LOCAL NEAR-RINGS OF CARDINALITY p²

Carlton J. Maxson*

(received February 9, 1968)

The main result of this paper is the determination of all non-isomorphic local near-rings < N, +, \Rightarrow with < N, $+> \stackrel{\sim}{=} < C(p) \times C(p)$, +> which are not near-fields. Together with the fundamental paper [6] by Zassenhaus on near-fields and the corollary to Theorem 1 of [2], this paper gives a complete description of all local near-rings of order p^2 .

We recall that a unitary near-ring N is called <u>local</u> if the subset L of elements in N without left inverses is an (N, N)-subgroup and $N \neq J(N)$. (J(N)) denotes the radical of N given in [1].) In [3] it was proved that $N \neq J(N)$ whenever L is an ideal of N. (For previous results concerning local near-rings we refer the reader to [3].)

In this paper "local near-ring" will mean a finite local near-ring which is <u>not</u> a near field. Furthermore, it will be assumed that local near-rings N of order $|N| = p^2$ have additive groups isomorphic to $< C(p) \times C(p)$, +> where $C(p) = \{0, 1, 2, \ldots, p-1\}$.

In the first section we show that the local near-rings under consideration give rise to maps $\rho: C(p) \to C(p)$ satisfying

(i)
$$\rho(x) = 0$$
 <=> $x = 0$,

(ii) ρ is a group endomorphism of $\langle C(p) - \{0\} \rangle$, $\langle C(p) - \{0\} \rangle$

and conversely, every such map $\,\rho\,$ determines a local near-ring with additive group isomorphic to $< C(p) \times C(p)$, +>. We then establish that the number of non-isomorphic local near-rings of order $\,p^2\,$ is $\,p-1$.

In §2 the apparently more general problem of determining all local near-rings N with |L| = p is considered. However we show that such near-rings must have cardinality p^2 and hence have been determined.

Canad. Math. Bull. vol. 11, no. 4, 1968.

^{*}This work was supported by the Research Foundation of the State University of New York.

1. Local near-rings of order p^2 . In this section $N \equiv \langle N, +, \cdot \rangle$ denotes a local near-ring of order $|N| = p^2$ and L denotes the set of elements in N which do not have left inverses in N. Since $L \equiv \langle L, +, \cdot \rangle$ is a proper ideal of N and N is not a near-field, $(0) \subset L \subset N$ implies that $\neq \neq 1$ $\neq 1$ $\neq 1$ is a cyclic subgroup of $\langle N, + \rangle$ of order |L| = p.

LEMMA 1.1. $\forall x \in L$, Lx = (0).

<u>Proof.</u> Assume $Lx \neq (0)$ for $x \neq 0 \in L$. Then Lx = L and so there exists $k \in L$ such that kx = -x or (1 + k)x = 0. Since $1 \notin L$, $1 + k \notin L$ which means that there is some $\bar{k} \in N$ such that $\bar{k}(1 + k) = 1$. But then $x = \bar{k}(1 + k)x = 0$.

If e denotes the multiplicative identity of N then the order of e is p (see [2]); i.e., e is an element of maximal order in N. Let (e) denote the cyclic subgroup of $\langle N, + \rangle$ generated by e. It is clear that (e) $\Omega \langle L, + \rangle = (0)$ and since |(e)| = |L| = p we have

LEMMA 1.2. If (e) denotes the cyclic group of N generated by the multiplicative identity e then <N, +> = (e) \oplus <L, +>.

Let ℓ be a generator of <L, +>. With respect to the basis $\{e,\ell\}$ each element $x \in N$ has the unique representation $x = x_1 e + x_2 \ell$

where $x_i \in C(p) = \{0, 1, 2, \ldots, p-1\}$, i = 1, 2. Thus we take < N, $+> = < C(p) \times C(p)$, +> where the addition + on $C(p) \times C(p)$ is pointwise. Hence e = <1, 0>, $\ell = <0, 1>$ and $L = \{<0, x> \mid x \in C(p)\}$.

