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Embeddings of Miintz Spaces in L>(u)
Thab Al Alam and Pascal Lefevre

Abstract. In this paper, we discuss the properties of the embedding operator il’}: MP - L= (u),
where y is a positive Borel measure on [0,1] and M° is a Miintz space. In particular, we compute
the essential norm of this embedding. As a consequence, we recover some results of the first author.
We also study the compactness (resp. weak compactness) and compute the essential norm (resp.
generalized essential norm) of the embedding iy, u,: L (p1) = L (u2), where p1, ys are two
positive Borel measures on [0, 1] with g, absolutely continuous with respect to y;.

1 Introduction

Throughout this paper, we will consider a non-zero positive Borel measure y on [0,1]
and will denote by L* (A, ) the Banach space of essentially bounded measurable
functions on A c [0,1]. We endow this space with the usual norm

I fllzee(a,uy = inf{c>0;|f(x)| < ¢, for u-almost every x € A.}

In particular, we set L= (y) = L=([0,1], ) and L™ := L*=(dx) where dx is the
Lebesgue measure.

Let A = (A < Ay <--+) be an increasing sequence of positive real numbers satisfy-
ing the Miintz condition, 3)c« o} 1/A < 00 and My = span{x*, A € A}. The Miintz
space ML (1 < p < o0) is the closure of M, in L? := L?([0,1], dx). By the Miintz
theorem [3], M ﬁ is a proper subspace of L?.

Chalendar, Fricain, and Timotin [4] studied the question whether the Miintz space
M} can be included in L' () for a finite Borel positive measure u. They called such a
measure a A-embedding. In particular, several results were obtained on the compact-
ness and the essential norm of the embedding iﬁ: feM) — feL'(u). Recall here
that the essential norm of an operator T: X — Y is the distance from this operator
to the space of compact operators and is defined by || T|, = inf | T — S| where the
infimum runs over the compact operators S: X — Y. The embedding M3 — L*(u)
was also studied in [7, 8], and in [5] this study is extended to the framework of L?
spaces for any finite values of p > 1.

The aim of this paper is to study the remaining extreme case, i.e., the embedding
il My = L™ (p).

In Section 2, we focus on the Miintz framework and on the more interesting prob-
lem of characterizing the compactness of the A-embedding (see Proposition 2.3). We
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actually compute the essential norm of this embedding and prove that it is equal to
1 when 1'[’} is not compact (see Theorem 2.5). As a consequence of our results, we
recapture the results of [1] in the particular case of composition operators.

In Section 3, for the sake of completeness, we focus on the non Miintz situation
and study the embedding i, ,,: L% (1) < L*°(42), where py, y, are two positive
Borel measures on [0,1] (when y, is absolutely continuous relative to y;). We char-
acterize its compactness: the embedding i, ,, is compact if and only if the measure
Y2 is a linear combination of Dirac measures (see Theorem 3.3). We also estimate its
essential norm and prove that it is equal to 1 when the embedding is not compact (see
Theorem 3.4).

Definition 1.1  Let y;, u, be two positive Borel measures on [0,1] and let X be a
closed subspace of L*°(y;). We say that X is embedded into L* (y,) if X ¢ L*(u,)
and there exists a constant C > 0 such that, for every f in X, we have

[ fl2 2y < ClLf Lo (uny-
We denote by ix ,, 4, f € X = f € L*(uz) the embedding operator.

We shall mainly focus on the following particular cases: when y; = dx, X = M,
and y, = y, the embedding operator is then simply denoted by i;‘: MY < L= (u).
When X = L*°(y;), we denote the embedding operator by iy, ,,.

2 Embedding of Miintz Spaces

In this section, we study the embedding if}, i.e. in the case where X = M 7. For this,
we begin with the following proposition.

Proposition 2.1  For any positive measure y on [0,1], M is embedded in L*°(u)
with norm || i;\ | < 1. Moreover,we have the following.

(i) Ifu((1-¢,1]) # 0 for every e > 0, then || iﬁ | =1
(ii) If we assume that 0 € A, then | i,‘} | =1

Proof First recall that any function f € M7 has a (unique) representative fthat is
continuous on [0,1] (in passing, usually M5 denotes the space of continuous func-
tions obtained taking the closed linear space spanned by M, ). Actually we can view
the embedding as

(0.1

femy — Fey ity = Fer=(u).

