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Compactness of Commutators for Singular
Integrals on Morrey Spaces

Yanping Chen, Yong Ding, and Xinxia Wang

Abstract. In this paper we characterize the compactness of the commutator [b,T] for the singular

integral operator on the Morrey spaces Lp,λ(R
n). More precisely, we prove that if b ∈ VMO(R

n),

the BMO(R
n)-closure of C∞

c (R
n), then [b,T] is a compact operator on the Morrey spaces Lp,λ(R

n)

for 1 < p < ∞ and 0 < λ < n. Conversely, if b ∈ BMO(R
n) and [b,T] is a compact operator

on the Lp, λ(R
n) for some p (1 < p < ∞), then b ∈ VMO(R

n). Moreover, the boundedness of a

rough singular integral operator T and its commutator [b,T] on Lp, λ(R
n) are also given. We obtain a

sufficient condition for a subset in Morrey space to be a strongly pre-compact set, which has interest

in its own right.

1 Introduction

Let Sn−1
= {x ∈ R

n : |x| = 1} be the unit sphere in R
n with the area measure dσ.

Suppose that Ω satisfies the following conditions:

(i) Ω is a homogeneous function of degree zero on R
n\{0}, i.e.,

(1.1) Ω(µx) = Ω(x) for any µ > 0 and x ∈ R
n\{0}.

(ii) Ω has mean zero on Sn−1, i.e.,

(1.2)

∫

Sn−1

Ω(x ′) dσ(x ′) = 0.

(iii) Ω ∈ Lip(Sn−1), i.e.,

(1.3) |Ω(x ′) − Ω(y ′)| ≤ |x ′ − y ′| for any x ′, y ′ ∈ Sn−1.

Moreover, here and in the sequel, we assume that Ω 6= 0. Then the Calderón–

Zygmund singular integral operator T defined by

(1.4) T f (x) = p.v.

∫

Rn

Ω(x − y)

|x − y|n
f (y) dy.
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For a function b ∈ Lloc(R
n), let Mb be the corresponding multiplication operator

defined by Mb f = b f for measurable function f . Then the commutator between T

and Mb is denoted by

[b,T] := MbT − TMb = p.v.

∫

Rn

Ω(x − y)

|x − y|n
(b(x) − b(y)) f (y) dy.

It is well known that [b,T] plays a very important role in harmonic analysis and PDEs

(see the nice survey articles [8, 25]). Denote

BMO(R
n) = {b ∈ Lloc(R

n) : ‖b‖∗ := sup
cube

Q ⊂ R
nM(b,Q) <∞},

here and in the sequel,

M(b,Q) =
1

|Q|

∫

Q

|b(x) − bQ| dx and bQ =
1

|Q|

∫

Q

b(y) dy.

A famous theorem of Coifman, Rochberg, and Weiss [14] characterized the Lp-

boundedness of [b,R j], where R j ( j = 1, . . . , n, ) are the Reisz transforms and

b ∈ BMO(R
n). Using this characterization, the authors of [14] obtained a decom-

position theorem of the real Hardy space H1(R
n). Uchiyama [48] and Janson [27]

showed that the Reisz transform R j may be replaced by the Calderón–Zygmund sin-

gular integral operator T.

The boundedness result of [b,T] was generalized to other contexts and important

applications to some non-linear PDEs were given by Coifman et al. [13]. The charac-

terization of Lp-compactness of [b,T] was obtained by Uchiyama [48]. The interest

in the compactness of [b,T] in complex analysis is from the connection between the

commutators and the Hankel-type operators. In fact, Beatrous and Li [6] proved the

boundedness and compactness characterizations of [b,T] on Lp over some spaces

of homogeneous type. Krantz and Li (see [29]) applied the characterization of Lp-

compactness of the commutator to give a compactness characterization of Hankel

operators on holomorphic Hardy spaces H2(D), where D is a bounded, strictly pseu-

doconvex domain in C
n. On the other hand, it is perhaps for this important reason

that the Lp-compactness of [b,T] attracted attention among researchers in PDEs. For

example, with the aid of the compactness of [b,T], it is easy to derive a Fredholm al-

ternative for equations with VMO coefficients in all Lp spaces for 1 < p < ∞ (see

[26]).

It is well known that the Morrey space Lp,λ(R
n) (see the definition below), intro-

duced by Morrey in 1938, is connected to certain problems in elliptic PDE [32]. Later,

the Morrey spaces were found to have many important applications to the Navier–

Stokes equations (see [28, 31, 47]), the Schrödinger equations (see [36, 37, 42, 43]),

the elliptic equations with discontinuous coefficients (see [7, 12, 18, 20, 24, 35]) and

the potential analysis (see [1, 2]). The Morrey space associated with the heat kernel

was studied in [15, 21, 49]. Recently, in [3, 4], the authors set up several functional

analyses and potential theory for the Morrey spaces in harmonic analysis.
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For 1 ≤ p <∞, n ≥ 1 and 0 < λ < n, the Morrey space Lp,λ(R
n) is defined by

Lp,λ(R
n) =

{

f ∈ L
p
loc : ‖ f ‖p,λ = sup

y∈R
n

r>0

( 1

rλ

∫

B(y,r)

| f (x)|p dx
) 1/p

<∞
}

,

where B(y, r) denotes the ball centered at y and with radius r > 0. The space Lp,λ(R
n)

becomes a Banach space with norm ‖ · ‖p,λ. Moreover, for λ = 0 and λ = n, the Mor-

rey spaces Lp,0(R
n) and Lp,n(R

n) coincide (with equality of norms) with the spaces

Lp(R
n) and L∞(R

n), respectively. (See also [38,40,41] for the theory of Morrey spaces

with non-doubling measures.)

In 1991, Di Fazio and Ragusa [19] gave a characterization of Lp,λ-boundedness

of [b,T] with Ω satisfying (1.2)–(1.3). In 1997, using Janson’s idea [27], Ding [16]

proved that the commutator [b,T] is a bounded operator on the generalized Morrey

space Lp,Φ(R
n) (1 < p < ∞) if and only if b ∈ BMO(R

n) (see [16, 33] for the

definition of Lp,Φ(R
n)). Recently, Adams and Xiao [5] gave a new proof about the

Morrey spaces boundedness for the commutator of the Riesz potential and developed

a regularity theory of commutators for Morrey–Sobolev spaces Iα(Lp,λ).

Like the case on Lp(R
n), the characterizations of boundedness and compactness

of [b,T] on Morrey spaces Lp,λ(R
n) play an important role in PDEs. In fact, the

boundedness and compactness of the commutator [b,T] on Morrey spaces had been

applied to discuss some regularity problems of solutions of PDEs with VMO coeffi-

cients (see [12, 18, 20, 35, 44], for example).

Therefore, it is natural to ask what is the characterization of Lp,λ-compactness of

[b,T]? The purpose of this paper is to answer this question. In order to compare

the results of ours with whose obtained by Uchiyama, let us recall what Uchiyama

obtained.

Theorem A ([48]) Suppose that Ω satisfies (1.1), (1.2), and (1.3)

(i) If b ∈ VMO(R
n), then [b,T] is compact on Lp(R

n) for all 1 < p <∞.
(ii) If [b,T] is a compact operator on Lp(R

n) for some p, 1 < p < ∞, then b ∈
VMO(R

n).

Here VMO(R
n) denotes the BMO-closure of C∞

c (R
n), and C∞

c (R
n) is the set of C∞(R

n)

functions with compact support set.

On the other hand, recently, we also gave a characterization of compactness for

the commutators of Riesz potential on Morrey spaces [11].

