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SUMMARY

Many infectious diseases exhibit repetitive or regular behaviour over time. Time-domain
approaches, such as the seasonal autoregressive integrated moving average model, are often
utilized to examine the cyclical behaviour of such diseases. The limitations for time-domain
approaches include over-differencing and over-fitting; furthermore, the use of these approaches is
inappropriate when the assumption of linearity may not hold. In this study, we implemented a
simple and efficient procedure based on the fast Fourier transformation (FFT) approach to
evaluate the epidemic dynamic of scarlet fever incidence (2004–2010) in China. This method
demonstrated good internal and external validities and overcame some shortcomings of
time-domain approaches. The procedure also elucidated the cycling behaviour in terms of
environmental factors. We concluded that, under appropriate circumstances of data structure,
spectral analysis based on the FFT approach may be applicable for the study of oscillating
diseases.

Key words: Fast Fourier transformation, national notifiable disease surveillance data of China,
scarlet fever, time-series analysis.

INTRODUCTION

The notion that many infectious diseases such
as influenza, measles and chickenpox [1] exhibit
repetitive or regular behaviour over time is of vital
importance. In order to guide planning for future
disease outbreaks, there has been considerable interest
in applying mathematical and statistical models to

elucidate the underlying mechanism of cyclical behav-
iour. Time-domain methods [2–4], a regression of the
present based on the past, such as the seasonal auto-
regressive integrated moving average (SARIMA)
model [5] and the generalized autoregressive condi-
tional heteroskedasticity (GARCH) model [6], appear
elegant in practice since they provide a view of nature
in terms of intuitive linear forms. However, these
models are at risk of over-differencing [7] (which indi-
cates the abuse of differencing methods leading to
heavy loss of information) and over-fitting [5]
(which means fitting too many redundant parameters).
More importantly, these modelling approaches assume
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linearity of variables [8], whereas the inherent struc-
ture of epidemic mechanisms is often nonlinear [9].
Thus, an alternative method for time-series analysis
is needed.

Spectral analysis is based on the decomposition of
an empirical series into regular components [10].
From the view of regression, spectral analysis models
may be considered as a regression of the present on
periodic sines and cosines. A main advantage of this
model lies in its capability to explain the dynamics
of some infectious diseases. For example, José &
Bishop [4] compared a SARIMA model and the
power spectral density method to characterize the
overall dynamics of rotavirus infections as a whole
and that of serotypes G1, G2, G3, G4 and G9 indi-
vidually. According to that study, although the
SARIMA model detected no obvious discernible
pattern of dynamics except for the annual cycle,
the spectral analysis did, in fact, capture seasonal,
biannual and quinquennial periods.

As spectral analysis is becoming increasingly indis-
pensable in biomedicine and epidemiology [11–13],
some barriers to this method have been noted that
may affect its application. First, some spectral
approaches are too empirical to be appropriate. For
example, the cyclical regression models [14] require
frequency parameters to be preset. This is inappropri-
ate, especially when the seasonal patterns remain
elusive. Second, some analyses focus on the separate
estimation method [15], which, in fact, consists of
two separate steps: (1) to obtain the frequency par-
ameter by means of the maximum entropy method
(MEM); and (2) to utilize least squares fitting (LSF)
to estimate the incidence curve. Such methods are
simple, but their efficiency is yet to be demonstrated
[16]. The joint estimation procedure seems more
efficient. However, to our knowledge, joint estimation
remains a daunting task in the frequency domain
[17, 18]. Third, as claimed by Luo et al. [19]: with
its origins in electrical engineering science, spectral
analysis requires adequate mathematical and physical
expertise which, unfortunately, presents an obstacle
for many epidemiological researchers and practitioners.

Therefore, to overcome these shortcomings, we
implemented a simple and efficient spectral analysis,
based on the fast Fourier transformation (FFT)
approach, in order to evaluate the epidemic dynamic
of scarlet fever incidence in China. This method was
shown to generate more valid, meaningful and even
simpler explanations than time- and frequency-
domain analyses, especially for periodic variations

caused by biological, physical, or environmental
phenomena [20].

