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On the Set of Common Differences
in van der Waerden’s Theorem
on Arithmetic Progressions
Tom C. Brown, Ronald L. Graham and Bruce M. Landman

Abstract. Analogues of van der Waerden’s theorem on arithmetic progressions are considered where the family
of all arithmetic progressions, AP, is replaced by some subfamily of AP. Specifically, we want to know for
which sets A, of positive integers, the following statement holds: for all positive integers r and k, there exists
a positive integer n = w ′(k, r) such that for every r-coloring of [1, n] there exists a monochromatic k-term
arithmetic progression whose common difference belongs to A. We will call any subset of the positive integers
that has the above property large. A set having this property for a specific fixed r will be called r-large. We give
some necessary conditions for a set to be large, including the fact that every large set must contain an infinite
number of multiples of each positive integer. Also, no large set {an : n = 1, 2, . . . } can have lim inf

n→∞

an+1
an
> 1.

Sufficient conditions for a set to be large are also given. We show that any set containing n-cubes for arbitrarily
large n, is a large set. Results involving the connection between the notions of “large” and “2-large” are given.
Several open questions and a conjecture are presented.

1 Introduction

An arithmetic progression of length k is a set P = {x + id : i = 0, . . . , k − 1} where
x and d are integers, d > 0. We call d the common difference of P. Van der Waerden’s
classic theorem on arithmetic progressions [13] says that, for each positive integer r, if the
set of positive integers, Z+, is partitioned into r classes, then at least one of the classes will
contain arbitrarily long arithmetic progressions. An alternate (and equivalent) form of van
der Waerden’s theorem says that for all positive integers k and r, there exists a least positive
integer w(k, r) such that for every partition of the interval [1,w(k, r)] = {1, 2, . . . ,w(k, r)}
into r classes, at least one of the classes will contain a k-term arithmetic progression. A
partition of a set into r classes is often referred to as an r-coloring of the set. So van der
Waerden’s theorem can be stated: for all positive integers r and k, there exists a positive
integer w(k, r) so that for every r-coloring of [1,w(k, r)] there exists a monochromatic k-
term arithmetic progression.

Analogues of van der Waerden’s theorem may be considered, where the family of arith-
metic progressions, AP, is replaced by some other family of integer sequences. That is, if
r is a positive integer and T is a family of integer sequences, we can ask whether for every
r-coloring of the positive integers there are arbitrarily long monochromatic members of T.
If T is a family that does have this property, we say that T has the r-Ramsey property. If T
has the r-Ramsey property for all r, we simply say that T has the Ramsey property.

By van der Waerden’s theorem, if T includes all the arithmetic progressions, then T has
the Ramsey property. The Ramsey functions associated with T (i.e., the functions w ′(k, r),
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analogous to w(k, r), but where members of T are sought rather than members of AP) have
been studied for a variety of such T (see [4], [8], [10]).

In this paper, we wish to consider the Ramsey property for collections T that are not
supersets of AP, but rather subsets of AP. This is of interest because if T is a proper subset
of AP, and T has the Ramsey property, the conclusion to van der Waerden’s theorem is
strengthened.

Of course, if T ⊆ AP is too small, it will not have the Ramsey property. For example,
it is well known that if F is any finite set of positive integers, then it is possible to 2-color
the positive integers in such a way that there do not exist arbitrarily long monochromatic
arithmetic progressions with common differences belonging to F (one proof can be found
in [2]; this fact is also a consequence of Theorem 2.1 below).

On the other hand, one simple consequence (and strengthening) of van der Waerden’s
theorem is that if F is a fixed finite set of positive integers, then the family of all arithmetic
progressions having common differences in Z+ − F has the Ramsey property. In fact, it is
easy to see that if m is a fixed positive integer, then the family of all arithmetic progressions
having common differences in the set mZ+ has the Ramsey property (by van der Waerden’s
theorem, every r-coloring of {m, 2m, . . . ,

(
w(k, r)

)
m} produces a k-term monochromatic

arithmetic progression, and this progression has common difference in mZ+).
The examples just mentioned lead us to ask the general question: which subcollections

of AP have the Ramsey property?
For this paper, we consider those subcollections of AP which consist of all arithmetic

progressions having common differences in a given set A.
In this paper, we will call a subset A of the positive integers large if the collection T,

consisting of all arithmetic progressions having common differences in A, has the Ramsey
property. A subset of the positive integers that is not large is called small. Similarly, if T
has the r-Ramsey property, we will say that A is r-large. Thus, we seek an answer to the
question: which sets of positive integers are large?

