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Embeddings of Müntz Spaces in L∞(µ)
Ihab Al Alam and Pascal Lefèvre

Abstract. In this paper, we discuss the properties of the embedding operator iΛµ ∶ M∞Λ ↪ L∞(µ),
where µ is a positive Borel measure on [0, 1] and M∞Λ is aMüntz space. In particular, we compute
the essential norm of this embedding. As a consequence, we recover some results of the ûrst author.
We also study the compactness (resp. weak compactness) and compute the essential norm (resp.
generalized essential norm) of the embedding iµ1 ,µ2 ∶ L∞(µ1) ↪ L∞(µ2), where µ1 , µ2 are two
positive Borel measures on [0, 1] with µ2 absolutely continuous with respect to µ1 .

1 Introduction

_roughout this paper,wewill consider a non-zero positive Borel measure µ on [0, 1]
and will denote by L∞(A, µ) the Banach space of essentially bounded measurable
functions on A ⊂ [0, 1]. We endow this space with the usual norm

∥ f ∥L∞(A,µ) = inf{c > 0 ; ∣ f (x)∣ ≤ c, for µ-almost every x ∈ A.}

In particular, we set L∞(µ) ∶= L∞([0, 1], µ) and L∞ ∶= L∞(dx) where dx is the
Lebesguemeasure.

Let Λ = (λ0 < λ1 < ⋅ ⋅ ⋅) be an increasing sequence of positive real numbers satisfy-
ing theMüntz condition, ∑λ∈Λ∖{0} 1/λ < ∞ and MΛ = span{xλ , λ ∈ Λ}. _eMüntz
space M p

Λ (1 ≤ p ≤ ∞) is the closure of MΛ in Lp ∶= Lp([0, 1], dx). By the Müntz
theorem [3], M p

Λ is a proper subspace of Lp .
Chalendar, Fricain, andTimotin [4] studied the questionwhether theMüntz space

M1
Λ can be included in L1(µ) for a ûnite Borel positivemeasure µ. _ey called such a

measure a Λ-embedding. In particular, several results were obtained on the compact-
ness and the essential norm of the embedding iΛµ ∶ f ∈ M1

Λ ↦ f ∈ L1(µ). Recall here
that the essential norm of an operator T ∶ X → Y is the distance from this operator
to the space of compact operators and is deûned by ∥T∥e = inf ∥T − S∥ where the
inûmum runs over the compact operators S ∶ X → Y . _e embedding M2

Λ ↪ L2(µ)
was also studied in [7, 8], and in [5] this study is extended to the framework of Lp

spaces for any ûnite values of p ≥ 1.
_e aim of this paper is to study the remaining extreme case, i.e., the embedding

iΛµ ∶ M∞
Λ ↪ L∞(µ).

In Section 2, we focus on theMüntz framework and on themore interesting prob-
lem of characterizing the compactness of the Λ-embedding (see Proposition 2.3). We
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actually compute the essential norm of this embedding and prove that it is equal to
1 when iΛµ is not compact (see _eorem 2.5). As a consequence of our results, we
recapture the results of [1] in the particular case of composition operators.

In Section 3, for the sake of completeness, we focus on the non Müntz situation
and study the embedding iµ1 ,µ2 ∶ L∞(µ1) ↪ L∞(µ2), where µ1, µ2 are two positive
Borel measures on [0, 1] (when µ2 is absolutely continuous relative to µ1). We char-
acterize its compactness: the embedding iµ1 ,µ2 is compact if and only if the measure
µ2 is a linear combination of Diracmeasures (see_eorem 3.3). We also estimate its
essential norm and prove that it is equal to 1when the embedding is not compact (see
_eorem 3.4).

Deûnition 1.1 Let µ1, µ2 be two positive Borel measures on [0, 1] and let X be a
closed subspace of L∞(µ1). We say that X is embedded into L∞(µ2) if X ⊂ L∞(µ2)

and there exists a constant C > 0 such that, for every f in X, we have

∥ f ∥L∞(µ2) ≤ C∥ f ∥L∞(µ1) .

We denote by iX ,µ1 ,µ2 ∶ f ∈ X ↦ f ∈ L∞(µ2) the embedding operator.

We shall mainly focus on the following particular cases: when µ1 = dx, X = M∞
Λ ,

and µ2 = µ, the embedding operator is then simply denoted by iΛµ ∶ M∞
Λ ↪ L∞(µ).