Now let us formulate the main results in the present paper as follows.

Theorem 1.1 Let 0 < λ < n. Suppose that Ω satisfies (1.1), (1.2), and Ω ∈ Lq(Sn−1)

with q > n/(n − λ) satisfying

(1.5)

∫ 1

0

ωq(δ)

δ
(1 + | log δ|) dδ <∞,

where ωq(δ) denotes the integral modulus of continuity of order q of Ω defined by

ωq(δ) = sup
‖ρ‖<δ

(

∫

Sn−1

|Ω(ρx ′) − Ω(x ′)|q dσ(x ′)
) 1/q
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and ρ is a rotation in R
n and ‖ρ‖ = supx ′∈Sn−1 |ρx ′ − x ′|. If b ∈ VMO(R

n), then the

commutator [b,T] is a compact operator on Lp, λ(R
n) for 1 < p <∞ .

Theorem 1.2 Suppose that Ω satisfies (1.1), (1.2), and Ω ∈ Lip(Sn−1). If 0 < λ < n,

b ∈ BMO(R
n), and the commutator [b,T] is a compact operator from Lp, λ(R

n) to itself

for some p (1 < p <∞), then b ∈ VMO(R
n).

Remark 1.3 The conclusion of Theorem 1.2 for λ = 0 is just Uchiyama’s main

result in [48]. On the other hand, since the Lipschitz condition (1.3) implies (1.5),

we may get the following corollary immediately.

Corolllary 1.4 Suppose that Ω satisfies (1.1), (1.2), and Ω ∈ Lip(Sn−1). If 0 <
λ < n, 1 < p < ∞, and b ∈ BMO(R

n), then the commutator [b,T] is a compact

operator on Lp, λ(R
n) if and only if b ∈ VMO(R

n).

Remark 1.5 If the Lipschitz condition is replaced by the weaker condition, which

is the so-called Hölder condition of log type:

|Ω(x ′) − Ω(y ′)| ≤
C1

(

log 2
|x ′−y ′|

) γ for any x ′, y ′ ∈ Sn−1,C1 > 0, γ > 1,

then Theorem 1.2 and Corollary 1.4 also hold.

Remark 1.6 Recently, Sawano and Shirai [39] proved that if T is bounded on L2(µ)

and its kernel K satisfies a stronger smoothness condition, then the commutator

[a,T] with a ∈ BV MO(µ) is a compact operator on the Morrey spaces with non-

doubling measures. However, the conditions assumed on the kernel of operator T in

[39] are even stronger than condition (1.5). Therefore, in this sense, the conclusion

of Theorem 1.1 is an improvement of Theorem 1.6 in [39].

Remark 1.7 In the review of paper [39] in Mathematical Reviews (MR2428477) the

reviewer suggested that “It is worthwhile to know how much this sufficient condition

is close to being necessary.” Our Theorem 1.2 settles this question.

Note that condition (1.5) is weaker than the Lipschitz condition (1.3). Hence,

we cannot apply the conclusions of [19] in the proofs of Theorems 1.1 and 1.2.

Here we will give the boundedness of a general linear or sublinear operator S and

its commutator [b, S] on the Morrey spaces Lp, λ(R
n), where [b, S] is defined by

[b, S] f (x) = b(x)S f (x) − S(b f )(x) for b ∈ Lloc(R
n). The following results have in-

terest in their own right.

Theorem 1.8 Let 0 < λ < n. Suppose that Ω satisfies (1.1) and Ω ∈ Lq(Sn−1) for

q > n/(n − λ) and S is a linear or sublinear operator satisfying

(1.6) |S f (x)| ≤ C

∫

Rn

|Ω(x − y)|

|x − y|n
| f (y)| dy.

(i) If the operator S is bounded on Lp(R
n) for 1 < p < ∞, then S is also bounded on

Lp,λ(R
n).

https://doi.org/10.4153/CJM-2011-043-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-043-1


Compactness of Commutators for Singular Integrals on Morrey Spaces 261

(ii) For b ∈ BMO(R
n), if the commutator [b, S] is bounded on Lp(R

n) for 1 < p <
∞, then [b, S] is also bounded on Lp,λ(R

n).

Note that the Calderón–Zygmund singular integral operator T defined by (1.4)

satisfies (1.6). We then immediately get the Lp,λ(R
n)-boundedness of T and [b,T]

by applying the Lp(R
n)-boundedness of T (see [9]) and the Lp(R

n)-boundedness of

[b,T] (see [23]), respectively.

Corolllary 1.9 Let 0 < λ < n. Suppose Ω satisfies (1.1), (1.2), and Ω ∈ Lq(Sn−1) for

q > n/(n − λ). Then the Calderón–Zygmund singular integral operator T defined by

(1.4) and its commutator [b,T] with b ∈ BMO(R
n) are both bounded on Lp,λ(R

n) for

1 < p <∞.

Remark 1.10 Obviously, in the conditions of Corollary 1.9 Ω has no any smooth-

ness on the unit sphere Sn−1. Therefore, Corollary 1.9 is an improvement of the result

in [19].

Remark 1.11 Besides the Calderón–Zygmund singular integral operator, condition

(1.6) is satisfied by many interesting operators in harmonic analysis, such as the oscil-

latory singular integral, the Hardy–Littlewood maximal operator, Carleson’s maximal

operators and so on. Similar to Corollary 1.9, as some consequences of Theorem 1.8,

we may also discuss and obtain the boundedness of these operators mentioned above

and their commutators on the Morrey spaces Lp,λ(R
n).

In the proof of Theorem 1.1, we need the following characterization that a subset

in Lp, λ(R
n) is a strongly pre-compact set, which is in itself interesting.

Theorem 1.12 Suppose that 1 ≤ p < ∞ and 0 < λ < n. Suppose the subset G in

Lp, λ(R
n) satisfies the following conditions:

(i) norm boundedness uniformly

(1.7) sup
f∈G

‖ f ‖p, λ <∞,

(ii) translation continuty uniformly

(1.8) lim
y→0

‖ f (· + y) − f (·)‖p, λ = 0 uniformly in f ∈ G,

(iii) control uniformly away from the origin

(1.9) lim
α→∞

‖ fχ
Eα
‖p, λ = 0 uniformly in f ∈ G,

where Eα = {x ∈ R
n : |x| > α}. Then G is strongly pre-compact set in Lp, λ(R

n).

Remark 1.13 In the results above, we discuss only the case where 0 < λ < n. As

for the case λ = 0, since Lp,0(R
n) = Lp(R

n), some results are well known. In fact,

recently, Chen and Ding proved that the commutator [b,T] is a compact operator
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on Lp(R
n) if b ∈ V MO(R

n) and Ω satisfies (1.1), (1.2), and (1.5) (see [10, Theorem

1.2]). If λ = 0, then the conclusion of Corollary 1.4 is just Uchiyama’s result [48].

Finally, when λ = 0, Theorem 1.12 is just the famous Frechet–Kolmogorov theorem

(see [50]). Therefore, our results obtained in this paper extend some well-known

results.

This paper is organized as follows. We prove the main results, Theorem 1.1 and

Theorem 1.2, in Sections 2 and 3, respectively. Then in Section 4, we show the Lp, λ-

boundedness of the rough operators and its commutators (Theorem 1.8). In the last

section, we characterize the strongly pre-compact set in Lp, λ(R
n) (Theorem 1.12).

Throughout this paper the letter “C ” will stand for a positive constant which is in-

dependent of the essential variables and not necessarily the same one in each occur-

rence. As usual, |E| denotes the Lebesgue measure of a measurable set E in R
n and

for p ≥ 1, p ′
= p/(p − 1) denotes the dual exponent of p.