We modelled data on the surveillance incidence
of scarlet fever in China from 2004 to 2010. Scarlet
fever is caused by erythrogenic toxin released by
Streptococcus pyogenes. Nowadays, although scarlet
fever is rare and generally mild, serious sequelae
which threaten the heart and kidneys can still occur,
especially in school children [21, 22]. The surveillance
database of scarlet fever, together with the esta-
blished knowledge of the cyclical behaviour of the
infection, makes this disease an ideal example for
studying epidemic dynamics using a FFT approach.
Furthermore, we also include examples to show that
this method can be easily applied to achieving various
goals such as prediction and influencing factor ex-
ploration.

MATERIALS AND METHODS

Scarlet fever and environmental data

As prescribed by the Law of the P.R. China on the
Prevention and Treatment of Infectious Diseases,
physicians who find pathogen carriers or patients
suspected of scarlet fever infection must report their
findings to the local health and anti-epidemic agency
within a specified time limit, next the health adminis-
tration department under the State Council will
promptly release information on and publicly
announce the true epidemic situation. The original
incidence data was obtained from the National
Infectious Diseases Reporting System, Centers for
Disease Prevention and Control, China. The incidence
observations (represented by cases per100000) to be
analysed were aggregated by month from January
2004 to December 2010, for the whole nation and
each region of mainland China (22 provinces, five
autonomous regions, four municipalities, excluding
Hong Kong, Macao SAR and Taiwan province).
Moreover, we also excluded Jiangxi (code=36) and
Hainan (code=46) provinces because there were too
many zeros in the corresponding incidence time-series.
Thus, there were 30 incidence time-series (each had
84 observations) analysed in our study. In addition,
the environmental data (i.e. monthly sunshine hours,
average relative humidity, average temperature and
precipitation for major cities) were collected from
the National Bureau of Statistics of China [23].

All statistical analyses and graphs in this paper were
performed in R (R Foundation, Austria) which is a
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free software environment for statistical computing
and graphics.

Methods of analysis

We denote X(t) as the number of scarlet fever inci-
dences observed at time t. Based on the classical
decomposition in time-series analysis [5], incidence
series {X(t)} are assumed to be represented as realiz-
ation of the process:

X (t){ } = trend component+ periodic component

+ randomnoise component, (1)
In equation (1), the trend component, describing the
long-term changes in data, is the polynomial function
of time t. The periodic component is referred to as a
function with known period, and the random noise
component represents random errors, which is com-
monly treated as Gaussian white noise [15].

In the spectral analysis, the trend component can
be easily obtained via maximum-likelihood estimation
or least squares estimation; hence, the key point
for analysis lies in the estimation of the periodic
component. This component is described by the func-
tion XPC (t), which is assumed to be a mixture of
cosine or sine functions with multiple frequencies
and amplitudes.

XPC(t) = A0 +
∑N

i=1

Ai cos(2πfit+ ϕi), (2)

where fi(=1/Ti; Ti is the period) is the frequency, A0 is
a constant indicating the average value of the periodic
component, N is the total number of components, Ai

is the amplitude and ϕi the phase that determines
the starting point of the cosine function. All A0, Ai,
fi and ϕi(i=1, . . ., N) are parameters to be estimated
in the model. In addition, through the derivative
calculations in equation (2), we can obtain the maxi-
mum value and maximum point, tmax (at which the
maximum value is reached), which respectively indi-
cates the underlying peak and peak time in terms of
epidemiology.

Although many spectral analysis methods take
the form of equation (1) [15, 24], there are diverse
estimations for parameters as stated in the previous
section. Instead of being either too empirical or com-
plicated, we aimed to establish the model simply with
the help of FFT [25]. As a consequence, our method
involves the following two steps.

Step I. Data pre-processing

Time-series were rearranged from the original dataset
by month for each region. Outliers were detected by
hypothesis tests beforehand [26–28]. Two types of out-
liers were taken into account: addictive outliers and
level shifts. Usually an addictive outlier is caused by
a recording error and a level shift may be the result
of an outbreak or control. Thus, addictive outliers
should be studied carefully to check whether there is
any justification for smoothing or discarding them.
If any level shifts exist, it is advisable to analyse the
series by first breaking it into homogeneous segments
at the corresponding time point. After outlier detec-
tion, the trend component is fitted by a polynomial
function of time t and then removed. This procedure,
subtracting the fitted function from the time-series, is
also known as detrending. It is recommended that
the order of the estimated polynomial function for
the trend component is determined by the shape of
incidence curve and hypothesis test. Logarithmic
transformation is performed for the detrended data
if the frequency histogram is separate from the normal
distribution required for spectral analysis.