When X = L∞(µ1), we denote the embedding operator by iµ1 ,µ2 .

2 Embedding of Müntz Spaces

In this section, we study the embedding iΛµ , i.e. in the case where X = M∞
Λ . For this,

we begin with the following proposition.

Proposition 2.1 For any positive measure µ on [0, 1], M∞
Λ is embedded in L∞(µ)

with norm ∥iΛµ ∥ ≤ 1. Moreover,we have the following.

(i) If µ((1 − ε, 1]) ≠ 0 for every ε > 0, then ∥iΛµ ∥ = 1.
(ii) If we assume that 0 ∈ Λ, then ∥iΛµ ∥ = 1.

Proof First recall that any function f ∈ M∞
Λ has a (unique) representative f̃ that is

continuous on [0, 1] (in passing, usually M∞
Λ denotes the space of continuous func-

tions obtained taking the closed linear space spanned by MΛ). Actually we can view
the embedding as

f ∈ M∞
Λ z→ f̃ ∈ MΛ

C([0,1])
z→ iΛµ ( f ) = f̃ ∈ L∞(µ).

In the sequel we write simply f instead of f̃ and we have

∥iΛµ ( f )∥L∞(µ) ≤ supx∈[0,1]∣ f (x)∣ = ∥ f ∥L∞ .

Hence, we deduce that ∥iΛµ ∥ ≤ 1.
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Moreover, (i) for every ε > 0, µ((1 − ε, 1]) ≠ 0. _en

∥iΛµ ∥ = sup
f ∈M∞

Λ ∖{0}

∥ f ∥L∞(µ)

∥ f ∥L∞
≥ lim sup

n→∞
∥xλn∥L∞([1−λ−2n ,1],µ)

≥ lim
n→∞

(1 − λ−2
n )

λn = 1.

(ii) Just consider the function f = 1 and the result follows immediately.
_is ûnishes the proof.

Remark 2.2 If we want a non trivial estimate for the norm of the embedding, we
cannot avoid an assumption onΛ or on the support of themeasure µ. Indeed, if µ = δ0
(the Diracmeasure at zero) and λ0 > 0, we have ∥ f ∥L∞(µ) = 0 for every f ∈ M∞

Λ .

In the following proposition, we will characterize the compactness of the embed-
ding iΛµ ∶ M∞

Λ ↪ L∞(µ).

Proposition 2.3 Let Λ = (λ0 < λ1 < ⋅ ⋅ ⋅ ) be a sequence of real positive numbers
satisfying ∑λ∈Λ∖{0} 1/λ < ∞ and let µ be a positive Borel measure on [0, 1]. _en the
embedding iΛµ is compact if and only if there exists ε > 0 such that µ((1 − ε, 1)) = 0.

Proof Assume that for some ε > 0, we have µ((1 − ε, 1)) = 0. Write

Kε = [0, 1 − ε] ∪ {1}.

We already know from [1, Corollary 2.5] that the restriction operator

f ∈ M∞
Λ z→ f∣Kε ∈ C(Kε)

is compact. And iΛµ can be expressed as the composition of this operator and the
identity from C(Kε) to L∞(Kε , µ), which can be naturally identiûed with L∞(µ).
For the converse, we consider the sequence (xλn)n that belongs to the unit ball of

M∞
Λ . Using the compactness of iΛµ , there exists a subsequence (xλnk )k that converges

to h ∈ L∞(µ). _en h = 0 µ-almost everywhere on [0, 1) and

∥xλnk ∥L∞([0,1),µ) Ð→
k→∞

0.

Hence, we compute

∥xλnk ∥L∞([0,1),µ) ≥ ∥xλnk ∥L∞([1−λ−2nk ,1),µ)
≥ (1 − λ−2

nk
)
λnk ∥1∥L∞([1−λ−2nk ,1),µ)

.

As k →∞, we obtain that ∥1∥L∞([1−λ−2nk ,1),µ)
tends to zero. But

∥1∥L∞([1−λ−2nk ,1),µ)
=

⎧⎪⎪
⎨
⎪⎪⎩

0 if µ([1 − λ−2
nk
, 1)) = 0,

1 otherwise,

and this ends the proof.