2 Sufficiency That [b,T] Is a Compact Operator on Lp, λ(R
n):

Proof of Theorem 1.1

Let us begin by giving two lemmas which will be used in the proof of Theorem 1.1.

Lemma 2.1 Let 0 < λ < n. Suppose that Ω satisfies (1.1), (1.2), and Ω ∈ Lq(Sn−1),

where q > n/(n − λ). For η > 0, let

Tη f (x) =

∫

|x−y|>η

Ω(x − y)

|x − y|n
f (y) dy.

Then for 1 < p <∞, ‖Tη f ‖p,λ ≤ C‖ f ‖p, λ, where C is independent of η and f .

Lemma 2.1 is a direct consequence of Theorem 1.8. In fact, the inequality

|Tη f (x)| ≤

∫

Rn

|Ω(x − y)|

|x − y|n
| f (y)|dy

holds uniformly in η. Moreover, Tη is bounded on Lp(R
n) uniformly in η (see [45]).

We invoke the following estimate from [17].

Lemma 2.2 Suppose that 0 ≤ β < n, Ω satisfies (1.1), and Ω ∈ Lq(Sn−1), q ≥ 1.

Then there exists a C > 0 such that for an R > 0 and x ∈ R
n with |x| < R/2,

(

∫

R<|y|<2R

∣

∣

∣

Ω(y − x)

|y − x|n−β
−

Ω(y)

|y|n−β

∣

∣

∣

q

dy
) 1/q

≤ CRn/q−(n−β)
{ |x|

R
+

∫ |x|/R

|x|/2R

ωq(δ)

δ
dδ
}

.

We now turn to the proof of Theorem 1.1. Without loss of generality, let F be the

unit ball in Lp ,λ(R
n). By density, we only need to prove that when b ∈ C∞

c (R
n), the

set G = {[b,T] f : f ∈ F} is a strongly pre-compact in Lp, λ(R
n). Once we accept

Theorem 1.12, it is sufficient to show that (1.7)–(1.9) hold uniformly in G.
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Notice that b ∈ C∞
c (R

n). Applying Corollary 1.9, we have

sup
f∈F

‖[b,T] f ‖p, λ ≤ C‖b‖∗ sup
f∈F

‖ f ‖p, λ ≤ C‖b‖∗ <∞.

On the other hand, suppose that β > 1 taken so large that supp b ⊂ {x : |x| ≤ β}.

Recall that q > n/(n−λ), for any 0 < ε < 1, we takeα > β such that (α−β)n(1−q) <
εq. Below we show that for every t ∈ R

n and r > 0, q > 1,

(2.1)
{ 1

rλ

∫

B(t, r)

|[b,T] f |pχ
Eα

(x) dx
} 1/p

< Cε‖Ω‖Lq(Sn−1).

In fact, for any x ∈ Eα = {x ∈ R
n : |x| > α} and every f ∈ F, without loss of

generality, we may assume q < p. Then we have

|[b,T] f (x)| =
∣

∣

∣

∫

Rn

Ω(x − y)

|x − y|n
(b(x) − b(y)) f (y) dy

∣

∣

∣

≤ C‖b‖∞

∫

|y|≤β

|Ω(x − y)|

|x − y|n
| f (y)| dy

≤ C
(

∫

|x−y|≤β

|Ω(y)|q

|y|nq
| f (x − y)|q dy

) 1/q

.

Then for every t ∈ R
n and r > 0, by the Minkowski inequality and the choice of α,

we get

{ 1

rλ

∫

B(t, r)

|[b,T] f |pχ
Eα

(x) dx
} 1/p

≤ C
{ 1

rλ

∫

B(t, r)

(

∫

|x−y|≤β

|Ω(y)|q

|y|nq
| f (x − y)|qd y

) p/q

χ
Eα

(x) dx
} 1/p

≤ C‖ f ‖p, λ

{

∫

|y|>α−β

|Ω(y)|q

|y|nq
dy

} 1/q

< Cε‖Ω‖Lq(Sn−1)‖ f ‖p, λ

≤ Cε‖Ω‖Lq(Sn−1).

Thus, we get (2.1), which shows that (1.9) holds for [b,T] in G uniformly. Finally,

to finish the proof of Theorem 1.1, it remains to show that the translation continuity

condition (1.8) holds for the commutator [b,T] in G uniformly. We need to prove

that for any 0 < ε < 1/2, if |z| is sufficiently small depending only on ε, then for

every f ∈ F,

‖[b,T] f ( · ) − [b,T] f ( · + z)‖p ,λ ≤ Cε.
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Then for z ∈ R
n we write

[b,T] f (x + z) − [b,T] f (x)

=

∫

|x−y|>e1/ε|z|

Ω(x − y)

|x − y|n
[b(x + z) − b(x)] f (y) dy

+

∫

|x−y|>e1/ε|z|

(

Ω(x − y)

|x − y|n
−

Ω(x + z − y)

|x + z − y|n

)

[b(y) − b(x + z)] f (y) dy

+

∫

|x−y|≤e1/ε|z|

Ω(x − y)

|x − y|n
[b(y) − b(x)] f (y) dy

−

∫

|x−y|≤e1/ε|z|

Ω(x + z − y)

|x + z − y|n
[b(y) − b(x + z)] f (y) dy

:= J1 + J2 + J3 − J4 .

Since b ∈ C∞
c (R

n), we have |b(x) − b(x + z)| ≤ C‖∇b‖∞|z|. Now Ω ∈ Lq(Sn−1) and

q > n/(n − λ), hence, applying Lemma 2.1, we get

(2.2) ‖ J1 ‖p, λ ≤ C|z|‖ f ‖p, λ < C|z|.

As for J2, for every t ∈ R
n and r > 0, using Lemma 2.2 and the Minkowski inequality,

we get

( 1

rλ

∫

B(t,r)

| J2 |
p dx

) 1/p

≤ 2‖b‖∞

( 1

rλ

∫

B(t,r)

(

∫

|y|>e1/ε|z|

| f (x − y)|
∣

∣

∣

Ω(y)

|y|n
−

Ω(y + z)

|y + z|n

∣

∣

∣
dy

) p

dx
) 1/p

≤ C‖ f ‖p, λ

∫

|y|>e1/ε|z|

∣

∣

∣

Ω(y)

|y|n
−

Ω(y + z)

|y + z|n

∣

∣

∣
dy

≤ C‖ f ‖p, λ

∞
∑

k=0

{ |z|

2ke1/ε|z|
+

∫

|z|

2ke1/ε|z|

|z|

2k+1e1/ε|z|

ω(δ)

δ
dδ

}

≤ C‖ f ‖p, λ

∞
∑

k=0

{ 1

2ke1/ε
+

1

1 + k + 1/ε

∫ 1

2ke1/ε

1

2k+1e1/ε

ω(δ)

δ
(1 + | log δ|) dδ

}

≤ C(e−1/ε + ε)‖ f ‖p, λ ≤ Cε.

Thus, we have

(2.3) ‖ J2 ‖p, λ ≤ Cε.

Regarding J3, we have |b(x) − b(y)| ≤ C‖∇b‖∞|x − y| by b ∈ C∞
c (R

n). Thus

| J3 | ≤ C

∫

|x−y|≤e1/ε|z|

|Ω(x − y)||x − y|−n+1| f (y)| dy.
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By the Minkowski inequality, for every t ∈ R
n and r > 0, we have

{ 1

rλ

∫

B(t, r)

| J3 |
p dx

} 1/p

≤ C

∫

|y|≤e1/ε|z|

|Ω(y)||y|−n+1 dy
( 1

rλ

∫

B(t−y, r)

| f (x)|p dx
) 1/p

≤ Ce1/ε|z|‖ f ‖p, λ.