Furstenberg, using dynamical systems methods, showed in [5] that every infinite cube
(see definition below) is large.

Definition Let {a1, a2, . . . , an} be any set of positive integers. The n-cube Q(a1, . . . , an) is
the set of all linear combinations c1a1 + · · · + cnan such that ci ∈ {0, 1} for all i, but where
not all the ci are 0. Similarly, the infinite cube Q(a1, a2, . . . ) consists of all finite linear
combinations of a1, a2, . . . , with coefficients in {0, 1}, except for 0. (Note: in the literature,
an “n-cube” often refers to any translate of our Q(a1, . . . , an); also, 0 is often included in
the definition, and then our Q(a1, . . . , an) is called a “punctured n-cube”).

More recently Bergelson and Leibman [2, Corollary 1.9] showed, using measure-
preserving systems methods and ergodic theory, that if C is any infinite cube, and p(x)
is any polynomial with integer coefficients, positive leading coefficient, and p(0) = 0, then
{p(x) : x ∈ C} ∩ Z+ is large (in particular, {p(x) : x ≥ 1} ∩ Z+ is large). In fact, they
showed that if S is any subset of Z+ with positive upper density, then S contains arbitrarily
long arithmetic progressions with common differences of the form p(x), x ∈ C .

For an excellent exposition of some of these results and methods, see [1] and [7].
Here we give some results on large sets using completely elementary methods. In partic-

ular, we strengthen Furstenberg’s result mentioned above by showing (Theorem 3.2 below)
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that if the set A contains an n-cube for arbitrarily large n, then A is large. Our Corol-
lary 2.1 and Theorem 2.4 below are similar to results of Furstenberg [6, Theorem 3.2 and
Lemma 3.3] which deal with recurrence in measure-preserving systems.

2 Necessary Conditions

We begin with some conditions that are necesssary for a set to be large. Of course any
condition that is necessary for 2-large sets is also necessary for large sets.

For convenience, we will often use the term “d-a.p.” to refer to an arithmetic progression
whose common difference is d. Further, if A is a set of positive integers and if P is a d-a.p.
where d ∈ A, we say that P is an “A-a.p.”

Theorem 2.1 If A is 2-large, then for each positive integer m, A contains an infinite number
of multiples of m.

Proof It suffices to show that for every positive integer m, A contains some multiple of m.
By way of contradiction, assume A contains no multiples of the positive integer n. Color the
positive integers with the coloring χ represented by the sequence 11 . . . 1 00 . . . 0 11 . . . 1
00 . . . 0 . . . , where each block of 0’s or 1’s has length n.

Let d ∈ A and let X = {x1, . . . , xn+1} be a d-a.p. Since d ≡ i (mod 2n) for some 1 ≤
i ≤ 2n− 1, we see that X must contain some element, a, of the form 2k1n + j1, 1 ≤ j1 ≤ n,
as well as some element, b, of the form 2k2n + j2, n + 1 ≤ j2 ≤ 2n. Then χ(a) 6= χ(b), so
X is not monochromatic. Hence under χ there do not exist monochromatic (n + 1)-term
arithmetic progressions having common difference in A. Hence A is not 2-large.

Before stating the next theorem we adopt some notation and terminology. If I and J
are intervals of the same size having opposite color patterns (i.e., whenever x is in position
i of I, and y is in position i of J, then χ(x) 6= χ(y)), then if C is a string of 0’s and 1’s
representing the color pattern of I, we say that J has color pattern C . Also, if χ is a 2-
coloring and I and J are intervals of the same size with color patterns C and D, respectively,
such that either C = D or C = D, then we say that I and J imitate each other under χ.