Remark 2.4 In the previous statement, the open interval (1− ε, 1) cannot be closed
at point 1. Indeed,when µ = δ1, the embedding iΛµ is compact. However, µ((1−ε, 1]) =
1 ≠ 0 for any ε > 0.
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Now we will extend the previous result and compute the essential norm of the
embedding iΛµ .

_eorem 2.5 LetΛ = (λ0 < λ1 < ⋅ ⋅ ⋅) be a sequence of real positive numbers satisfying
∑λ∈Λ∖{0} 1/λ <∞ and let µ be a positive Borel measure on [0, 1]. We have

∥iΛµ ∥e =
⎧⎪⎪
⎨
⎪⎪⎩

1 if for every ε > 0, µ((1 − ε, 1)) ≠ 0,
0 otherwise.

Proof By Proposition 2.3, it is suõcient to prove that the essential norm is equal to
1 if µ((1 − ε, 1)) ≠ 0 for any ε > 0. Using Proposition 2.1, we have that ∥iΛµ ∥e ≤ ∥iΛµ ∥ ≤
1. To get the lower estimate, we will use [2, Lemma 3.4] which states that, given an
operator T ∶ X → Y and α > 0, if the range of the unit ball T(BX) contains a 2α-
separated sequence, then ∥T∥e ≥ α. In our framework, for any α ∈ (0, 1) we will ûnd
a normalized sequence ( fn)n in M∞

Λ satisfying ∥iΛµ ( fm)− iΛµ ( fn)∥L∞(µ) ≥ 2α for any
m ≠ n, hence ∥iΛµ ∥e ≥ α. Actually, given any α ∈ (0, 1), we are going to fulûll these
conditions with a subsequence of the sequence 2xλn − 1 ∈ M∞

Λ for a suitable sequence
(λn) in Λ.

Let us ûx α ∈ (0, 1) and choose δ ∈ (0, 1) and an increasing sequence (λn) in Λ
such that

eδ ≤
1

√
α
, e

1
δ ≥

1
1 −

√
α
, and λn+2 ≥ λn +

1
δ2 λn+1 .

We ûrst notice that the hypothesis gives that, for inûnitely many values of n, the
interval Jn = (exp(−δ/λn), exp(−δ/λn+1)) has a positive µ-measure. In the sequelwe
consider only a subsequence of these values, say (kn)n≥1 with kn+1 ≥ kn + 2. Deûne
fn(x) = 2xλkn − 1. Clearly, we have that ∥ fn∥∞ = 1.

Now for any m > n and x ∈ Jkn , we have

( fn − fm)(x) ≥ 2e−δ( 1 − exp(−δ(λkm − λkn)/λkn+1))

≥ 2e−δ( 1 − exp(−δ(λkn+2 − λkn)/λkn+1)) ≥ 2α,

so that ∥ fn − fm∥L∞(µ) ≥ 2α.
We get that ∥iΛµ ∥e ≥ α for arbitrary α ∈ (0, 1), which ûnishes the proof of the

theorem.

As a corollary, we deduce the following results that were proved in [1].

Corollary 2.6 Let φ ∶ [0, 1] → [0, 1] be a continuous function. _en the composition
operator Cφ ∶ M∞

Λ → C([0, 1]); f → f ○ φ is compact on M∞
Λ if and only if 1 ∉ Imφ or

φ = 1. Moreover,

∥Cφ∥e =

⎧⎪⎪
⎨
⎪⎪⎩

0 if φ = 1 or ∥φ∥∞ < 1,
1 if ∥φ∥∞ = 1 and φ ≠ 1.

Proof Let (dx)φ be the pullback measure of the Lebesguemeasure dx by the func-
tion φ. It is then easy to check that for any function f ∈ L∞((dx)φ), the equality

4
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∥ f ∥L∞((dx)φ) = ∥ f ○ φ∥L∞ . _is means that the operator

Iφ ∶ f ∈ L∞((dx)φ)z→ f ○ φ ∈ L∞

is an isometry. Denoting J∞ the natural injection from C([0, 1]) to L∞, we have

Iφ ○ iΛ(dx)φ = J∞ ○ Cφ ,

which implies the equivalence between compactness for the operators iΛ
(dx)φ and Cφ .

Now we have

(dx)φ((1 − ε, 1)) = 0⇐⇒ φ−1
((1 − ε, 1)) = ∅⇐⇒ 1 ∉ Imφ or φ = 1.