Thus

(2.4) ‖ J3 ‖p, λ < Ce1/ε|z|.

Finally, by |b(x + z) − b(y)| ≤ C‖∇b‖∞|x + z − y| we have

| J4 | ≤ C

∫

|x−y|≤e1/ε|z|

|Ω(x + z − y)||x + z − y|−n+1| f (y)| dy.

Using a similar method, it is easy to check that

(2.5) ‖ J4 ‖p, λ < C(e1/ε|z| + |z|).

From (2.2), (2.3), (2.4), and (2.5), and taking |z| to be sufficiently small, we can get

‖[b,T] f ( · ) − [b,T] f ( · + z)‖p, λ ≤ ‖ J1 ‖p, λ + ‖ J2 ‖p, λ + ‖ J3 ‖p, λ + ‖ J4 ‖p, λ ≤ Cε.

Therefore, we show that the translation continuity (1.8) holds for the commutator

[b,T] in G uniformly and this completes the proof of Theorem 1.1.

3 Necessity that [b,T] Is a Compact Operator on Lp, λ(R
n):

Proof of Theorem 1.2

We first recall some known facts.

Lemma 3.1 ([45]) If b ∈ BMO(R
n), C2 > C1 > 2, Q is a cube centered at x

0
and of

diameter q, then there exist positive constants C3, C4, C5 (depending on C1, C2 and b),

such that

∣

∣{C1q < |x − x
0
| < C2q : |b(x) − bQ| > v + C3}

∣

∣ ≤ C4|Q|e−C5 v (0 < v <∞).

Lemma 3.2 ([46]) Suppose that f (x) is a measurable function on R
n. Denote λ f (s) =

|{x ∈ R
n : | f (x)| > s}| for s > 0 and f ∗(t) = inf{s : λ f (s) ≤ t} for t > 0. Then for

any measurable set E and 1 ≤ p <∞,

∫

E

| f (x)|p dx ≤

∫ |E|

0

| f ∗(t)|p dt.
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Lemma 3.3 ([48]) Let b ∈ BMO(R
n). Then b ∈ VMO(R

n) if and only if b satisfies

the following three conditions:

(i) lima→0 sup|Q|=a M(b,Q) = 0;

(ii) lima→∞ sup|Q|=a M(b,Q) = 0;

(iii) lim|x|→∞ M(b,Q + x) = 0 for each Q.

To prove Theorem 1.2, we need the following result.

Lemma 3.4 Suppose that b ∈ BMO(R
n) with ‖b‖∗ = 1. If for some 0 < ζ < 1 and

a cube Q with its center at cQ and radius ℓ(Q), b is not a constant on cube Q and satisfies

(3.1) M(b,Q) =
1

|Q|

∫

Q

|b(y) − bQ| dy > ζ,

then for the function fQ defined by

(3.2) fQ = ℓ(Q)(λ−n)/p
(

sgn(b − bQ) −
1

|Q|

∫

Q

sgn(b − bQ)
)

χQ,

there exist constants β, γ1, γ2, and γ3 satisfying γ2 > γ1 > 2 > β > 0 and γ3 > 0,

such that
∫

γ1ℓ(Q)<|x−cQ|<γ2ℓ(Q)

|[b,T] fQ(y)|p dy ≥ γ
p
3 ℓ(Q)λ,(3.3)

∫

|x−cQ|>γ2ℓ(Q)

|[b,T] fQ(y)|p dy ≤
γ

p
3

4p
ℓ(Q)λ.(3.4)

Moreover, for all measurable subsets E ⊂ {x : γ1ℓ(Q) < |x − cQ| < γ2ℓ(Q)}, satisfying

|E|/|Q| < βn

(3.5)

∫

E

|[b,T] fQ(y)|pdy ≤
γ

p
3

4p
ℓ(Q)λ.

Proof Denote α
0
= |Q|−1

∫

Q
sgn(b(y) − bQ)dy. Since

∫

Q
(b(y) − bQ) dy = 0. It is

easy to check that |α
0
| < 1 and fQ satisfies

fQ(y)(b(y) − bQ) > 0,(3.6)
∫

Rn

fQ(y)dy = 0,(3.7)

| fQ(y)| ≤ 2|Q|−(n−λ)/(np), for y ∈ Q.(3.8)

Moreover, for any t ∈ R
n,

(3.9)
( 1

rλ

∫

B(t, r)

| fQ(x)|p dx
) 1/p

≤



















C
( r

ℓ(Q)

) (n−λ)/p

≤ C 0 < r ≤ ℓ(Q),

( 1

rλ

∫

Q

| fQ(x)|p dx
) 1/p

≤ C
( ℓ(Q)

r

)λ/p

≤ C r > ℓ(Q) > 0.
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Thus, ‖ fQ‖Lp, λ ≤ C , where C is independent of r and t .

First, we prove (3.3) and (3.4). For i = 1, 2, Ai denotes the positive constant

depending only on Ω, p, n, λ, ζ and Ak(1 ≤ k < i). Since Ω satisfies (1.2) (noting

that Ω 6= 0), there exists an A1 such that 0 < A1 < 1 and

σ({x ′ ∈ Sn−1 : Ω(x ′) ≥ 2A1}) > 0.

By condition (1.3), it is easy to see that Λ := {x ′ ∈ Sn−1 : Ω(x ′) ≥ 2A1} is a closed

set.

Claim 3.5 If x ′ ∈ Λ and y ′ ∈ Sn−1 satisfy |x ′ − y ′| ≤ A1, then Ω(y ′) ≥ A1.

In fact, since |Ω(x ′) − Ω(y ′)| ≤ |x ′ − y ′| ≤ A1 and Ω(x ′) ≥ 2A1, we therefore

get Ω(y ′) ≥ A1 and Claim 3.5 is justified. Taking A2 > 2/A1, if y ∈ Q, then we have

|x − cQ| > A2|y − cQ| for x ∈ (A2Q)c ∩ {x : (x − cQ) ′ ∈ Λ}. Thus

|(x − cQ) ′ − (x − y) ′| ≤
2|y − cQ|

|x − cQ|
≤

2

A2
< A1.

Applying Claim 3.5, we get Ω((x− y) ′) ≥ A1. Thus, for x ∈ (A2Q)c∩{x : (x−cQ) ′ ∈
Λ}, by (3.1), (3.2), and (3.6), and noting that |x − cQ| ≃ |x − y|, we have

(3.10) |T((b − bQ) fQ)(x)|

= |Q|−1/p+λ/(np)

∫

Q

Ω(x − y)

|x − y|n
(b(y) − bQ)[sgn(b(y) − bQ) − α0] dy

≥ C|Q|−1/p+λ/(np)|x − cQ|
−n

∫

Q

(|b(y) − bQ| − α0(b(y) − bQ)) dy

= C|Q|−1/p+λ/(np)|x − cQ|
−n

∫

Q

|b(y) − bQ| dy

≥ Cζ|Q|1/p ′+λ/(np)|x − cQ|
−n.

On the other hand, for x ∈ (A2Q)c, by Ω ∈ L∞(Sn−1), (3.2), and (3.8), it is easy to

check that

(3.11) |T((b − bQ) fQ)(x)| ≤ C|Q|1/p ′+λ/(np) |x − cQ|
−n.