In the sequel we write simply f instead of fand we have

i ()= uy < suPepolf GO = £l

Hence, we deduce that [ 2} | <1.
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Moreover, (i) for every € > 0, u((1—¢,1]) # 0. Then

» Ifleoequy ..
HH?H = su s L S lim sup Hx}‘" HL°°([1—/\;2,1],,,¢)
fEMT\{O} HfHL‘x’ n—o00
> lim (1-A;2)* =1.

(ii) Just consider the function f = 1 and the result follows immediately.
This finishes the proof. ]

Remark 2.2 If we want a non trivial estimate for the norm of the embedding, we
cannot avoid an assumption on A or on the support of the measure y. Indeed, if 4 = J
(the Dirac measure at zero) and A9 > 0, we have | f]| < (,) = 0 for every f € M.

In the following proposition, we will characterize the compactness of the embed-
ding i : My = L= (p).

Proposition 2.3 Let A = (Ao < Ay < --+) be a sequence of real positive numbers
satisfying ¥ eafoy 1/A < oo and let y be a positive Borel measure on [0,1]. Then the

embedding il’} is compact if and only if there exists € > 0 such that u((1-¢,1)) = 0.
Proof Assume that for some ¢ > 0, we have u((1-¢,1)) = 0. Write
K. =[0,1-¢]u{1}.
We already know from [1, Corollary 2.5] that the restriction operator
feMy — fIKe e C(K;)

is compact. And i;\ can be expressed as the composition of this operator and the
identity from C(K,) to L* (K¢, ), which can be naturally identified with L*°(y).

For the converse, we consider the sequence (x*7), that belongs to the unit ball of
M. Using the compactness of i,’}, there exists a subsequence (xA"k )k that converges
to h € L=(p). Then h = 0 y-almost everywhere on [0,1) and

An
o™ [ L [0,1),10) = 0.
Hence, we compute
Au A -2\A,
Hx * ||L°°([0,1),,4) 2 ”x , |‘L°°([1—/\H,f,1)’#) 2 (1 - Ank k ||1“L°°([1—A;If,1),y)-

As k — oo, we obtain that ||1\|Lm([1_l;:,1),#) tends to zero. But

0 ifu([1-1,21)) =0,

Uyeorrs s =
1l ([=2250-1) {1 otherwise,

and this ends the proof. ]
Remark 2.4 In the previous statement, the open interval (1—¢,1) cannot be closed

atpoint1. Indeed, when y = 8}, the embedding i,’} is compact. However, u((1-¢,1]) =
1+ 0foranye > 0.
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Now we will extend the previous result and compute the essential norm of the
embedding i:,\.

Theorem 2.5 Let A = (Ao < A; < ---) be a sequence of real positive numbers satisfying
Yreas{oy 1/A < oo and let y be a positive Borel measure on [0,1]. We have

w 1 ifforeverye>0,u((1-¢1)) #0,
i =
#1710 otherwise.

Proof By Proposition 2.3, it is sufficient to prove that the essential norm is equal to
Lif u((1-¢,1)) # 0 for any € > 0. Using Proposition 2.1, we have that || i;,\ le <| III}H <
1. To get the lower estimate, we will use [2, Lemma 3.4] which states that, given an
operator T: X — Y and « > 0, if the range of the unit ball T(Bx) contains a 2a-
separated sequence, then || T|, > a. In our framework, for any « € (0,1) we will find
a normalized sequence (f,), in M satisfying | il’} (fm) = i (fu) L= () > 2 for any
m # n, hence | if} |e > a. Actually, given any « € (0,1), we are going to fulfill these
conditions with a subsequence of the sequence 2x*» —1 € M for a suitable sequence

(An) in A.
Let us fix & € (0,1) and choose & € (0,1) and an increasing sequence (1,) in A
such that
1 1
e ef > and A2 2 A+ 5

1
< \/&, - \/a,

We first notice that the hypothesis gives that, for infinitely many values of n, the
interval J, = (exp(—0/An), exp(—9/A,+1)) hasa positive y-measure. In the sequel we
consider only a subsequence of these values, say (k) ,»1 with k41 > k,, + 2. Define
fu(x) = 2x*n — 1. Clearly, we have that || f,, oo = 1.

