive moving averages based on sample estimates of the
binomial weights (9) are to be considered adequate in estimation of LD 50. These
estimates together with their approximate standard errors will now be derived.

4. SAMPLING THEORY WHEN BINOMIAL WEIGHTS ARE USED

In applying the results of §3 for the binomial weights (9), we replace the n's by
their corresponding sample estimates p. The moving averages^' are then computed
from the sample weights

V ni+r

excluding any observed zero or one values for the sample p's. In these latter cases
the value of the observed numbers x should be replaced by 1 or (n— 1), respectively
in the calculations.

If then two successive moving average proportions p\, p'i+1 are such that
p't < 0-5 < p'i+i, the estimate of LD 50 obtained by linear interpolation is

with variance

V(m') = (d^-Wvl^^-) . (16)
yP

Using the formula for the approximate variance of a ratio of two random
variables, we obtain

V(m) ~ [ jHl^Kl~r)2V(p' i ) + 2T(l-T)G(p'i,p'i+1)+TW(p'i+1)]! (17)

where TTJ are the corresponding moving averages of the true proportions n again
estimated from the sample and

[ +k ~, I - 1

S n (l
i+r

n J , (18)
r = -kni+r ( L ~ ni+r)i

nw w \ = \ v Ui+r 11 \ v %i+r 1 Fv — n"*+1 1
^Pt,Pt+i) U4_1 ) 7r .+ r ( l_^+ r)J/ lr~-kni+r(l-7ri+r)\ [hni+M(\-ni+r+1)\

if we denote the fraction T = (0-5— p'i)/(p'i+1 — p'i)-

5. OPTIMUM MOVING AVERAGES BASED ON ANGULAR TRANSFORMATION
Finally, it is of interest to point out an optimum form of moving average based

on the arc-sine transformation of proportions (e.g. Snedecor, 1956, p. 318), which is
well known for the property of approximately stabilizing the variance. In terms
of the sample proportions^- = x^n^i = 1, ..., c), the arc-sine transformation

Vi = sin-1 Jpt
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is such that the resulting y's have approximately constant variance V(yi) = c2/wf,
where

c2 = 0-25 if y in radians
= 821 if y in degrees.

+k
Moving averages on the y's of the form y\ = 2 ^-i+rVi+r attain minimum

variance when

and in this case

The corresponding doses are

f+r = ni+r I £ ni+r I,

which, in case the d's are equally spaced dt = do + (i—l)d with interval d, reduce to

. (21)

If now two successive values y\, y'i+1 of the sequence of moving averages are such
that y\< \TT < y'i+1, then the estimate m* of LD 50 will be

m * = ̂ i+^^rAd^-d*,) (22)
i Vi+i ~ y%)

with approximate variance

V(m*) = [j^-^[(l-vrV(y'l) + 2v(l-v)C(y'i,y'i+1) + vW(y'i+1)l (23)

where
^ = sin-1 ^nt,

V(y'i) = {c)i/(riknjj, (24)

C(y'i,y'M) = (c2)[ s ni + rl /f s »i+rlf S »i+r+1l
Lr=-(fc-l) J/ lr=-k ilr=~k J

and ^̂  is the weighted average = (Zni+rdi+r)ftE,ni+r), and v is the fraction

Table 1. Toxicity of rotenone (Finney, 1947)(D)
concentration

mg./l.

2-6 = Do

3-8
5 1
7-7

10-2

\~D~J
= d{

0-0000
0-1644
0-2923
0-4713
0-5933

No. of
insects

n i

50
48
46
49
50

No.
affected

*i

6
16
24
42
44

100 pt

12-0
33-3
52-2
85-7
88-0

Degrees
Vi

20-27
35-24
46-26
67-78
69-73

y'i

33-56
49-35
61-63

d*

—

0-1482
0-3107
0-4566
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6. EXAMPLE

The following example of an optimum three-term moving average using the
arc-sine transformation is based on the data (Table 1) on toxicity of rotenone when
sprayed on Macrosiphoniella sanborni in batches of approximately fifty insects each
(Finney, 1947, p. 26).

Using equations (22) and (23), we obtain the estimates

m* = log10 (LD 50) = log 2-6 + 0-1482+ ^ | ^ | | ® ) - (

= 0-4150 + 0-1482 +(0-7245) (0-1625) = 0-6809,

V(m*) = ( ^ ^ [ ( 1 -0-7245)3 7(2/0 + 2(0-7245) (0-2755)

= 5-235x10-4.
249-32 v

Table 2 compares this estimate and its variance with the corresponding
maximum likelihood estimate (Finney, 1947) and the minimum logit %2 value
(Berkson, 1953) with their respective variances.

Table 2. Comparison of estimates of log (LD 50)
Variance

Method
Maximum likelihood

(probits)
Minimum (logit) x2

Optimum moving average
(arc-sine)

Estimate
0-6862

0-6848
0-6809

(x
4-

5-
5-

104)
849

215
235

Table 2 demonstrates the relatively high efficiency of a three-term moving
average based on the angular transformation when compared with an assumed
cumulative normal (92-6 %) and the logit (99-6 %) in this example.

SUMMARY

Optimum forms of moving averages are derived for the estimation of LD 50 in
the situation where no assumptions are made about the form of the dose-response
distribution. The theory is also applied to uses of moving averages based on the
angular transformation of the percentage response. A numerical example
illustrates this application, and its results are compared with the corresponding
probit and logit estimates.

REFERENCES
BENNETT, B. M. (1952). Estimation of LD 50 by moving averages. J. Hyg., Camb., 50,

157-64.
BERKSON, J. (1953). A statistically precise and relatively simple method of estimating the

bio-assay with quantal response, based on the logistic function. J. Atner. statist. Ass. 48,
565-99.

FINNEY, D. J. (1947). Probit Analysis. Cambridge University Press.
FINNEY, D. J. (1952). Statistical Method in Biological Assay. Griffin and Co., Ltd.
SNEDECOB, G. W. (1956). Statistical Methods, 5th edition. Iowa State Press, Ames, Iowa.
THOMPSON, W. R. (1947). Use of moving averages and interpolation to estimate median-

effective dose. Bad. Rev. 11, 115-45.

https://doi.org/10.1017/S002217240002101X Published online by Cambridge University Press

https://doi.org/10.1017/S002217240002101X