_is ûnishes the ûrst part of the proof of the corollary.
For the second part, if φ = 1 or ∥φ∥∞ < 1, then iΛ

(dx)φ is compact, hence ∥Cφ∥e = 0.
If ∥φ∥∞ = 1 and φ ≠ 1, then obviously 1 ≥ ∥Cφ∥e . On the other hand, although the
relation Iφ○ iΛ(dx)φ = J∞○Cφ does not immediately give the estimation on the essential
norm (a priori it gives the essential norm of J∞ ○ Cφ only), the proof of_eorem 2.5
immediately adapts. Indeed, the same sequence ( fn) veriûes for arbitrary α ∈ (0, 1)
and n ≠ m ∥ fn ○ φ − fm ○ φ∥∞ = ∥ fn − fm∥L∞((dx)φ) ≥ 2α and [2, Lemma 3.4] gives
the conclusion in the same way.

Let us mention that the generalized essential norm (relative to weakly compact
operators) is equal to the essential norm. Indeed, the dual of M∞

Λ has the Schur
property, i.e. every weakly convergent sequence is norm convergent (see the proof
of [1, Lemma 4.3.]).

_e following corollary generalizes the result in [1, Corollary 4.10], which charac-
terizes (weak forms of) compactness for the composition operator

Cφ ∶ M∞
Λ → C([0, 1]); f ↦ f ○ φ.

Corollary 2.7 Under the same hypothesis as in Proposition 2.3, the following asser-
tions are equivalent.
(i) iΛµ is a weakly compact operator.
(ii) iΛµ is a compact operator.
(iii) iΛµ is a Dunford–Pettis operator.
(iv) _ere exists ε > 0 such that µ((1 − ε, 1)) = 0.
(v) iΛµ is a nuclear operator.
(vi) iΛµ is an integral operator.
(vii) iΛµ is an absolutely summing operator.

Proof We know from [1, Lemma 4.3] that compactness, weak compactness, and be-
ingDunford–Pettis are equivalent for every operatorT fromM∞

Λ to anyBanach space.
_erefore, the equivalences (i)⇔ (ii)⇔ (iii)⇔ (iv) follow from that result and_e-
orem 2.5.

We shownow that condition (iv) implies condition (v). Assume that for some δ > 0
we have µ((1 − δ, 1)) = 0. For every f ∈ M∞

Λ , we can use its Erdös decomposition to
write iΛµ ( f )(x) = f (x) = ∑

∞
k=0 ak( f )xλk , where x ∈ [0, 1). Let r = 1 − δ ∈ (0, 1) and

5
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note that the series∑∞k=0 ak( f )xλk converges uniformly on [0, r]. Since µ((r, 1)) = 0,
we can write

iΛµ ( f ) = f1[0,r] + f1{1} =
∞

∑
k=0
ak( f )xλk1[0,r] + f (1)1{1} .

Let x∗k ∶ M
∞
Λ → C be deûned by x∗k ( f ) = ak( f ).

We have the following coeõcient estimate for Müntz functions [3, p.177, E.3.c]: for
every ε > 0, there exists cε > 0 such that for every f = ∑∞k=0 ak( f )xλk ∈ M∞

Λ ,

∣ak( f )∣(1 − ε)λk ≤ cε∥ f ∥∞ .

Choose ε = (1 −
√

r) and write simply c instead of c1−√r ; we have ∥x∗k ∥ ≤ cr
−

λk
2 ,

and then
∞

∑
k=0

∥x∗k ∥∥x
λk∥L∞([0,r],µ) ≤ c

∞

∑
k=0

r
λk
2 < +∞.

_enwe get that iΛµ is anormally convergent series of operators of rank 1,whichmeans
that iΛµ is a nuclear operator.

_e implications (v)⇒ (vi)⇒ (vi)⇒ 1 are always true for any operator T ∶ X → Y
[6, III.F 22].

3 Embedding of L∞(µ).
In this section, we focus on the embedding iµ1 ,µ2 (recall the notations a�er Deûni-
tion 1.1) in the case X = L∞(µ1). _e particular case µ1 = dx can be viewed as the
weak-star dense case, compared to Section 2,whereweworkedwith non denseMüntz
spaces. When the Müntz condition is not fulûlled, then M∞

Λ = C([0, 1]), which is
weak-star dense in L∞.

We shall assume in the sequel that µ2 is absolutely continuous with respect to µ1.
Let us point out that this assumption makes the deûnition of iµ1 , µ2 unambiguous. If
f = g µ1-almost everywhere, then f = g µ2-almost everywhere.