By (3.7) we have

(3.12)

|(b(x) − bQ)T( fQ)(x)| ≤ |b(x) − bQ|
∣

∣

∣

∫

Rn

fQ(y)
(

Ω(x − y)

|x − y|n
−

Ω(x − cQ)

|x − cQ|n

)

dy
∣

∣

∣

≤ C
ℓ(Q)|b(x) − bQ||Q|1/p ′+λ/(np)

|x − cQ|n+1
.
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Note that the constants appearing in (3.10)∼(3.12) are only dependent on n, p, and

b. Since |b2Q − bQ| ≤ C‖b‖∗ = C , we have

(

∫

2sℓ(Q)<|x−y j |<2s+1ℓ(Q)

|b(x) − bQ|
p dx

) 1/p

≤ Cs2sn/p|Q|1/p.

Taking v > max{A1, 16}, by (3.12) we obtain

(3.13)
(

∫

|x−cQ|>vℓ(Q)

|(b(x) − bQ)T( fQ)(x)|p dx
)

1
p

≤ C|Q|1/p ′+λ/(np)ℓ(Q)

×

∞
∑

s=[log2 v]

(

∫

2sℓ(Q)<|x−cQ|<2s+1ℓ(Q)

|b(x) − bQ|
p

|x − y j |p(n+1)
dx
)

1
p

≤ C|Q|λ/(np)
∞
∑

s=[log2 v]

2−s(n−n/p+1−1/2)

≤ C|Q|λ/(np)v−(n−n/p+1/2).

Then for u > v > max{A1, 16}, using (3.10) and (3.13), we get

(3.14)
(

∫

{vℓ(Q)<|x−cQ|<uℓ(Q)}

|[b,T] fQ(x)|p dx
)

1
p

≥
(

∫

{vℓ(Q)<|x−y j |<uℓ(Q)}

|T((b − bQ) fQ)(x)|p dx
)

1
p

−
(

∫

|x−y j |>vℓ(Q)

|(b(x) − bQ)T( fQ)(x)|p dx
)

1
p

≥ Cζ|Q|λ/(np)(v−np+n − u−np+n)1/p

−C|Q|λ/(np)v(−n+n/p−1/2).

Similarly, from (3.11) and (3.13), we have

(3.15)
(

∫

|x−cQ|>uℓ(Q)

|[b,T] f j(x)|p dx
)

1
p

≤ C|Q|λ/(np)u(n−np)/p

+ C|Q|λ/(np)u(n/p−n−1/2).

Once again, the constants appearing in (3.13)∼(3.15) are independent of fQ and

Q. Since n/p < n, by (3.14) and (3.15), it is easy to see that there exist constants

γ2 > γ1 > 2 and γ3 > 0, which are dependent only on p, n, ζ, λ, and b, such that

(3.3) and (3.4) hold for any fQ and Q.
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We now verify (3.5). Let E ⊂ {x : γ1ℓ(Q) < |x − cQ| < γ2ℓ(Q)} be an arbitrary

measurable set. Then by (3.11), (3.12), and the Minkowski inequality, we have

(3.16)
(

∫

E

|[b,T] fQ(x)|pdx
) 1/p

≤ C|Q|1/p ′+λ/(np)
(

∫

E

|x − cQ|
−p(n) dx

) 1/p

+ Cℓ(Q)|Q|1/p ′+λ/(np)
(

∫

E

|b(x) − bQ|
p

|x − cQ|p(n+1)
dx
) 1/p

≤ C|Q|λ/(np)
{ |E|1/p

|Q|1/p
+
( 1

|Q|

∫

E

|b(x) − bQ|
p dx

) 1/p}

.

Let hQ(x) = b(x) − bQ. For 0 < ω <∞, denote

λhQ
(ω) = |{x : γ1ℓ(Q) < |x − cQ| < γ2ℓ(Q) and |hQ(x)| > ω}|.

Then by Lemma 3.1, there exist positive constants C3, C4, C5 (dependent on γ1, γ2,

and b only) such that λhQ
(ω +C3) ≤ C4|Q|e−C5ω . Hence, λhQ

(ω) ≤ C4|Q|e−C5(ω−C3).

For t > 0, let h∗
Q(t) = inf{ω : λhQ

(ω) ≤ t}. Then when 0 < t < C4|Q|,

(3.17) h∗
Q(t) ≤

1

C5
log

C4|Q|

t
+ C3.

Recall E ⊂ {x : γ1ℓ(Q) < |x − cQ| < γ2ℓ(Q)}. Applying Lemma 3.2 and (3.17), if

|E| < C4|Q|, we have

(3.18)
1

|Q|

∫

E

|b(x) − bQ|
p dx ≤

1

|Q|

∫ |E|

0

|h∗
Q(t)|p dt

≤ CC4

∫ |E|/(C4|Q|)

0

(

C3 −
1

C5
log t

) p

dt

≤ C
|E|

|Q|

(

1 + log
C4|Q|

|E|

) [p]+1

,

where C is independent of C4. Combining (3.16) with (3.18), if we take

β < min{C
1/n
4 , γ2},

then (3.5) holds.

Proof of Theorem 1.2 We will use a reduction to absurdity to prove Theorem 1.2.

That is, we will show that if b ∈ BMO(R
n) and b fails one of the conditions (i), (ii),

or (iii) in Lemma 3.3, then the commutator [b,T] is not a compact operator from

Lp, λ(R
n) to itself. To this end, we choose a bounded sequence { f j}

∞
j=1 in Lp, λ(R

n)

and show that there exists a subsequence {[b,T] f jk
}∞k=1 in {[b,T] f j}

∞
j=1 such that

{[b,T] f jk
}∞k=1 has no convergent subsequence in Lp, λ(R

n). Without loss of general-

ity, we assume ‖b‖∗ = 1.
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First, we assume that b does not satisfy Lemma 3.3(i). Then there exist 0 < ζ < 1

and a sequence of cubes {Q j(y j , d j) := Q j}
∞
j=1 with lim j→∞ d j = 0 such that for

every j

M(b,Q j) = |Q j |
−1

∫

Q j

|b(y) − bQ j
| dy > ζ.

For Q j ( j = 1, 2, . . . ) and b, we denote by f j the function fQ j
defined by (3.2).

Thus, { f j}
∞
j=1 satisfies (3.6)–(3.8) if replacing Q by Q j . In particular, {‖ f j‖Lp, λ}∞j=1 is

bounded uniformly by (3.9). Hence the sequence {[b,T] f j}
∞
j=1 is also a bounded set

in Lp, λ(R
n) by Corollary 1.9.

Since lim j→∞ d j = 0, we may assume that the sequence {d j} satisfies

(3.19) d j+1/d j < β/γ2.

Below we need only to show that there exists a constant δ > 0, independent of f j ,

such that for any j,m ∈ N,

(3.20) ‖[b,T] f j − [b,T] f j+m‖Lp, λ ≥ δ.

For fixed j,m ∈ N, denote

G = {x : γ1d j < |x − y j | < γ2d j}, G1 = G\{x : |x − y j+m| ≤ γ2d j+m},

G2 = {x : |x − y j+m| > γ2d j+m},

where γ1 and γ2 are from Lemma 3.4. Note that G1 ⊂ B(y j , γ2d j) ∩ G2. Hence, we

have

(

∫

B(y j , γ2d j )

|[b,T] f j − [b,T] f j+m|
p dx

) 1/p

≥
(

∫

G1

|[b,T] f j |
p dx

) 1/p

−
(

∫

G2

|[b,T] f j+m|
p dx

) 1/p

.