Theorem 2.2 Let A = {ak}∞k=1 be a sequence of positive integers where either

ak ≥ 3ak−1 for k ≥ 2(1)

or

a1 = 1, a2 = 2, and ak ≥ 3ak−1 when k ≥ 3.(2)

Then A is not 2-large.

Proof We will prove that {ak}∞k=1 is not 2-large whenever

a1 = 1, a2 ≥ 2, and, for k ≥ 3, ak ≥ 3ak−1.(3)
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This is sufficient for the theorem since (2) is a special case of (3), and any A satisfying (1) is
a subset of some A ′ satisfying (3).

Let A = {ak} satisfy (3). Then for each k ≥ 3, ak can be expressed uniquely in the form

ak =

k−1∑
j=1

c(k)
j a j ,(4)

where the c(k)
j are defined recursively as follows: (i) c(k)

k−1 is the largest positive integer

such that ak ≥ (c(k)
k−1 + 1)ak−1; (ii) if k ≥ 4, then for each j = 2, . . . , k − 2, once

c(k)
k−1, c

(k)
k−2, . . . , c

(k)
j+1 have been defined, define c(k)

j to be the largest integer such that

ak ≥
( k−1∑

i= j+1

c(k)
i ai

)
+ (c(k)

j + 1)a j ;

(iii) finally, c(k)
1 is defined so that ak =

∑k−1
i=1 c(k)

i ai . For k = 2, set c(k)
1 = c(2)

1 = a2. It then

follows from (3) that c(k)
i ≥ 2 for all k ≥ 2 and all 1 ≤ i ≤ k− 1. Thus, for each k ≥ 2, we

can partition [1, ak] into subintervals:

B(k)(k− 1, 1) . . .B(k)(k− 1, c(k)
k−1)B(k)(k− 2, 1) . . .B(k)(k− 2, c(k)

k−2) . . .

. . .B(k)(1, 1) . . .B(k)(1, c(k)
1 ),

where |B(k)(i, j)| = ai for 1 ≤ i ≤ k − 1, 1 ≤ j ≤ c(k)
i , and where the subintervals are

listed such that subinterval B precedes subinterval B ′ when the members of B are less than
the members of B ′.

Let χ be the 2-coloring of the positive integers defined by: (i) χ(1) = 1; (ii) once
[1, a1], . . . , [1, ak−1] have been colored, color [1, ak] by coloring the B(k)(i, j) as follows:

χ
(
B(k)(i, j)

)
=

{
Ci if j is odd

Ci if j is even

where Ci denotes the color pattern for [1, ai].
We show that under χ there is no 5-term monochromatic am-a.p. for any m. Let m > 0

be fixed and let {x1, . . . , x5} be a 5-term am-a.p. Let k be the smallest positive integer such
that k > m and x1 ∈ [1, ak]. We consider three cases.

Case 1

x1 ∈ B(k)(i, j) where 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ c(k)
i . Let

S =
⋃
{B(k)(i, j) : 1 ≤ i ≤ m− 1, 1 ≤ j ≤ c(k)

i }.

Then |S| =
∑m−1

i=1 c(k)
i ai . By the way c(k)

m is defined, we have

ak ≤
( k−1∑

i=m+1

c(k)
i ai

)
+ (c(k)

m + 2)am.
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Hence, using (4), 2am ≥ |S|. Therefore x3 /∈ S.
We consider two subcases. In case x2 ∈ S, then x3 and x4 both belong to [ak + 1, ak +

2am]. Hence, by the definition of k it follows that x3 and x4 both belong to an interval that
imitates B(m+1)(m, 1)∪B(m+1)(m, 2). Then from the definition of χ, χ(x3) 6= χ(x4). In case
x2 /∈ S, then by the same reasoning we have that χ(x2) 6= χ(x3). Thus, in either subcase,
{x1, x2, x3, x4} is not a 4-term monochromatic am-a.p.