Lemma 3.1 _e embedding iµ1 ,µ2 is bounded with ∥iµ1 ,µ2∥ = 1.

Proof Let f ∈ L∞(µ1) and α ≥ ∥ f ∥L∞(µ1). _en there exists a Borel set B such that
µ1(Bc) = 0 and | f (x)∣ ≤ α for every x ∈ B. _erefore µ2(Bc) = 0 and α ≥ ∥ f ∥L∞(µ2).
Hence, ∥ f ∥L∞(µ2) ≤ ∥ f ∥L∞(µ1). To end the proof of the lemma, simply point out that

∥iµ1 , µ2∥ ≥ ∥iµ1 , µ2(1)∥L∞(µ2) = 1

Let us point out that the assumption of absolute continuity of µ2 with respect to
µ1 is not restrictive. Indeed, as soon as iµ1 ,µ2 is deûned, for every Borel set B such
that µ1(B) = 0, the function f is equal to +∞ on B and 0 on Bc belongs to L∞(µ1),
therefore to L∞(µ2). _is forces µ2(B) = 0.

We shall now focus on the compactness problem, but we ûrst need the following
lemma,whereUx ,ε denotes ((x− ε, x)∪(x , x+ ε))∩[0, 1] for any x ∈ [0, 1] and ε > 0.

6
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Lemma 3.2 Let µ be a (non trivial) positive Borel measure on [0, 1]. _e following
assertions are equivalent.
(i) _ere exist α1 , . . . , αm ∈ R+∗, x1 , . . . , xm ∈ [0, 1] such that µ = α1δx1+⋅ ⋅ ⋅+αmδxm .
(ii) For any x ∈ [0, 1], there exists εx > 0 such that µ(Ux ,εx ) = 0.

Proof _e implication (i)⇒ (ii) is trivial.
We now prove (ii)⇒ (i). First, we point out that themeasure is discrete: consider

the decomposition µ = µc + µd (the sum of a continuous measure µc and a discrete
measure µd , both positive). Since µc is continuous, we have µc({x}) = 0 for every
x ∈ [0, 1]. On the other hand, we have 0 = µ(Ux ,εx ) ≥ µc(Ux ,εx ) = 0. Hence,
µc((x − εx , x + εx) ∩ [0, 1]) = 0 and µc = 0 by compactness. _erefore µ = µd is
discrete.

Now we claim that there exists x ∈ [0, 1] such that µ({x}) ≠ 0. Indeed, the nega-
tion of this statementwould give that µ((x − εx , x + εx)∩ [0, 1]) = 0 for any x ∈ [0, 1].
Hence by compactness of the interval [0, 1], thiswould imply that µ([0, 1]) = 0,which
would contradict the fact that µ is a non-zero measure. Secondly, we shall prove that
there is no inûnite sequence of distinct real numbers (xn)n such that µ({xn}) ≠ 0.
By contradiction, the sequence (xn)n would have an accumulation point x ∈ [0, 1].
_en for any ε > 0, we would get that µ((x − ε, x) ∪ (x , x + ε)) ≠ 0 because the last
interval would contain some xn for n large enough, which would give a contradic-
tion. Hence,we deduce that there exist only a ûnite number of reals x1 , . . . , xn ∈ [0, 1]
such that µ({xk}) ≠ 0 for every 1 ≤ k ≤ n and then µ = α1δx1 + ⋅ ⋅ ⋅ + αnδxn , where
α1 = µ({x1}), . . . , αn = µ({xn}).

_e following theorem characterizes the compactness and weak compactness of
the embedding operator iµ1 ,µ2 . It occurs that the situation is very diòerent compared
to theMüntz framework (see the previous section). For this, we say that a sequence
(x̃n)n∈N is a block-subsequence of (xn)n∈N if there is a sequence of non empty ûnite
subsets of integers (Im)m∈N with max Im < min Im+1 and c i ∈ [0, 1] such that

x̃m = ∑
j∈Im

c jx j and ∑
j∈Im

c j = 1.

_eorem 3.3 Let µ1, µ2 be two positive Borel measures on [0, 1] with µ2 absolutely
continuous with respect to µ1. _e following assertions are equivalent.
(i) iµ1 ,µ2 is a compact operator.
(ii) iµ1 ,µ2 is a weakly compact operator.
(iii) _ere exist α1 , . . . , αm ∈ R+∗, and x1 , . . . , xm ∈ [0, 1] such that

µ2 = α1δx1 + ⋅ ⋅ ⋅ + αmδxm .