Since G1 = G − (Gc
2 ∩ G), by (3.3) and (3.4) we get

(3.21)
(

∫

B(y j , γ2d j )

|[b,T] f j − [b,T] f j+m|
p dx

) 1/p

≥
(

∫

G

|[b,T] f j |
p dx −

∫

Gc
2∩G

|[b,T] f j |
pdx

) 1/p

−
(

∫

G2

|[b,T] f j+m|
p dx

) 1/p

≥
(

γ
p
3 |Q j |

λ/n −

∫

Gc
2∩G

|[b,T] f j |
pd x

)
1
p

−
γ3

4
|Q j+m|

λ/(np).
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By (3.19),

(3.22)
|Gc

2 ∩ G|

|Q j |
≤
γn

2 dn
j+m

dn
j

< γn
2

( βn

γn
2

)m

< γn
2

( βn

γn
2

)

= βn.

By (3.22) and applying (3.5) for E := Gc
2 ∩ G, we have

(3.23)

∫

Gc
2∩G

|[b,T] f j |
p dx ≤

( γ3

4

) p

|Q j |
λ/n.

By (3.21) and (3.23) and note that |Q j+m| < |Q j | for any m ∈ N (by (3.19)), there

exists δ0 = δ0(γ3, p, n) > 0 such that

(

∫

B(y j , γ2d j
k

)

|[b,T] f j − [b,T] f j+m|
p dx

)
1
p

≥ δ0|Q j |
λ/(np).

Thus,
( 1

dλj

∫

B(y j , γ2d j )

|[b,T] f j − [b,T] f j+m|
p dx

)
1
p

≥ δ,

where δ = δ(δ0, n, q, λ) and δ is independent of m. We therefore get (3.20). Hence,

[b,T] is not a compact operator from Lp, λ(R
n) to Lp, λ(R

n). This contradiction

shows that b must satisfy Lemma 3.3(i).

To finish the proof of Theorem 1.2 it remains to show that b must satisfy condi-

tions (ii) and (iii) in Lemma 3.3. For simplicity, we verify only condition (iii). As

done above, we show that (3.20) still holds if b fails for Lemma 3.3(iii).

In fact, in this case there exist a cube Q with its diameter d and a sequence {y j}
with lim j→∞ |y j | = ∞, such that (3.1) holds for the sequence {Q j := Q+ y j}. Thus,

by Lemma 3.4, (3.3)∼(3.5) still hold for the function sequence { f j} defined by (3.2).

Now we denote B j = {x ∈ R
n : |x − y j | < γ2d}. Since lim− j → ∞|y j | = ∞,

we may choose {y j} such that B j ∩ Bk = ∅ for l 6= k. Now let f j be the function

associated with Q j defined by (3.2). With the same definitions of the sets G,G1,G2

above, we see that G1 = G − Gc
2 = G by B j ∩ B j+m = ∅. Thus, for any j,m ∈ N, by

(3.3) and (3.4) we get

(

∫

B j

|[b,T] f j−[b,T] f j+m|
p dx

) 1/p

≥
(

∫

G

|[b,T] f j |
pdx

) 1/p

−
(

∫

G2

|[b,T] f j+m|
pdx

) 1/p

≥ γ3|Q|λ/(np) −
γ3

4
|Q|λ/(np) ≥

γ3

4
|Q|λ/(np).

Hence, we still have

‖[b,T] f j − [b,T] f j+m‖Lp, λ ≥ δ.

This is inconsistent with the compactness of [b,T] from Lp, λ(R
n) to Lp, λ(R

n). So, b

also satisfies Lemma 3.3(iii).
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4 Lp, λ-Boundedness of the Rough Operators and Its Commutators:
Proof of Theorem 1.8

Let us first give the boundedness of the rough maximal operator MΩ on the Morrey

spaces Lp, λ(R
n), which is defined by

MΩ f (x) = sup
r>0

1

rn

∫

|y|≤r

|Ω(y ′) f (x − y)| dy,

where Ω ∈ L1(Sn−1). The following lemma is well known (see [30, Theorem 2.3.8])

and gives the weighted boundedness of MΩ on Lp(ω).

Lemma 4.1 Suppose that 1 < p < ∞ and Ω satisfies (1.1) w ith Ω ∈ Lq(Sn−1) for

q > 1. If ω ≥ 0 and satisfies ωq ′

∈ Ap, where Ap denotes the Muckenhoupt weight

class, then MΩ is bounded on Lp(ω).

Lemma 4.2 Let 0 < λ < n, 1 < p < ∞ and Ω ∈ Lq(Sn−1) for q > 1. Then there is

an ε > 0 such that for any k ∈ N and f ∈ Lp,λ(R
n),

(4.1)

∫

B(t,r)

|MΩ fk(x)|p dx ≤ C2−kεrλ‖ f ‖
p

Lp,λ ,

where B(t, r) is an arbitrary fixed ball, fk = fχ2k+1B\2kB and C is independent of k, t, r,

and f .

Proof Denote by f ∗ the Hardy–Littlewood maximal function of f , which is defined

by

f ∗(x) = sup
r>0

1

rn

∫

|y|≤r

| f (x − y)| dy.

Then by the relationship between f ∗ and Ap weights, we know that (χ∗
B)θq ′

∈ Ap for

any p, q > 1 and 0 < θ < 1/q ′ (see [22]). Then by Lemma 4.1, we obtain

∫

B

|MΩ fk(x)|pdx ≤ C

∫

Rn

|MΩ fk(x)|p(χ∗
B)θ dx ≤ C

∫

Rn

| fk(x)|p(χ∗
B)θ dx.

Note that χ∗
B(x) ∼ 2−kn when x ∈ 2k+1B\2kB and invoke the following fact (see [34]):

for 0 < δ < 1, 0 < λ < n, and 1 < p < ∞, there is a C > 0 such that for any

f ∈ Lp,λ(R
n),

∫

Rn

| f (x)|p(χ∗
B(x))δ dx ≤ Crλ‖ f ‖

p

Lp,λ .

Hence, we take 0 < δ < θ. Then
∫

B

|MΩ fk(x)|p dx ≤ C2−kn(θ−δ)

∫

Rn

| fk(x)|p(χ∗
B(x))δ dx

≤ C2−kn(θ−δ)rλ‖ f ‖
p

Lp,λ .

Thus, Lemma 4.2 follows by setting ε = n(θ − δ).
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Proof of Theorem 1.8 (i) Fixing t ∈ R
n and r > 0, we abbreviate B = B(t, r). For

f ∈ Lp, λ(R
n), we write

(4.2) f (y) = f (y)χ2B(y) +

∞
∑

k=1

f (y)χ2k+1B\2kB(y) :=

∞
∑

k=0

fk(y).

Thus, for k = 0, we have

(4.3)

∫

B

|S f0(x)|p dx ≤ ‖S f0‖
p
Lp ≤ C‖ f0‖

p
Lp = C

∫

2B

| f (y)|p dx ≤ C(2r)λ‖ f ‖
p

Lp,λ .

For k > 0, by (4.1) we get

(4.4)

∫

B

|S fk(x)|p dx ≤ C

∫

B

|MΩ fk(x)|p dx ≤ C2−kεrλ‖ f ‖
p

Lp,λ ,

where C is independent of f and k. Thus, by (4.3) and (4.4) we have

( 1

rλ

∫

B

|S f (x)|p dx
) 1/p

≤ C

∞
∑

k=0

( 1

rλ

∫

B

|S fk(x)|p dx
) 1/p

≤ C‖ f ‖Lp,λ

(

1 +

∞
∑

k=1

2−kε/p
)

≤ C‖ f ‖Lp,λ .