As in [4] every element $x = \langle x_1, x_2 \rangle \in \mathbb{N}$ is associated with a matrix

$$M(x) = \begin{bmatrix} x_1 & x_2 \\ & & \\ \rho_{21} & \rho_{22} \end{bmatrix}$$

where $\rho_{2i}: C(p) \times C(p) \rightarrow C(p)$ is a mapping with $\rho_{2i}(0,0) = 0$, $i = 1, 2, \rho_{21}(1,0) = 0$ and $\rho_{22}(1,0) = 1$. Moreover the multiplication, in N is given by

$$<\mathbf{x}_{1}, \, \mathbf{x}_{2}> \cdot <\mathbf{y}_{1}, \, \mathbf{y}_{2}> \ = \ <\mathbf{x}_{1}, \, \mathbf{x}_{2}> \cdot \, \mathbf{M}(\mathbf{y}) \ = \ <\mathbf{x}_{1}\mathbf{y}_{1} \ + \, \mathbf{x}_{2}\rho_{21}(\mathbf{y}), \ \, \mathbf{x}_{1}\mathbf{y}_{2} \ + \, \mathbf{x}_{2}\rho_{22}(\mathbf{y})>.$$

Let $y = \langle y_1, y_2 \rangle$ ϵ N. Since L is an (N, N)-subgroup, $\langle 0, 1 \rangle \langle y_1, y_2 \rangle = \langle \rho_{21}(y), \rho_{22}(y) \rangle$ ϵ L which implies that $\rho_{21}(y) = 0$, $y \in N$. Using some rather technical lemmas we next show that $\rho_{22} \equiv \rho$ can be considered as a map with domain C(p).

LEMMA 1.3. <0, 1><1, 1>=<0, 1>.

<u>Proof.</u> Let $\rho(1,1) = k$ where $k \in C(p)$. Then <0,1><1,1> = <0,k> and so for all $y \in C(p)$, <y - ky, y><1,1> = <y - ky, y>. If u = <y - ky, $y> \notin L$ then there exists $w \in N$ such that wu = <1,0>. This in turn gives $<1,1> = w \cdot u \cdot <1,1> = w \cdot u = <1,0>$. This contradiction shows that $u \in L$ and hence y = ky. But since $k \in C(p)$, k = 1 which is the desired result.

LEMMA 1.4. For all $b \in C(p)$, <0, 1> <1, b> = <0, 1>.

<u>Proof.</u> The result is clear if b = 0 or b = 1. We note further that $<1, 1>^{m} = <1, m'>$ where $m' \in C(p)$, $m' \not\equiv m \mod p$. For if m = 2 then $<1, 1> <1, 1> = <1, 0> <1, 1> + <0, 1> = <1, 1> + <0, 1> = <1, 2> and <math><1, 1>^{n} = <1, n-1> <1, 1> = <1, 0> <1, 1> + (n-1) <0, 1> <1, 1> = <1, n>. Then using associativity, <math><0, 1> <1, b> = <0, 1> <1, 1>^{b} = <0, 1>.$

If $r \in N$ and $r \notin L$ then for every non-zero $x \in N$, $xr \neq 0$; otherwise since $r \notin L$, r is a unit and this implies $x = x \cdot 1 = xrr^{-1} = 0 \cdot r^{-1} = 0$. Hence for all $a \neq 0 \in C(p)$, we have $<0, 1>\cdot < a, 0> = <0, k>$, $k \neq 0$ in C(p). Thus for all $b \in C(p)$, $<0, 1>\cdot < a, b> = <0, 1>\cdot (<1, bk^{-1}>\cdot < a, 0>) = <0, 1> < a, 0> = <0, k>$. This proves:

LEMMA 1.5. If $a(\neq 0) \in C(p)$ then <0, 1>•<a, 0> = <0, k> where $k \neq 0$ in C(p) and for all $b \in C(p)$, <0, 1>•<a, b> = <0, k>.

From Lemma 1.1 which shows <0, 1> <0, b> = <0, 0> for all b ϵ N (i.e., ρ (0, b) = 0) and the preceding lemma we see that ρ : $<\mathbf{x}_1$, $\mathbf{x}_2>\epsilon$ C(p) \times C(p) \mapsto y ϵ C(p) depends only on the first component and can therefore be considered as a map ρ : C(p) \mapsto C(p). Moreover the map ρ : C(p) \mapsto C(p) associated with the near-ring N is independent of the choice ℓ of generator of L. For if k also generates L then a map σ : C(p) \mapsto C(p) is determined using the basis $\{e,k\}$ of <N, +>. With respect to the basis $\{e,\ell\}$, k = a ℓ for some a ℓ C(p) and for every x ℓ C(p), <0, a> ℓ <x, 0> = <0, a ρ (x)>. With respect to the basis $\{e,k\}$ this same product in N is <0, σ (x)>. Hence σ (x)k = a ρ (x) ℓ and since k = a ℓ \neq 0 in C(p) we have σ (x) = ρ (x) for all x ℓ C(p).