Case 2

x1 ∈ B(k)(m, j) for some j, 1 ≤ j ≤ c(k)
m . Now am ≤ ak −

∑k−1
i=m c(k)

i ai , so that am ≤ |S|.
Therefore x2 ∈ S, so by Case 1 {x2, x3, x4, x5} cannot be monochromatic.

Case 3

x1 ∈ B(k)(i, j) where m + 1 ≤ i ≤ k − 1 and 1 ≤ j ≤ c(k)
i . The block B(k)(i, j) imitates

[1, ai] under χ, i.e., it imitates

B(i)(i − 1, 1) . . .B(i)(i − 1, c(i)
i−1) B(i)(i − 2, 1) . . .B(i)(i − 2, c(i)

i−2) . . .

. . .B(i)(1, 1) . . .B(i)(1, c(i)
1 ).

Hence by Cases 1 and 2 we may assume x1 belongs to a sub-block of B(k)(i, j) that im-
itates B(i)(r, j) where m < r ≤ i − 1. If r > m + 1, then we can repeat this argument, so
that by a simple induction proof we may assume that x1 belongs to a block B∗ that imitates
[1, am+1] under χ. This means that we can assume k = m + 1, and we’re done by Case 1
and Case 2.

We have shown that in all cases, there is no 5-term monochromatic am-a.p. for any m,
so that A is not 2-large.

The next theorem shows that we can weaken the hypothesis of Theorem 2.2 from ai ≥
3ai−1 to ai ≥ 2ai−1, if we make the additional assumption that ai−1 divides ai for all i.

Theorem 2.3 If A = {ai}∞i=1 is an increasing sequence of positive integers where ai divides
ai+1 for all i, then A is not 2-large.

Proof Define a 2-coloring χ on the set of positive integers recursively, as follows. First let
χ(x) = 1 for all x ∈ [1, a1]. Once χ has been defined on [1, ai], we define χ on [1, ai+1] by
χ(x) 6= χ(x − ai) for each x ∈ [ai + 1, ai+1].

First note that, from the way χ is defined on [ai + 1, ai+1], for each i ≥ 1 there is no
2-term monochromatic ai-a.p. contained in [1, ai+1].

Now assume j > i + 1 and that {x1, x2, x3} is a monochromatic ai-a.p. that is contained
in [1, a j]. Since ai+1 divides a j , we see that every subinterval of [1, a j] of the form [kai+1 +
1, (k + 1)ai+1], k ≥ 1, imitates [1, ai+1]. Hence, since there is no 2-term monochromatic
ai-a.p. in [1, ai+1], neither of the pairs {x1, x2} and {x2, x3} could be in any one interval
[kai+1 + 1, (k + 1)ai+1]. This implies that x3 − x1 > ai+1 ≥ 2ai , a contradiction.

We have shown that for each i ≥ 1 and each j ≥ 1, there is no 3-term monochromatic
ai-a.p. with respect to χ, which is contained in [1, a j], which proves the theorem.
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The next theorem, important in proving many subsequent results, shows that finite
unions of small sets cannot be large.

Theorem 2.4 If A = A1 ∪ · · · ∪ An and A is large, then some Ai is large.

Proof By an obvious induction argument, it suffices to prove the result for n = 2. So let
A = B ∪ C , and assume neither B nor C is large. Since B is not large, there exist positive
integers r and k1, and some r-coloring ρ of Z+, under which there is no monochromatic
k1-term B-a.p. Likewise, there exist positive integers s and k2, and an s-coloring σ of Z+,
under which there is no monochromatic k2-term C-a.p.

Define χ to be the rs-coloring of Z+ given by χ(n) =
(
ρ(n), σ(n)

)
. Let k = max{k1, k2}.

Let X be any k-term a.p. that is monochromatic with respect to χ. Then X must also be
monochromatic with respect to each of the the colorings ρ and σ. Hence X must have
common difference lying outside B ∪C . Hence B ∪C is not large.

Corollary 2.1 Let c > 1 be a fixed real number. Let A = {ai}∞i=1 be an increasing sequence
of positive integers such that ai ≥ cai−1 for all but a finite number of i ≥ 2. Then A is not
large.