Now for any m > n and x € Ji,, we have

(fa = fn) (x) 2 2672 (1= exp(=0( Ak, = Ak, )/ Aiys1))
> 2e_6(1— exp(=0( Ak, - Ak")/)tknﬂ)) > 2a,

so that | f, = fiu | L= (u) 2 2.
We get that | i:}He > « for arbitrary a € (0,1), which finishes the proof of the
theorem. ]

As a corollary, we deduce the following results that were proved in [1].

Corollary 2.6 Let ¢: [0,1] > [0,1] be a continuous function. Then the composition
operator Cy: My — C([0,1]); f = f o ¢ is compact on M if and only if 1 ¢ Im ¢ or
¢ = 1. Moreover,
0 ifp=lor|ple <1,
HC(pHe = . _
1 if|@le =1and ¢ # 1.

Proof Let (dx), be the pullback measure of the Lebesgue measure dx by the func-
tion ¢. It is then easy to check that for any function f € L*((dx),), the equality

https://doi.org/10.4153/CMB-2018-031-8 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2018-031-8

Embeddings of Miintz Spaces in L™ () 5

If Iz ((ax),) = | f © @z This means that the operator
Lyt £ € L7((dx)g) —> fo g€ L™
is an isometry. Denoting J., the natural injection from C([0,1]) to L*°, we have
Ipo ié\dx)q, =Joo 0 Cy,

which implies the equivalence between compactness for the operators i E\d o and C,,.
Now we have

(dx)y((1-&1)) =0 ¢ ' ((1-&1)) =@+ 1¢Imgorg=1.

This finishes the first part of the proof of the corollary.

For the second part, if ¢ = 1 or |¢[|o < 1, then ié\dx)q, is compact, hence |C, . = 0.
If [¢|lec = 1and ¢ # 1, then obviously 1 > |Cy|.. On the other hand, although the
relation I, 0i f‘d %), = Jo0Cy does not immediately give the estimation on the essential
norm (a priori it gives the essential norm of Jo, o C,, only), the proof of Theorem 2.5
immediately adapts. Indeed, the same sequence ( f,,) verifies for arbitrary « € (0,1)
andn #m || fy o9~ fuo @l = | fa = fnllL=((ax),) > 20 and [2, Lemma 3.4] gives
the conclusion in the same way. ]

Let us mention that the generalized essential norm (relative to weakly compact
operators) is equal to the essential norm. Indeed, the dual of MY has the Schur
property, i.e. every weakly convergent sequence is norm convergent (see the proof
of [1, Lemma 4.3.]).

The following corollary generalizes the result in [1, Corollary 4.10], which charac-
terizes (weak forms of) compactness for the composition operator

Co: My~ C([0.1]); frfop.

Corollary 2.7  Under the same hypothesis as in Proposition 2.3, the following asser-
tions are equivalent.

(i) i® is a weakly compact operator.

(ii) i
(iii) i
(iv)

(v) i
(vi) i

(vii) i

is a compact operator.

TET ST

is a Dunford-Pettis operator.
ere exists € > 0 such that u((1-¢,1)) = 0.
is a nuclear operator.

S

TETET S

is an integral operator.
is an absolutely summing operator.

Proof We know from [1, Lemma 4.3] that compactness, weak compactness, and be-
ing Dunford-Pettis are equivalent for every operator T from M7’ to any Banach space.
Therefore, the equivalences (i) < (ii) < (iii) <> (iv) follow from that result and The-
orem 2.5.