The associativity of the multiplication in N is equivalent to $M(x)\cdot M(y)=M(x\cdot y)$ (see [4]) where $x=\langle x_1,x_2\rangle$, $\langle y_1,y_2\rangle$, $z=\langle z_1,z_2\rangle$

in N which in turn implies $\rho(x_1) \cdot \rho(y_1) = \rho(x_1y_1)$ in C(p). Moreover $x_1 \neq 0$ in C(p) implies $x = \langle x_1, x_2 \rangle$ has a left inverse in N and thus there exists $y = \langle y_1, y_2 \rangle$ with $y_1x_1 \equiv 1 \mod p$ and $y_1x_2 + y_2\rho(x_1) \equiv 0 \mod p$. Hence $\rho(x_1) \neq 0$ for $x_1 \neq 0$. We have established:

THEOREM 1.6. Every local near-ring with cardinality ρ^2 determines a map ρ : $C(p) \rightarrow C(p)$ which satisfies

Conversely suppose we are given a map $\rho: C(p) \to C(p)$ which satisfies conditions (S) of the above theorem. Using ρ we define a multiplication * on <N, +> $\frac{1}{2} < C(p) \times C(p)$, +> as follows:

$$(\neq \neq)$$
 $\langle x_1, x_2 \rangle * \langle y_1, y_2 \rangle = \langle x_1, x_2 \rangle$ $\begin{bmatrix} y_1 & y_2 \\ & & \\ 0 & \rho(y_1) \end{bmatrix}$

It is easily verified that * is associative and right distributive over +. Moreover <0,0> is a two-sided zero and <1,0> a two-sided identity for *.

We also note that for each $y = \langle y_4, y_2 \rangle \in \mathbb{N}$ the system

$$x_1y_1$$
 $\equiv 1 \mod p$ $x_1y_2 + x_2\rho(y_1) \equiv 0 \mod p$

has a unique solution mod p if and only if

$$\begin{bmatrix} y_1 & 0 \\ y_2 & \rho(y_1) \end{bmatrix} = \begin{bmatrix} y_1 & y_2 \\ 0 & \rho(y_1) \end{bmatrix} \neq 0 \mod p.$$

That is, if and only if $y_4 \neq 0$ in C(p). Hence if L denotes the set of elements without left inverses in N then $y = \langle y_1, y_2 \rangle_{\epsilon}$ L if and only if $y_1 = 0$. It is clear that L is an (N, N)-subgroup and for $x, y \in N$, $k \in L$, an easy computation shows $x * (y + k) - x * y \in L$. This proves:

THEOREM 1.7. If ρ : $C(p) \rightarrow C(p)$ satisfies conditions (S) of Theorem 1.6 then $N = \langle C(p) \times C(p), +, * \rangle$ is a local near-ring where + is point-wise addition and * is given by (#).

COROLLARY 1.8. The near-ring given in the above theorem is a ring <=> ρ ϵ End (<C(p), +>).

Theorems 1.6 and 1.7 show that every local near-ring of order p^2 determines a function $p: C(p) \to C(p)$ satisfying certain conditions (S) and conversely every such function determines a local near-ring of order p^2 . We next show there exists a bijection between the set of functions satisfying (S) and the set of isomorphic classes of local near-rings of order p^2 .

LEMMA 1.9. Every map $\rho: C(p) \rightarrow C(p)$ satisfying conditions (S) determines a set of isomorphic local near-rings.

<u>Proof.</u> Let N_1 and N_2 be local near-rings of order p^2 with multiplications $*_1$ and $*_2$ respectively, given by ρ . Let e_i denote the identity of N_i and ℓ_i a generator of L_i in N_i , i=1,2. The map $\emptyset:N_1\to N_2$ given by $\emptyset(e_1)=e_2$ and $\emptyset(\ell_1)=\ell_2$ is a group isomorphism. It remains to show that \emptyset is a near-ring homomorphism. To this end let $x=x_1e_1+x_2\ell_1$ and $y=y_1e_1+y_2\ell_2$ in N_1 . Then $x*_1y=x_1y_1e_1+(x_1y_2+x_2\rho(y_1))\ell_1$ and $\emptyset(x*_1y)=x_1y_1e_2+(x_1y_2+x_2\rho(y_1))\ell_2=\emptyset$ (x) $*_2$ \emptyset (y).