Hence ‖S f ‖Lp,λ ≤ C‖ f ‖Lp,λ .

(ii) For any t ∈ R
n and r > 0, let B = B(t, r) and write f as in (4.2). By the

Lp-boundedness of [b, S], we obtain

∫

B

|[b, S] f0(x)|p dx ≤ C‖ f0‖
p
Lp ≤ C(2r)λ‖ f ‖

p

Lp,λ .

For k > 0 and x ∈ B, we write

|[b, S] fk(x)| ≤
C

(2kr)n

∫

2k+1B

|b(x) − br||Ω(x − y) fk(y)| dy

+
C

(2kr)n

∫

2k+1B

|br − b2k+1r||Ω(x − y) fk(y)| dy

+
C

(2kr)n

∫

2k+1B

|b(y) − b2k+1r||Ω(x − y) fk(y)| dy

:= I1(x) + I2(x) + I3(x),

where and in what follows, for δ > 0, bδ is defined by

bδ =
1

|B(t, δ)|

∫

B(t,δ)

b(y) dy.
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By the well-known fact that for any r > 0 and k ∈ N, |b2k+1r − br| ≤ Cn(k + 1)‖b‖∗
(see [45]), we obtain I2(x) ≤ C(k + 1)‖b‖∗MΩ fk(x). From Lemma 4.1, it follows that

there exists ε1 > 0, independent of f , r, and k, such that

(4.5)

∫

B

I2(x)p dx ≤ C(k + 1)p2−kε1‖b‖p
∗rλ‖ f ‖

p

Lp,λ .

For I3(x), we choose 1 < u < min{p, q}. By Hölder’s inequality, we have

I3(x) ≤ C
( 1

(2kr)n

∫

2k+1B

|b(y) − b2k+1r|
u ′

dy
) 1/u ′

×
( 1

(2kr)n

∫

2k+1B

|Ω(x − y)|u| fk(y)|u dy
) 1/u

≤ C‖b‖∗(M|Ω|u (| fk|
u)(x))1/u.

Noting that |Ω|u ∈ Lq/u(Sn−1), by Lemma 4.1, there exists ε2 > 0, independent of f ,

B, and k, such that

(4.6)

∫

B

I3(x)p dx ≤ C‖b‖p
∗

∫

B(t,r)

(M|Ω|u (| fk|
u)(x))p/u dx ≤ C2−kε2‖b‖p

∗rλ‖ f ‖
p

Lp,λ .

By (4.5) and (4.6), we have

(4.7)

∞
∑

k=1

(

∫

B

I2(x)p dx
) 1/p

+

∞
∑

k=1

(

∫

B

I3(x)p dx
) 1/p

≤ C‖b‖∗rλ/p‖ f ‖Lp,λ .

Finally, we give the estimate of I1(x). First we consider the case where p ≥ q ′. We

have Ω ∈ Lp ′

(Sn−1) in this case. By Hölder’s inequality, we have for x ∈ B,

I1(x) ≤ C|b(x) − br|
( 1

(2kr)n

∫

2k+1B\2kB

|Ω(x − y)|p ′

dy
) 1/p ′

×
( 1

(2kr)n

∫

2k+1B

| fk(y)|p dy
) 1/p

≤ C|b(x) − br|(2kr)−n/p ‖ f ‖Lp,λ(2k+1r)λ/p.

Thus, we get

(4.8)

∞
∑

k=1

(

∫

B

I1(x)p dx
) 1/p

≤ Crλ/p‖b‖∗‖ f ‖Lp,λ ,

since 0 < λ < n.

For the case where 1 < p < q ′, we choose u > 1 and 1
q
< s < 1 such that

1

pu
+

1

q
< 1 and

1

pu
+

1

sq
= 1.
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Thus, we have pu ′ > sq. Since 1/(pu) + 1/(sq) = 1, for x ∈ B, by Hölder’s inequality

we have

I1(x) ≤ C|b(x) − br|
( 1

(2kr)n

∫

2k+1B

| fk(y)|p dy
) 1/(pu)

×
( 1

(2kr)n

∫

2k+1B

|Ω(x − y)|sq| fk(y)|sq/u ′

dy
) 1/(sq)

≤
C|b(x) − br|

(2kr)n/(pu)
(2k+1r)λ/(pu)‖ f ‖

1/u

Lp,λ(M|Ω|sq (| fk|
sq/u ′

)(x))1/(sq).

By |Ω|sq ∈ L1/s(Sn−1) and pu ′/(sq) > 1, applying Hölder’s inequality, and Lemma

4.1, we obtain

∫

B

I1(x)p dx

≤
C

(2kr)n/u
(2k+1r)λ/u‖ f ‖

p/u

Lp,λ

∫

B

|b(x) − br|
p(M|Ω|sq (| fk|

sq/u ′

)(x))p/(sq) dx

≤
C

(2kr)n/u
(2k+1r)λ/u‖ f ‖

p/u

Lp,λ

(

∫

B

|b(x) − br|
pu dx

) 1/u

×
(

∫

B

(M|Ω|sq (| fk|
sq/u ′

)(x))pu ′/(sq) dx
) 1/u ′

≤
C‖b‖

p
∗

2kn/u
(2k+1r)λ/u‖ f ‖

p/u

Lp,λ2−kε0 rλ/u ′

‖ | f |sq/u ′

‖
p/(sq)

Lpu ′/(sq),λ ,

where ε0 > 0 is independent of k, B(t, r), and f . Noting that

‖| f |sq/u ′

‖
p/(sq)

Lpu ′/(sq),λ = ‖ f ‖
p/u ′

Lp,λ ,

we have
∫

B

I1(x)pd x ≤ C2−k(n−λ)/u−kε0 rλ‖b‖p
∗‖ f ‖

p

Lp,λ .

Therefore, for 1 < p < q ′ we have

(4.9)

∞
∑

k=1

(

∫

B

I1(x)p dx
) 1/p

≤ C

∞
∑

k=1

2−k[(n−λ)/u+ε0]/prλ/p‖b‖∗‖ f ‖Lp,λ

≤ Crλ/p‖b‖∗‖ f ‖Lp,λ .

Then (4.8) and (4.9) show that for 1 < p <∞ and q > n/(n − λ),

(4.10)

∞
∑

k=1

(

∫

B

I1(x)p dx
) 1/p

≤ Crλ/p‖b‖∗‖ f ‖Lp,λ .
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From (4.7) and (4.10), we get

∞
∑

k=1

(

∫

B

|[b, S]| fk(x)|p dx
) 1/p

≤ Crλ/p‖b‖∗‖ f ‖Lp,λ .

Thus

( 1

rλ

∫

B(a,r)

|[b, S] f (x)|p dx
) 1/p

≤ C

∞
∑

k=0

( 1

rλv

∫

B(a,r)

|[b, S] fk(x)|p dx
) 1/p

≤ C‖b‖∗‖ f ‖Lp,λ .

Hence ‖[b, S] f ‖Lp,λ ≤ C‖b‖∗‖ f ‖Lp,λ . This finishes the proof of Theorem 1.8.

5 The Characterization of Pre-Compact Set in Lp, λ:
Proof of Theorem 1.12

Fix a > 0; we define the mean value of f in G by

Ma f (x) =
1

an

∫

|y|≤a

f (x + y) dy.