We show now that condition (iv) implies condition (v). Assume that for some § > 0
we have p((1-9,1)) = 0. For every f € M, we can use its Erdés decomposition to
write z[‘}(f)(x) = f(x) = X520 ar(f)x**, where x € [0,1). Letr =1— & € (0,1) and
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note that the series Y77, ax (f)x** converges uniformly on [0, r]. Since u((r,1)) = 0,
we can write

i (f) = flion + flyy = Zak(f)x o, + fF(D gy

Let x; : M — C be defined by x; (f) = ar(f).
We have the following coeflicient estimate for Miintz functions [3, p.177, E.3.c]: for
every e > 0, there exists ¢ > 0 such that for every f = Y52, ax(f)x* e M,

lak (NI )™ < cel fleo-

A
Choose ¢ = (1~ /r) and write simply c instead of ¢,__/;; we have | x| < o7,
and then

o0 oo 7]{
ZkaHHx |L°° [0,r], Z 2

Then we get that i f} is a normally convergent series of operators of rank 1, which means
that i 114\ is a nuclear operator.

The implications (v) = (vi) = (vi) = 1 are always true for any operator T: X - Y
(6, TILF 22]. m

3 Embedding of L>(u).

In this section, we focus on the embedding i, ,, (recall the notations after Defini-
tion 1.1) in the case X = L*(y;). The particular case y; = dx can be viewed as the
weak-star dense case, compared to Section 2, where we worked with non dense Miintz
spaces. When the Miintz condition is not fulfilled, then MY = C([0,1]), which is
weak-star dense in L*°.

We shall assume in the sequel that y, is absolutely continuous with respect to p.
Let us point out that this assumption makes the definition of i, ,, unambiguous. If
f = g wi-almost everywhere, then f = g y,-almost everywhere.

Lemma 3.1 The embedding iy, ., is bounded with |i,, .| = L

Proof Let f € L*°(p1) and a > | f| 1 (,,)- Then there exists a Borel set B such that
#1(B¢) = 0and |f(x)| < « for every x € B. Therefore y(B¢) = 0 and & 2 | f| o (4,)-
Hence, | f| 1o (4s) < | fllLo (). To end the proof of the lemma, simply point out that

H iﬂl,[tz H 2 ” i.“l».“z(]l)HL“’(ﬂz) =1 u

Let us point out that the assumption of absolute continuity of y, with respect to
p1 is not restrictive. Indeed, as soon as iy, ,, is defined, for every Borel set B such
that p;(B) = 0, the function f is equal to +co on B and 0 on B belongs to L™ (y1),
therefore to L (p5). This forces y,(B) = 0.

We shall now focus on the compactness problem, but we first need the following
lemma, where U, denotes ((x—¢,x)U(x,x+¢))n[0,1] forany x € [0,1] and & > 0.
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Lemma 3.2 Let y be a (non trivial) positive Borel measure on [0,1]. The following
assertions are equivalent.

(i) Thereexista,...,om € R, x1,..., % €[0,1] suchthat y = 0185, + -+ 0, Oy,
(i) For any x € [0,1], there exists €, > 0 such that u(U, ) = 0.

Proof The implication (i) = (ii) is trivial.

We now prove (ii) = (i). First, we point out that the measure is discrete: consider
the decomposition y = p. + pg (the sum of a continuous measure 4, and a discrete
measure yg, both positive). Since . is continuous, we have y.({x}) = 0 for every
x € [0,1]. On the other hand, we have 0 = p(Uy,,) > uc(Uy.,) = 0. Hence,
pe((x — &x,x +&,) N [0,1]) = 0and p. = 0 by compactness. Therefore y = pgy is
discrete.

Now we claim that there exists x € [0,1] such that g({x}) # 0. Indeed, the nega-
tion of this statement would give that u((x — &y, x +&,)N[0,1]) = 0 for any x € [0,1].
Hence by compactness of the interval [0, 1], this would imply that ¢ ([0,1]) = 0, which
would contradict the fact that y is a non-zero measure. Secondly, we shall prove that
there is no infinite sequence of distinct real numbers (x, ), such that u({x,}) # 0.
By contradiction, the sequence (x, ), would have an accumulation point x € [0,1].
Then for any ¢ > 0, we would get that u((x — &,x) U (x,x + ¢)) # 0 because the last
interval would contain some x, for n large enough, which would give a contradic-
tion. Hence, we deduce that there exist only a finite number of reals x1, . . ., x,, € [0,1]
such that p({xx}) # 0 for every1 < k < n and then y = a0y, + -+ + a,dx,, where

ar = p({x}), . an = p({xn}). u

The following theorem characterizes the compactness and weak compactness of
the embedding operator iy, ,,. It occurs that the situation is very different compared
to the Miintz framework (see the previous section). For this, we say that a sequence
(%% ) nen is a block-subsequence of (x, ) en if there is a sequence of non empty finite
subsets of integers (I, ) meny With max I, < min I, and ¢; € [0,1] such that