Proof Consider first the case in which ai ≥ cai−1 for all i ≥ 2. Let n be such that cn ≥ 3.
For each i = 1, . . . , n, let Ai = {a jn+i : j = 0, 1, 2, . . .}. For each i and each j ≥ 1,
a jn+i ≥ 3a( j−1)n+i . Hence by Theorem 2.2 each Ai is not 2-large. Since A = A1 ∪ · · · ∪ An,
by Theorem 2.4 A is not large (by the proof of Theorem 2.4, A is not 2n-large).

To complete the proof, let m ≥ 2 be such that ai ≥ cai−1 for all i ≥ m. By the above
case, {am−1, am, . . . } is not large. By Theorem 2.1, {a1, . . . , am−2} is not large. Hence, by
Theorem 2.4, A is not large (by the proof of Theorem 2.4, it is not 2n+1-large).

Remarks By Theorem 2.4 it is obvious that Corollary 2.1 can be extended to any set A =
B0 ∪ · · · ∪ Bm having the property that for each k = 0, . . . ,m, there exists a ck > 1 such
that Bk = {bk,i : i = 1, 2, . . . } with bk,i ≥ ckbk,i−1 for i ≥ 2. For example, let { fn : n ≥ 1}
be the set of Fibonacci numbers. It is easy to show that for each k ≥ 0 there exists a ck > 1
such that for all n ≥ 2, fn + k ≥ ck( fn−1 + k) (when k = 0 we can take ck = 3/2). Hence if
m is a fixed nonnegative integer, the set

⋃∞
n=1[ fn, fn + m] is not large.

Although the complement of a small set is large (by Theorem 2.4), the complement of a
large set need not be small. For example, by the work of Bergelson and Leibman, A = {n2}
and B = {2n2} are both large sets, but since B ⊆ Z+ − A, we have that Z+ − A is large.

We note that if A and B are small sets, then the proof of Theorem 2.4 does not necessarily
give the “best” (i.e., the least) value of n such that A ∪ B is not n-large. For example, let
m ≥ 3 be odd and let A = {ai} be an increasing sequence of positive multiples of m such
that ai−1 divides ai for all i ≥ 2. By Theorem 2.2 (or Theorem 2.3), A is not 2-large. Now
let B be the set of all positive integers n such that m - n. By Theorem 2.1, B is not 2-large.
Hence, according to Theorem 2.4, A ∪ B is not 4-large. However, by the following result,
we can make the stonger statement that A ∪ B is not 3-large.

Before proceeding we define, for m > 1, a k-term a.p. (mod m) to be an increasing
sequence of positive integers {xi}k

i=1 such that for some d ∈ {1, 2, . . . ,m−1}, xi−xi−1 ≡ d
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(mod m) for all i = 2, . . . , k. Denote by (AP)m the family of all a.p.’s (mod m). In [11]
it was shown that if m is odd and A is a finite set of multiples of m, then the family A∗ ∪
(AP)m does not have the 3-Ramsey property, where A∗ is the family of all A-a.p.’s. The next
proposition extends this result to certain cases in which A contains an infinite number of
multiples of m.

Proposition 2.1 Let m ≥ 3 be odd and let A = {ai} be a sequence of positive integers such
that m | a1 and ai−1 | ai for i ≥ 2. Let A∗ be the family of all A-a.p.’s. Then A∗ ∪ (AP)m does
not have the 3-Ramsey property.

Proof We give a 3-coloring χ of the positive integers, and show that under χ there is no
monochromatic m-term a.p. (mod m) and no monochromatic 3-term ai-a.p. for all i.

Let S1 =
[
1, dm/3e

]
, S2 =

[
dm/3e+ 1, d2m/3e

]
, and S3 =

[
d2m/3e+ 1,m

]
. Denote by

C1 the string of length m representing the coloring defined by

C1(x) =




1 if x ∈ S1

2 if x ∈ S2

3 if x ∈ S3.

Denote by C2 the string of length m representing the coloring defined by

C2(x) =




3 if x ∈ S1

1 if x ∈ S2

2 if x ∈ S3.