Step II. FFT approach

This step is the core of our method. We take {X*
t} to

represent the pre-processed data after the first step.
The concept of spectral analysis expresses the under-
lying dynamics in terms of periodic variations as
Fourier frequencies being driven by sines and cosines.
In this sense, FFT is employed as an efficient
approach which transforms the data from the time
domain (which can be considered as the function of
time) into the frequency domain (i.e. the function of
frequency):

d( j/N) = N−1
2

∑N

t=1

X ∗
t exp(−2πitj/N), (3)

where j/N is designated the Fourier or fundamental
frequency. Since i in equation (3) is the imaginary
unit denoted as i2=−1, the result of FFT is a complex
number. Given the Fourier frequency, the FFT value
can be calculated by equation (3). It is also guaranteed
mathematically that the phase can be calculated
through the arc-tangent function of the FFT value
while the amplitude equals its module [29]. Thus, the
amplitude-frequency curve and phase-frequency
curve can be plotted. From the former curve the pro-
minent frequencies, which correspond to the highest
amplitudes, are identified, and from the latter curve
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the corresponding phases can then be estimated.
Thus, the parameters in equation (2) can be estimated
by FFT. The algorithms above are available in the
STATS package of R software.

Furthermore, in order to take into account the
variability of the parameters and the autocorrelation
within time-series, the block bootstrap technique and
permutation test were adopted [30]. The correspond-
ing period of Fourier frequency (i.e. 1/Fourier fre-
quency) was chosen to be the block length so that
the autocorrelation structure within seasonal blocks
is preserved. First, we simulated 10000 replications
under the null hypothesis of absence of seasonality
by block bootstrap sampling, and then obtained
the P value by comparing the initially observed
statistics (peak or peak time) with the distribution
of the 10000 simulated replications. In addition, the
confidence intervals of parameters were obtained
with the bootstrap percentile method (level of
significance=0·05).

The two steps above constitute the main body of
our method. If continuous periodic oscillations are
identifiable, then our method should be able to predict
and explain the cycling behaviour in terms of extrinsic
or intrinsic factors [31]. However, in effect, these
explorations may belong to the spectral analysis itself
by definition, although they can be viewed as the
derivatives of our approach.

RESULTS

Our analyses focused both on incidence data in
each region and the general situation over the
whole country. For clarity of interpretation, the raw
incidence data for the whole nation, presented in
Figure 1a, is used as an illustration.

Main results of the method

Step I

The national incidence series consisted of 84 obser-
vations and no outlier was detected (P>0·05). As
shown in Figure 1a no sign of trend component was
observed, and neither the linear (P=0·54) nor quad-
ratic (P=0·70) regression curve of incidence on time
was statistically significant. Figure 1b shows that
the frequency histogram of the national incidence
data reasonably resembles the normal distribution
with P=0·07 from the Kolmogorov–Smirnov test,
suggesting that the data are suitable for a FFT

approach. Otherwise, logarithmic transformation is
recommended before analysis.

Step II

We used FFT to further characterize the periodic
component of the pre-processed data. Similarly to
a triangular prism which decomposes the light
into different frequencies in the colour spectrum,
the FFT approach offers a straightforward means
to isolate the periodic components oscillating at
various frequencies. As mentioned above, we used
the amplitude-frequency curve (Fig. 1c) to identify
the prominent frequency and subsequently deter-
mined the phase through the phase-frequency curve
(Fig. 1d).

In addition, we used a suitable bandpass filter [20],
which is a mode of constraining those frequencies
within a certain range (e.g. 0·014f40·50) and reject-
ing frequencies outside that range, to reconstruct
the periodic component in equation (1). Such an
approach is reasonable because periods that are either
too long or too short are considered inappropriate
for the FFT approach. In Figure 1c, the seasonality
of scarlet fever in China was identified by an annual
pattern (frequency=0·0833, period ≈12 months)
and a semi-annual pattern (frequency=0·1667, period
≈6 months), respectively. As a result, the periodic
component was able to be expressed in the following
equation, where all the parameters were statistically
significant (permutation tests, P<0·05):

X̂PC(t) = 0 · 1759+ 0 · 0942∗ cos(2π∗0 · 1667∗t
+1 · 6871) + 0 · 0314∗ cos(2π∗0 · 0833∗t
−1 · 6808), (4)

Finally, as there was no significant trend component
in the data, the estimation for model (1) of the
national situation could be expressed in a model
with a single component as:

X̂ (t) = X̂PC(t), (5)
Based on equation (5), with parameter estimates as in
equation (4), it can be concluded, by maximization
and block bootstrapping, that the first peak occurred
between March and April (peak time 1=4·02, 95%
CI 3·88–4·81 months) with a peak value 0·19, while
the second peak occurred between October and
December (peak time 2=11·31, 95% CI 10·80–12·39
months).
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Evaluation and application of the method

Prediction and validation

One of the most important applications of time-series
analysis is prediction. The extrapolation of the
epidemic curve fitted by equation (4) can be used for
prediction of the incidence because it is regarded as
the predictable part. For each incidence time-series,

we split the data into the training set (January 2004–
December 2009) and testing set (January 2010–
December 2010), and used the first set for model
fitting and the second set for making predictions.

To confirm the agreement between these two sets,
we first calculated the mean values of training and
testing sets separately for each incidence time-series,
and then applied the Bland–Altman plot (see Fig. 2).
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Fig. 1. Monthly incidence data of scarlet fever in China from 2004 to 2010. (a) The original time-series; (b) histogram of
original area; (c) estimated amplitude-frequency curve; (d) estimated phase-frequency curve; (e) original data and fast-
Fourier-transform forecast-fitted curve, with a vertical line splitting the training and testing periods.
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In Figure 2, each incidence time-series is represented
by assigning the average of the two mean values as
the abscissa (x axis) value, and the difference between
the two values as the ordinate (y axis) value. It can be
seen from Figure 2 that despite just a few exceptions
(i.e. Beijing, Liaoning, Heilongjiang), the training

and testing sets are nearly identical within each inci-
dence time-series. This was also verified by the paired
two-sample t test (t=0·6477, P=0·5198).

Most of these series exhibit seasonal nonlinearity
variation structure, so it seems plausible to introduce
spectral analysis rather than a time-domain approach.

Table 1. Comparison of errors for FFT spectral analysis and the SARIMA model*

Time-series
label

Administrative
code

In-sample error External sample error No. of outliers

FFT SARIMA FFT SARIMA AO LS

Mainland of P.R. China 0·0245 0·0278 0·0120 0·0136 0 0

North
Beijing 11 0·2333 0·2878 0·3294 0·5881 0 1
Tianjin 12 0·1394 0·1706 0·1745 0·2947 3 0
Hebei 13 0·0614 0·0564 0·0594 0·0992 5 0
Shanxi 14 0·0640 0·0746 0·0823 0·1729 1 0
Inner Mongolia 15 0·0931 0·1345 0·0763 0·0815 1 0

Northeast
Liaoning 21 0·2289 0·2416 0·2889 0·4813 2 0
Jilin 22 0·2216 0·1397 0·1740 0·3741 3 0
Heilongjiang 23 0·2698 0·2202 0·3342 0·4336 3 0

East
Shanghai 31 0·1216 0·1164 0·1403 0·1685 3 0
Jiangsu 32 0·0194 0·0223 0·0105 0·0203 0 0
Zhejiang 33 0·0292 0·0462 0·0461 0·0686 2 0
Anhui 34 0·0094 0·0140 0·0190 0·0187 2 0
Fujian 35 0·0127 0·0156 0·0181 0·0182 5 0
Jiangxi 36 — — — — — —

Shandong 37 0·0603 0·0423 0·0679 0·0515 6 0

Central South
Henan 41 0·0184 0·0213 0·0334 0·0833 2 0
Hubei 42 0·0107 0·0121 0·0127 0·0192 3 0
Hunan 43 0·0060 0·0065 0·0092 0·0177 4 0
Guangdong 44 0·0103 0·0117 0·0117 0·0250 2 0
Guangxi 45 0·0134 0·0223 0·0129 0·0689 3 0
Hainan 46 — — — — — —

Southwest
Chongqin 50 0·0267 0·0375 0·0353 0·0350 5 0
Sichuan 51 0·0325 0·0348 0·0365 0·0380 3 0
Guizhou 52 0·0162 0·0246 0·0240 0·0323 1 0
Yunnan 53 0·0360 0·0566 0·0571 0·0390 5 0
Tibet 54 0·1525 0·2253 0·1607 0·1347 3 0

Northwest
Shanxi 61 0·0425 0·0549 0·0343 0·1088 3 0
Gansu 62 0·0386 0·0444 0·0473 0·0481 1 0
Qinghai 63 0·1071 0·2715 0·1569 0·1257 3 1
Ningxia 64 0·1896 0·2013 0·2189 0·3383 1 0
Xinjiang 65 0·1149 0·1727 0·1906 0·3358 5 0