By Hölder’s inequality and the Fubini–Tonelli theorem, for 1 ≤ p <∞, we have

( 1

r λ

∫

B(t, r)

|Ma f (x) − f (x)|p dx
) 1/p

≤
{ 1

r λ

∫

B(t, r)

( 1

an

∫

|y|≤a

| f (x + y) − f (x)| dy
) p

dx
} 1/p

≤ C
( 1

r λ

∫

B(t, r)

1

an

∫

|y|≤a

| f (x + y) − f (x)|p dydx
) 1/p

= C
( 1

an

∫

|y|≤a

dy
1

r λ

∫

B(t, r)

| f (x + y) − f (x)|p dx
) 1/p

≤ C sup
|y|≤a

‖ f ( · + y) − f ( · )‖p, λ.

Thus

(5.1) ‖Ma f − f ‖p, λ ≤ C sup
|y|≤a

‖ f ( · + y) − f ( · )‖p, λ.

By (5.1) and (1.7), (1.8), we get

(5.2) lim
a→0

‖Ma f − f ‖p, λ = 0 uniformly in f ∈ G
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and {Ma f : f ∈ G} ⊂ Lp, λ(R
n) satisfies sup f∈G ‖Ma f ‖Lp, λ ≤ C . By (1.9), for any

0 < ε < 1, there exist N > 0 and α such that 1 < ε−N/4 < αn/p < ε−N/2 and for

every f ∈ G

(5.3) ‖ fχ
Eα
‖Lp, λ < ε/8.

Now we prove that for each fixed a, the set {Ma f : f ∈ G} is a strongly pre-compact

set in C(Ec
α), where Ec

α = {x ∈ R
n : |x| ≤ α} and C(Ec

α) denotes the continuous

function space on Ec
α with uniform norm. By the Ascoli–Arzelà theorem, it suffices

to show that {Ma f : f ∈ G} is bounded and equicontinuous in C(Ec
α). In fact,

applying Hölder’s inequality and (1.7) for f ∈ G and x ∈ Ec
α, we have

|Ma f (x)| ≤
{ 1

an

∫

|y|≤a

| f (x + y)|p dy
} 1/p

=

{ 1

an

∫

|y−x|≤a

| f (y)|p dy
} 1/p

≤ C‖ f ‖Lp, λ ≤ C.

Obviously, the constant C is independent of f and x here. On the other hand, for any

x1, x2 ∈ Ec
α

(5.4) |(Ma f )(x1) − (Ma f )(x2)| ≤
1

an

∫

|y|≤a

| f (x1 + y) − f (x2 + y)| dy

≤
{ 1

an

∫

|y|≤a

| f (x1 + y) − f (x2 + y)|p dy
} 1/p

≤ ‖ f ( · + x2 − x1) − f ( · )‖Lp, λ .

Thus, (5.4) and (1.8) show the equicontinuity of {Ma f : f ∈ G}.

Next we show that for small enough a, the set {Ma f : f ∈ G} is also a strongly pre-

compact set in Lp, λ(R
n). To do this, we need only to prove that the set {Ma f : f ∈ G}

is a totally bounded set in Lp, λ(R
n) since Lp, λ(R

n) is a Banach space. Because the set

{Ma f : f ∈ G} is a totally bounded set in C(Ec
α), hence for the above ε and N, there

exist { f1, f2, . . . , fm} ⊂ G, such that {Ma f1,Ma f2, . . . ,Ma fm} is a finite εN+1-net in

{Ma f : f ∈ G} in the norm of C(Ec
α). We then know that for any f ∈ G, there is

1 ≤ j ≤ m such that

(5.5) sup
y∈Ec

α

|(Ma f )(y) − (Ma f j)(y)| < εN+1.

Below we show that {Ma f1,Ma f2, . . . ,Ma fm} is also a finite ε-net of {Ma f : f ∈ G}
in the norm of Lp, λ(R

n) if a is small enough. Clearly, we need only to show that for

any f ∈ G, r > 0 and t ∈ R
n, there exists f j (1 ≤ j ≤ m) such that

(5.6) I :=
{ 1

r λ

∫

B(t, r)

|(Ma f )(x) − (Ma f j)(x)|p dx
} 1/p

< ε.

The estimate of (5.6) will be divided into three cases.
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Case 1: B(t, r) ⊂ Ec
α. We have

I =
{ 1

r λ

∫

B(t, r)∩Ec
α

|(Ma f )(x) − (Ma f j)(x)|p dx
} 1/p

.

If r ≤ 1, then by (5.5) we have I ≤ r(n−λ)/pεN+1 < ε. If r > 1. Then still by (5.5) we

get

I ≤
{

∫

Ec
α

|(Ma f )(x) − (Ma f j)(x)|p dx
} 1/p

≤ αn/pεN+1 < ε.

Case 2: B(t, r) ⊂ Eα. In this case,

I =
{ 1

r λ

∫

B(t, r)

|(Ma f )(x) − (Ma f j)(x)|pχ
Eα

dx
} 1/p

.

Applying the Minkowski inequality, (5.2) and (5.3), for a > 0 small enough, we have

I ≤ ‖Ma f − f ‖p, λ +
( 1

r λ

∫

B(t, r)

| f (x) − f j(x)|pχ
Eα

dx
) 1/p

+ ‖Ma f j − f j‖Lp, λ

≤ ‖Ma f − f ‖p, λ + ‖ fχ
Eα
‖Lp, λ + ‖ f jχEα

‖Lp, λ + ‖Ma f j − f j‖p, λ

< ε.

Case 3: B(t, r) ∩ Ec
α 6= ∅ and B(t, r) ∩ Eα 6= ∅. The conclusion (5.6) in this case

may be deduced from Case 1 and Case 2. In fact,

I ≤
{ 1

r λ

∫

B(t, r)

|(Ma f )(x) − (Ma f j)(x)|pχ
Eα

dx
} 1/p

+
{ 1

r λ

∫

B(t, r)

|(Ma f )(x) − (Ma f j)(x)|pχ
Ec
α

dx
} 1/p

:= I1 + I2 .

Using the method in Case 2, we may get I1 < ε/2. And I2 < ε/2 can be obtained by

applying the idea in Case 1.

Finally, let us show that the set G is a relative compact set in Lp, λ(R
n). Tak-

ing any sequence { f j}
∞
j=1in G, by the relative compactness of {Ma f : f ∈ G} in

Lp, λ(R
n), there exists a subsequence {Ma f j

k
}∞k=1 of {Ma f j : f j} that is convergent in

Lp, λ(R
n). So, for any ε > 0 there exists K ∈ N such that for any k > K and m ∈ N,

‖Ma f j
k
− Ma f j+m‖p, λ < ε. By the Minkowski inequality and (5.2), for any r > 1
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and t ∈ R
n, we have

{ 1

r λ

∫

B(t, r)

| f j(x) − f j+m(x)|p dx
} p

≤
{ 1

r λ

∫

B(t, r)

| f j(x) − Ma f j(x)|p dx
} p

+
{ 1

r λ

∫

B(t, r)

|Ma f j(x) − Ma f j+m(x)|p dx
} p

+
{ 1

r λ

∫

B(t, r)

|Ma f j+m(x) − f j+m(x)|p dx
} p

≤ ‖Ma f j − f j‖Lp, λ + ‖Ma f j − Ma f j+m‖Lp, λ + ‖Ma f j+m − f j+m‖Lp, λ

< 3ε.

This shows that the subsequence { f j}
∞
k=1 converges in Lp, λ(R

n), since Lp, λ(R
n) is a

Banach space. Therefore, the set G is a relative compact set in Lp, λ(R
n), and we finish

the proof of Theorem 1.12.
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