If I is an interval of length m and χ is a coloring such that χ(I) = C1, define χ(I) to be the
coloring C2; and if χ(I) = C2, define χ(I) to be the coloring C1.

We now define the coloring χ recursively as follows: (i) for each x ∈ [1, a1], let x ′ be
the element of [1,m] such that x ≡ x ′(mod m), and let χ(x) = C1(x ′); (ii) once [1, ai−1],
i ≥ 2, has been colored, we color [ai−1 + 1, ai] as follows:

χ
(
[kai−1 + ( j − 1)m + 1, kai−1 + jm]

)
= χ
(
[(k− 1)ai−1 + ( j − 1)m + 1, (k− 1)ai−1 + jm]

)
,

for 1 ≤ k ≤ (ai/ai−1)− 1 and 1 ≤ j ≤ ai−1/m .
Note that, from elementary group theory, since m ≥ 3, any m-term a.p. (mod m) con-

tains at least one element from each of S1, S2, and S3. Hence there is no m-term monochro-
matic a.p. (mod m).

Now assume that {x, y} is monochromatic with y − x = ai . Consider the partition of
the positive integers Z+ =

⋃∞
j=1 B j , where B j = [( j − 1)ai+1 + 1, jai+1]. Note that, by

the way χ is defined, x and y cannot be monochromatic and lie in the same B j . Thus, y
and y + ai do lie in the same B j , and hence χ(y) 6= χ(y + ai). That is, there is no 3-term
monochromatic ai-a.p., and the proof is complete.
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Corollary 2.2 Let m ≥ 3 be odd and let B be the set of all positive integers not divisible by
m. Let A = {ai} be an increasing sequence of positive multiples of m such that ai−1 | ai for
i ≥ 2. Then A ∪ B is not 3-large.

Proof This is immediate from Proposition 2.1 since each B-a.p. is a member of (AP)m.

Remark Corollary 2.2 follows from Proposition 2.1 by the fact that A∗(m), the set of all
arithmetic progressions having common differences which are not multiples of m, is a sub-
set of the set (AP)m. On the other hand, there are examples showing that we cannot always
replace the collection (AP)m by the collection A∗(m) and expect the Ramsey properties to
be unaffected. For example, in [12] it was shown that if D is the set of all arithmetic progres-
sions with common difference 2, then the family (AP)2 ∪ D has the 3-Ramsey property. In
contrast, by Theorem 2.1, we see that A∗(2)∪D does not even have the 2-Ramsey property,
i.e., A = {2n−1 : n ∈ Z+}∪{2} is not 2-large. In fact, B = {2n−1 : n ∈ Z+}∪{2n : n ≥ 0}
is not 2-large, since B contains no multiples of six.

3 Some Positive Results

In this section we give some sufficient conditions for a set to be large.

Lemma 1 For each positive integer r, if A is r-large and F is finite, then A− F is r-large.

Proof It suffices to show that A − {a} is r-large for each a ∈ A. Assume this is not
the case. Then there is an a0 ∈ A, an r-coloring f of Z+, and a k ∈ Z+ such that there
is no monochromatic k-term (A − {a0})-a.p. Hence, under f , there are arbitrarily long
monochromatic a0-a.p.’s. By Theorem 2.1, ma0 ∈ A for some m > 1. Under f , there are
arbitrarily long monochromatic ma0-a.p.’s, a contradiction.

Theorem 3.1 Let p(x) be a polynomial with integer coefficients and leading coefficient pos-
itive. If x + a divides p(x) for some integer a, then

(
range(p) = {p(x) : x = 1, 2, . . . }

)
∩ Z+

is large.

Proof Let p(x) = (x + a)s(x). Let q(x) = p(x − a). So q(x) = xs(x − a). By the result
of Bergelson and Leibman mentioned in Section 1, range(q) ∩ Z+ is large. If a ≤ 0, then
range(q) ⊆ range(p), so range(p) ∩ Z+ is large. If a > 0, then range(p) = range(q) − F,
where F is finite, so by Lemma 3.1 range(p) ∩ Z+ is large.