Average — 0·0801 0·0936 0·0958 0·1445 — —

FFT, Fast Fourier transformation; SARIMA, seasonal autoregressive integrated moving average; AO, addictive outlier;
LS, level shift.
*Mean absolute deviation is calculated as an error measure.
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To confirm this, we performed two analyses. First, we
compared the internal and external validities of our
method with those of the SARIMA model of time-
domain approach. To take into account the relatively
low incidence, we chose the mean absolute deviation
(MAD) [32] as an error measure. Table 1 lists the
results of the whole nation as well as each region.
As can be seen, even in the presence of outliers, the

application of FFT takes on a lower MAD than the
SARIMA model both for the in-sample and external
sample errors in most cases.

Second, we compared the average in-sample error
and average out-of-sample error by each method.
The values were 0·08 and 0·09, resprectively, for
FFT (error difference ≈0·01), while the values were
0·09 and 0·14, respectively, for the SARIMA model

Table 2. Seasonal patterns of scarlet fever incidence time-series in P.R. China by region, 2004–2011*

Location/region
Administrative
code

Latitude
(degrees)

Peak 1
(1/100000)

Peak time 1
(month)

Peak 2
(1/100000)

Peak time 2
(month)

North
Beijing 11 40·3 0·7030 5·2 0·8140 11·8
Tianjin 12 39·4 0·5316 6·1 0·4099 10·8
Hebei 13 39·3 0·2132 4·6 0·1727 12·2
Shanxi 14 37·7 0·3137 6·0 0·2610 11·1
Inner
Mongolia

15 45·4 0·4401 4·5 0·5041 12·3

Northeast
Liaoning 21 41·1 0·6308 5·1 0·8242 12·1
Jilin 22 43·6 0·3837 4·8 0·3934 12·0
Heilongjiang 23 48·5 0·6093 5·2 0·7483 11·6

East
Shanghai 31 31·1 0·3398 5·0 0·2724 11·9
Jiangsu 32 32·9 0·1228 5·7 0·1015 10·9
Zhejiang 33 29·2 0·1277 6·0 0·1108 11·2
Anhui 34 32·0 0·0412 6·3 0·0335 11·3
Fujian 35 26·0 0·0426 4·9 0·0399 14·0
Jiangxi 36 27·3 — — — —

Shandong 37 36·3 0·1429 5·1 0·1162 11·4

Central South
Henan 41 33·9 0·0666 5·0 0·0658 12·2
Hubei 42 31·2 0·0379 6·1 0·0327 11·0
Hunan 43 27·4 0·0171 5·1 0·0199 11·6
Guangdong 44 22·9 0·0341 4·6 0·0344 12·0
Guangxi 45 23·9 0·0368 4·1 0·0402 12·1
Hainan 46 19·2 — — — —

Southwest
Chongqing 50 30·2 0·0936 4·7 0·0732 12·3
Sichuan 51 30·2 0·1404 5·6 0·1163 11·2
Guizhou 52 26·9 0·0816 4·9 0·0684 11·4
Yunnan 53 25·2 0·1493 3·9 0·1226 11·9
Tibet 54 31·7 0·1586 5·2 0·1558 11·5

Northwest
Shanxi 61 35·6 0·1951 4·9 0·1610 11·8
Gansu 62 37·7 0·2028 5·0 0·1714 11·1
Qinghai 63 35·4 0·3719 4·5 0·3027 12·0
Ningxia 64 37·3 0·5507 5·2 0·4428 11·7
Xinjiang 65 41·8 0·4092 5·0 0·4141 12·1

* The focus is on the mainland of the P.R. China, which does not contain Hong Kong, Macao SAR and Taiwan.
Also excluded in analysis are Jiangxi (code=36) and Hainan (code=46) provinces because there are too many zeros in
the corresponding time-series. The first digit of administrative code refers to the location: 1, North; 2, Northeast; 3, East;
4, Central South; 5, Southwest; 6, Northwest.
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(error difference ≈0·05). The larger error difference
for the SARIMA model may be caused by over-fitting
[5]. Thus, the results for FFT appear to show a better
performance than the SARIMA model.