Proof (i)⇒ (ii) is obvious.
For (ii)⇒ (iii), we ûx x ∈ [0, 1), and consider Bn = (x , x + 1

n ). As the operator
iµ1 ,µ2 is weakly compact, there exists a subsequence (1Bnk

)k weakly converging to
some f in L∞(µ2). Hence, the sequence (1Bnk

)k converges µ2-almost everywhere to
f , but since ∩Bnk = ∅, we have f = 0. By the Banach–Mazur theorem, there exists
a block-subsequence (1̃Bn)n∈N of (1Bn)n∈N converging to 0 in L∞(µ2). _e fact that
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∥1̃Bn∥L∞(µ2) → 0 implies that µ2(Bn) = 0 for n large enough, i.e., for some ε > 0,
µ2((x , x + ε)) = 0. In the same way, we show that µ2((x − ε, x)) = 0 for all x ∈ (0, 1],
and we get that for any x ∈ [0, 1] there is ε > 0 such that µ2(Ux ,ε) = 0. Hence, using
Lemma 3.2,we deduce that there exists a ûnite number of reals x1 , . . . , xn ∈ [0, 1] such
that µ2 = α1δx1 + ⋅ ⋅ ⋅ + αnδxn , where α1 = µ2(x1), . . . , αn = µ2(xn).
For (iii)⇒ (i), we assume that µ2 = α1δx1 + ⋅ ⋅ ⋅ +αnδxm with α j ≠ 0 for every j. _e

operator iµ1 ,µ2 is compact because it has ûnite-dimensional range. Using Lemma 3.1,
we have that ∥ f ∥L∞(µ2) = max1≤ j≤m ∣ f (x j)∣ so the space L∞(µ2) is actually isometric
to ℓ∞m = (Cm , ∥ ⋅ ∥∞).

_e next theorem computes the essential norm of the embedding operator iµ1 ,µ2 .

_eorem 3.4 Under the same hypothesis as in _eorem 3.3, we have

∥iµ1 ,µ2∥e =

⎧⎪⎪
⎨
⎪⎪⎩

0 if µ2 is a ûnite linear combination of Diracmeasures,
1 otherwise.

Proof By_eorem 3.3, it is suõcient to prove that the essential norm is equal to 1 if
µ2 is not a ûnite linear combination of Diracmeasures, which means (by Lemma 3.2)
that there exists x0 ∈ [0, 1] such that µ2((x0 − ε, x0) ∪ (x0 , x0 + ε)) ≠ 0 for any ε > 0.
Without loss of generality, we can assume that x0 ∈ (0, 1] and µ2((x0 − ε, x0)) ≠ 0;
otherwise it suõces to symmetrize and interchange x ↔ 1 − x. Using Lemma 3.1, we
already know that ∥iµ1 ,µ2∥e ≤ ∥iµ1 ,µ2∥ = 1.

Now we focus on the lower estimate and consider the sequence

fn(x) =
⎧⎪⎪
⎨
⎪⎪⎩

2( x
x0
)

λn
− 1 if x ∈ [0, x0],

1 if x ∈ [x0 , 1].

Clearly, we have that ∥ fn∥L∞(µ1) ≤ 1 and for any n,m,

∥ fn − fm∥L∞(µ2) = 2∥xλn − xλm∥L∞(µ′2) ,

where µ′2(B) = µ2(x0 .B) for any B is a Borel subset of [0, 1]. It suõces now to apply
the argument of the ûrst part of the proof of_eorem 2.5 to get ∥iµ1 ,µ2∥e ≥ 1.

Remark 3.5 For the case X = C([0, 1]) = C we obtain the same results. _e embed-
ding iC ,µ ∶ C([0, 1])→ L∞(µ) is compact if and only if there exists α1 , . . . , αm ∈ R+∗,
x1 , . . . , xm ∈ [0, 1] such that µ = α1δx1 + ⋅ ⋅ ⋅ + αmδxm . Moreover, we have

∥iC ,µ∥e =
⎧⎪⎪
⎨
⎪⎪⎩

0 if µ is a ûnite linear combination of Diracmeasures,
1 otherwise.
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