Remarks Does the converse of Theorem 3.1 hold? That is, if no x+a divides the polynomial
p(x), does it follow that {p(n) : n ∈ Z+} is not large? It is easy to see (by Theorem 2.1)
that the answer is yes if p(x) has degree one, for if p(x) = ax + b, where b is not a multiple
of a, then the range of p(x) contains no multiples of a. We do not know the answer for the
general case. Another question: is it true that whenever the range of a polynomial p(x) is
not large, then the range fails to contain multiples of some positive integer m? It would be
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interesting to know whether the range of the polynomial f (x) = (x2−13)(x2−17)(x2−221)
is large, because although f (x) has no linear factors, its range contains an infinite number
of multiples of every positive integer m (using the properties of the Legendre symbol, one
can show that the congruence f (x) ≡ 0 (mod m) is solvable for all m).

Theorem 3.2 If A is a set of positive integers containing n-cubes for arbitrarily large n, then
A is large.

Proof The proof makes use of the Hales-Jewett theorem [9], for which we need some
notation. Let k be any fixed positive integer, and let B = {0, 1, . . . , k − 1}. For a positive
integer n, we consider the set Bn of n-tuples with entries from B, and the set (B ∪ λ)n of
n-tuples with entries from B ∪ λ, where λ is an indeterminate.

Let w(λ) denote an element of (B ∪ λ)n in which at least one λ occurs. For each i,
0 ≤ i ≤ k− 1, let w(i) denote the result of replacing each occurrence of λ in w(λ) by i.

A combinatorial line in Bn is any set L having the form L = {w(0),w(1), . . . ,w(k − 1)}
for some n-tuple w(λ) in (B ∪ λ)n, where w(λ) has at least one occurrence of λ.

The Hales-Jewett theorem asserts that for any given positive integers k and r, with B =
{0, 1, . . . k− 1}, there exists a positive integer n such that for every r-coloring of Bn there is
a monochromatic combinatorial line.

Now let r be a positive integer and let χ be any r-coloring of the positive integers. We
assume that A contains arbitrarily large cubes, and we wish to show that for each k there are
monochromatic k-term A-a.p.’s. Let k be given, and choose n according to the Hales-Jewett
theorem so that every r-coloring of Bn, where B = {0, . . . , k − 1}, has a monochromatic
combinatorial line. Since A contains arbitrarily large cubes, A contains an n-cube, say
Q(a1, . . . , an).

Now define an r-coloring σ, of Bn, as follows: for each (x1, . . . , xn) in Bn, let

σ(x1, . . . , xn) = χ(x1a1 + x2a2 + · · · + xnan).

By the choice of n, there exists a combinatorial line L = {w(0), . . . ,w(k − 1)} that is
monochromatic with respect to σ. To simplify our notation, we may assume that w(λ) =
(x1, x2, . . . , xs, λ, λ, . . . , λ), where s ≤ n − 1, all the xi ’s belong to B, and there are n − s
occurrences of λ. Then for 0 ≤ i ≤ k− 1,

σ
(
w(i)
)
= σ(x1, x2, . . . , xs, i, i, . . . , i) = χ

(
x1a1 + · · · xsas + i(as+1 + · · · an)

)
.

Writing a = x1a1 + · · · xsas and d = as+1 + · · · + an, we have that d ∈ Q(a1, . . . , an) ⊆ A,
and χ is constant on the k-term arithmetic progression P = {a + id : 0 ≤ i ≤ k − 1}.
Hence we have shown that for each r > 0 and each k > 0, every r-coloring of the positive
integers contains a monochromatic k-term A-a.p.

In the next corollary, the symbol {r} denotes the fractional part of the real number r,
i.e., {r} = r − brc.

Corollary 3.1

(a) Let α > 0 be irrational and let ε > 0. Then A = {i ∈ Z+ : {iα} < ε} is large.
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(b) Let α > 0. Then A = {bnαc : n ∈ Z+} is large.
(c) If A is a set of positive integers containing arbitrarily long intervals, then A is large.