Influencing factor exploration

Table 2 presents peaks and peak times extracted from
each region (province, autonomous region, municipal-
ity). We found that both the first and second peaks
were significantly large for the region-specific time-
series. To examine whether latitude/longitude by
region had an impact on the peaks and peak times,
we further employed univariate regression models
with the LSF method in which the peaks and
peak times derived from each series were separate
dependent variables, and the latitude/longitude with
respect to each province were capital independent
variables. It was found that the relationship between
first/second peak and latitude was significant (first
peak: R2=0·6077, P<0·001; second peak: R2=0·5936,
P<0·001), while others were not. Figure 3(a, b)
shows the plots of first/second peak values against
the latitudes of province capitals. It is intriguing to
find that the peak values (both first and second
peaks) varied significantly along a latitudinal gradient.
Namely, the peak values were highest in the northern
zones while becoming attenuated southwards.

The geographical pattern in China as discussed
above, has also been stated to be correlated with
a variety of environmental factors (e.g. sunshine
hours, precipitation, relative humidity, temperature)
in previous studies [33, 34]. To confirm this,
Pearson’s product-moment correlation analysis was
used. We found that the peak values were significantly
positively correlated with sunshine hours (r=0·23,
P<0·01), and negatively correlated with precipitation
(r=−0·21, P<0·01), relative humidity (r=−0·33,
P<0·01), and temperature (r=−0·23, P<0·01). These
results provided a clue for further investigation.

DISCUSSION

In this paper, we suggest that the regularity in time-
series can be expressed in terms of periodic variations
of the underlying phenomenon that produce the series,
expressed as Fourier frequency driven by sines and
cosines. We present a rather simple and efficient
spectral analysis approach that has a tendency to out-
perform SARIMA models in both model-fitting and
prediction.

In the previous section, we took the incidence data
of the whole nation as an example. Such series may
become an ideal paradigm since there is neither
trend component nor outlier. However, other situ-
ations can be more complicated. For example, we
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detected a level shift change at t=55 (July 2008) in the
incidence series of Beijing. This is in accord with other
studies, suggesting that the incidence of scarlet fever
had fallen in Beijing prior to the 2008 Olympic
Games [35]. Thus, we split the data at t=55 and
removed the trend term from each segment separately.
As the detrended data were skewed, logarithmic trans-
formation was then performed. After these adjust-
ments, we applied spectral analysis to derive the
periodic component; the results are shown in Table 1.

When comparing FFT and the SARIMA model,
only five (16·7%) of the total of 30 series had a larger
FFT in-sample error than the SARIMA model. As
inferred by the larger number of outliers, the corre-
sponding regions (i.e. Hebei, Liaoning, Heilongjiang,
Shanghai, Shandong) are typically hotspots for scarlet
fever outbreaks in China [36]. There are four regions
(i.e. Shandong, Tibet, Qinghai, Yunnan) where the
external sample error for FFT is obviously greater
than it is for the SARIMA model. By checking the
original data, we found that scarlet fever incidence
in these regions changed from 20% to 50% in 2010
compared to the incidence over the last 6 years while
the national average level remained unchanged. These
results imply that, on the one hand, changes in data
structure can have unavoidable influences on spectral
analysis. However, by contrast, empirical evidence
with FFT showing many more minimal errors and
lower error difference seems to affirm the validity
and robustness of spectral analysis compared to that
of the time-domain approach.

China is the world’s third largest country, extending
about 50 degrees of latitude, encompassing diverse
regional climates, terrain, population densities and
social customs, etc. The application of the results of
our method suggest that environmental forces (pre-
cipitation, relative humidity, temperature) play an
important role in scarlet fever epidemics in China,
which coincides with epidemics reported in previous
studies in the Czech Republic and Russia, as well as
some cities in China [33, 34, 37, 38]. The application
sheds light on the underlying practical value of our
method. Since spectral analysis can provide different
perspectives compared to conventional time-series
models, it is reasonable to expect more applications
of the method in future investigations on scarlet
fever and other infectious diseases to be performed.

Time-series analysis is a data-driven technique. To
our knowledge, epidemics of streptococcal infection
including scarlet fever, as well as other diseases such
as chickenpox, are fundamentally determined by the

mechanism of the noisy limit cycle [9], which leads
to the temporal changes shown as seasonal variations.
Therefore, we believe that, under appropriate con-
ditions (e.g. normality and absence of outliers) of
data structure, our procedure will contribute to further
studies of many other periodically oscillating diseases.
More studies on transmission dynamics are still
required.
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