Xy = Z cjx; and Z cj=1

j€lm J€lm

Theorem 3.3  Let uy, uy be two positive Borel measures on [0,1] with u, absolutely
continuous with respect to . The following assertions are equivalent.

(i) iuy,u, is a compact operator.

(i) iu,,u, is a weakly compact operator.
(iii) There exist ay, ..., an € R*™, and x, ..., xp, € [0,1] such that

Yo = 10y, + o+ 0y Oy,

Proof (i) = (ii) is obvious.

For (ii) = (iii), we fix x € [0,1), and consider B, = (x,x + %) As the operator
iu,u, is weakly compact, there exists a subsequence (13, ) weakly converging to
some f in L*(y12). Hence, the sequence (15, ) converges y,-almost everywhere to
f, but since NB,, = &, we have f = 0. By the Banach-Mazur theorem, there exists
a block-subsequence (15, ) nery of (15, ) ner converging to 0 in L* (u ). The fact that
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|15, L=(u,) — 0 implies that u,(B,) = 0 for n large enough, i.e., for some ¢ > 0,
pa((x,x +¢€)) = 0. In the same way, we show that p((x —¢,x)) = 0 for all x € (0,1],
and we get that for any x € [0, 1] there is € > 0 such that y, (U, ) = 0. Hence, using
Lemma 3.2, we deduce that there exists a finite number of reals x;, . . ., x,, € [0,1] such
that pyp = @18y, + -+ + a0, 0x,, Wwhere ay = pa(x1), ..., 00y = pia(xn).

For (iii) = (i), we assume that 5 = 8, +---+ a, 0y, with a; # 0 for every j. The
operator i, ,, is compact because it has finite-dimensional range. Using Lemma 3.1,
we have that || | 1 (,,) = maXi<j<m |f(x;)] s0 the space L* (y,) is actually isometric
to £ = (C", [ [loo)- u

The next theorem computes the essential norm of the embedding operator iy, ,,.

Theorem 3.4  Under the same hypothesis as in Theorem 3.3, we have

L] 0 if uy is a finite linear combination of Dirac measures,
; -
EREERE TN otherwise.

Proof By Theorem 3.3, it is sufficient to prove that the essential norm is equal to 1 if
Y2 is not a finite linear combination of Dirac measures, which means (by Lemma 3.2)
that there exists xo € [0,1] such that g, ((xo — &, x0) U (x9,x0 + €)) # 0 for any & > 0.
Without loss of generality, we can assume that xo € (0,1] and p>((xo — €,%0)) # 0;
otherwise it suffices to symmetrize and interchange x <> 1 - x. Using Lemma 3.1, we
already know that [ i,, 4, [le < [[ip,u | = 1.

Now we focus on the lower estimate and consider the sequence

if x € [xo,1].

x ) if x € [0, xo
fn<x>:{f<%> 1 irelo]

Clearly, we have that | f,, | = (,,) < 1and for any n, m,

An Am
Ifo = fnllie (uay = 217" = x| Lo (1)

where u(B) = p2(x0.B) for any B is a Borel subset of [0,1]. It suffices now to apply
the argument of the first part of the proof of Theorem 2.5 to get [ iy, u, e > 1. [ |

Remark 3.5 For the case X = C([0,1]) = C we obtain the same results. The embed-
ding ic,,: C([0,1]) = L*(u) is compact if and only if there exists ay, ..., @, € R**,
X15--.,Xm € [0,1] such that y = a; 8, + -+ + &, b, . Moreover, we have

lic.dl 0 if p is a finite linear combination of Dirac measures,
Ic,ulle = .
“ 1 otherwise.
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