Proof (a) Since {{iα} : i ∈ Z+} is dense in the unit interval, for each k ≥ 1 we
may choose ak ∈ A such that {akα} < ε/2k. Let n be a given positive integer. Then
{(a1 + · · · + an)α} < ε, so A contains the infinite cube Q(a1, a2, . . . ). By Theorem 3.2, A is
large.

(b) The proof is essentially the same as the proof of (a).
(c) The set must contain an infinite cube (see [5, p. 171]).

By Theorem 3.1, the range of any polynomial with integer coefficients, that is divisible
by x + a for some a, is large. However, it is easy to find a large set A with the property that
for each polynomial p(x) with integer coefficients, A does not contain all but finitely many
elements of range(p) (we say “all but finitely many” because of Lemma 3.1). This follows
easily from the following more general result.

Proposition 3.1 If R1,R2, . . . is a sequence of infinite subsets of Z+, then there exists a large
set A such that the complement of A contains infinitely many elements of every Ri.

Proof We define B = {b1, b2, . . . } as follows. Let b1 and b2 be arbitrary elements of R1

such that b2 > b1.
Now assume j ≥ 3. Once b1, . . . , b j−1 have been defined, choose b j such that b j ∈ Ri

and b j − b j−1 > b j−1 − b j−2. Then the sequence {b j : j = 1, 2, . . .} contains infinitely
many members of each Ri . Also, b j − b j−1 goes to infinity with j. Hence, if A = Z+−{b j :
j = 1, 2, . . . }, A contains arbitrarily long intervals, hence is large by Corollary 3.1(c).

The following theorem provides some simple ways of obtaining large sets from other
large sets. The proofs are relatively straightforward and are omitted.

Theorem 3.3

(a) If A is large and m is a positive integer, then mA is large.
(b) If A is large and m is a positive integer, then A− {x : m - x} is large.
(c) If A is r-large, and if all elements of A are multiples of the positive integer m, then 1

m A is
r-large (hence, A large implies 1

m A large).

We have yet to see an example of a set A that is r-large for some r ≥ 2, but that is not
large. We make the following conjecture.

Conjecture If A is 2-large, then A is large.

We have some partial results concerning the above conjecture. In the following theorem,
we use the symbol An, where A is a set of positive integers, to denote the set of products
{x1x2 . . . xn : xi ∈ A}.

Theorem 3.4 If A is 2-large, then An is 2n-large.
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Sketch of Proof We prove this by induction on n. For the induction step, let χ be a 2n+1-
coloring of the positive integers, using the colors 1, 2, 3, . . . , 2n+1. Define the 2-coloring λ
on Z+ by

λ(x) =

{
a if χ(x) ∈ [1, 2n]

b if χ(x) ∈ [2n + 1, 2n+1].

Corollary 3.2 If A is 2-large and is closed under multiplication, then A is large.

4 Remarks and Questions

We do not know if Theorem 2.4 is still true if we replace “large” with “r-large.” In particular,
if A ∪ B is 2-large, must it follow that at least one of A or B is 2-large? We remarked in
Section 2 that, by Theorem 2.1, the set {2n − 1 : n ≥ 1} ∪ {2n : n ≥ 0} is not 2-large.
We would like to know if {2n − 1 : n ≥ 1} ∪ {n! : n ≥ 1} (an example not covered by
Theorem 2.1) is 2-large (it is not 4-large by Theorem 2.2 and the proof of Theorem 2.4).

We also ask: which sets A have the property that some translation of A is large, i.e., for
which A does there exist an integer x such that x + A = {x + a : a ∈ A} is large? By the
result of Bergelson and Leibman, the range of any polynomial p(x) has this property, since
p(x)− p(0) sends 0 into 0. Also, it follows from Theorem 2.4 that any set A with bounded
gaps has this property since then Z+ =

⋃s
i=0(A + i) for some s. It would be interesting to

know if some translation of the set of primes is large (by Theorem 2.1, it would have to be
an odd translation).

Let p(x) be any polynomial with integer coefficients, positive leading coefficient, and
p(0) = 0, and let A be a large set. Must {p(x) : x ∈ A} be large? In particular, must
{x2 : x ∈ A} be large?
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