Let $N_1 \equiv \langle N_1, +, *_1 \rangle$, $N_2 \equiv \langle N_2, +, *_2 \rangle$ and $\emptyset: N_1 \rightarrow N_2$ be a near-ring isomorphism. Suppose further that $*_i$ determines β_i , i=1,2. As observed above, β_2 is independent of the choice of generator of L_2 and so without loss of generality we use $\{e_2, \emptyset(\ell_1)\}$ as a basis of

<N2, +> where {e1, l1} is a basis of <N1, +>. Hence \emptyset (<1, 0>) =
<1, 0> ϵ N2 and \emptyset (<0, 1>) = <0, 1> ϵ N2. Thus for every $x \epsilon$ C(p),
<0, $\rho_1(x)$ > = \emptyset (<0, $\rho_1(x)$ >) = \emptyset (<0, 1> $*_1$ <x, 0>) = \emptyset (<0, 1>) $*_2$ \emptyset (<x, 0>) =
<0, 1> $*_2$ <x, 0> = <0, $\rho_2(x)$ >; i.e., ρ_1 = ρ_2 . Together with Lemma 1.9 this establishes:

THEOREM 1.10. If $N_i = < N_i$, +, $*_i >$ are local near rings of order p^2 where $*_i$ determines ρ_i , i = 1, 2 then $N_1 \cong N_2 <=> \rho_1 = \rho_2$.

Thus, to determine the number of non-isomorphic local near-rings $< N, +, \cdot >$ with $< N, +> \stackrel{\sim}{=} < C(p) \times C(p), +>$, which are not near-fields, it suffices to find the number of maps $\rho : C(p) \rightarrow C(p)$ satisfying conditions (S). This is precisely the cardinality of End ($< C(p) - \{0\}$, <>) which is well-known to be p-1 ([5]).

COROLLARY 1.11. Up to isomorphism there are p - 1 local nearings $N \equiv \langle N, +, \rangle$ with additive group isomorphic to $\langle C(p) \times C(p), + \rangle$ which are not near-fields.

In particular, local near-rings N of cardinality |N|=4 which are not near-fields are local rings. For $p\geq 3$ the maps $\rho:C(p)\to C(p)$ given by

$$\rho(\mathbf{x}) \quad = \quad \begin{cases} 0 & \mathbf{x} = 0, \\ \\ 1 & \text{otherwise} \end{cases}$$

determine local near-rings of orders p 2 which are not rings.

2. Finite local near-rings with |L|=p. Let y be an arbitrary element of a near-ring N. It is easily verified that the left annihilator of y, $A_{\rho}(y) = \{x \in N \mid xy = 0\}$, is a left ideal of N.

Let N denote a finite local near-ring (not a near-field) and let $y \in L$, $y \neq 0$. The map $\theta_y : N \to Ny$ given by $\theta_y(x) = xy$, $x \in N$ is an N-epimorphism of N and Ker $\theta_y = A_\ell(y)$. Hence $N \neq N$ and consequently $|N| = |A_\ell(y)| \cdot |Ny|$. But $y \in L$ implies $Ny \subseteq L$ and since $A_\ell(y) \neq N$ we have $A_\ell(y) \subseteq L$. This proves:

THEOREM 2.1. If N is a finite local near-ring which is not a near-field then $|N| \le |L|^2$.

COROLLARY 2.2. $|L| = p <=> |N| = p^2$.

<u>Proof.</u> If $|N| = p^2$ then |L| = p since we are assuming |L| > 1. Conversely if |L| = p then $|N| \le p^2$ implies $|N| = p^2$ since we know $|N| = p^n$ for some positive integer n.

Hence our results of §1 determine all local near-rings N with |L| = p which are not near-fields.

COROLLARY 2.3. If N is a finite local near-ring with |L| = p then < N, +> is an abelian group.

REFERENCES

- James C. Beidleman, A radical for near-ring modules. Mich. Math. J., 12 (1965) 377-383.
- 2. James R. Clay and Joseph J. Malone, Jr., The near-rings with identities on certain finite groups. Math. Scand. 19 (1966) 146-150.
- 3. Carlton J. Maxson, On local near-rings. Math. Z., 106 (1968) 197-205.
- 4. Carlton J. Maxson, On the construction of finite local near-rings (I): On non-cyclic abelian p-groups (to appear).
- Hans J. Zassenhaus, The theory of groups, 2nd ed. (Chelsea, New York, 1958).
- 6. Hans J. Zassenhaus, Über endliche Fastkörper. Abh. Math. Sem., Univ. Hamburg, Vol. II (1936) 187-220.

State University College, Fredonia, New York 14063