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The main result of this paper is the determination of all non-
isomorphic local near-rings <N, +, > with <N, + Z <C(p) X C(p), +
which are not near-fields. Together with the fundamental paper [6] by
Zassenhaus on near-fields and the corollary to Theorem 1 of [2], this

paper gives a complete description of all local near-rings of order pz.
We recall that a unitary near-ring N is called local if the subset

L of elements in N without left inverses is an (N, N)-subgroup and

N # J(N). (J(N) denotes the radical of N given in [1].) In[3] it was

proved that N # J(N) whenever L is an ideal of N. (For previous
results concerning local near-rings we refer the reader to [3].)

In this paper '"local near-ring" will mean a finite local near-ring
which is not a near field. Furthermore, it will be assumed that local
2
near-rings N of order INI =p have additive groups isomorphic to

<C(p) X C(p), +> where C(p) ={0,1,2,...,p-1}.

In the first section we show that the local near-rings under
consideration give rise to maps p : C(p) - C(p) satisfying

(i) pix)=0 <=> x=0,
(ii) p is a group endomorphism of <C(p)-{0}, =

and conversely, every such map p determines a local near-ring with
additive group isomorphic to <C(p)X C(p), +>. We then establish that
2
the number of non-isomorphic local near-rings of order p is p - 1.
In §2 the apparently more general problem of determining all

local near-rings N with |L| = p is considered. However we show

. o 2
that such near-rings must have cardinality p and hence have been
determined.
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1. Local near-rings of order pz. In this section N =<N, + >

2
denotes a local near-ring of order IN' =p and L denotes the set of
elements in N which do not have left inverses in N. Since L =<L, + >

is a proper ideal of N and N is not a near-field, (0) C LCN implies that
t
<L, +> 1is a cyclic subgroup of <N, +> of order IL' = p.

LEMMA 1.1. v x « L, Lx = (0).

Proof. Assume Lx # (0) for x#0 ¢ L. Then Lx =L and so
there exists k ¢ L such that kx = -x or {1 +k)x = 0. Since 1¢ L,
4 - -
1 +k ¢ L which means that there is some k ¢ N such that k(1 +k) = 1.

But then x = k(1 + k)x = 0.

If e denotes the multiplicative identity of N then the order of

e is p (see [2]); i.e., e is an element of maximal order in N.
Let (e) denote the cyclic subgroup of <N, +> generated by e. Itis
clear that (e)N<L, +> = (0) and since I(e)l = IL[ = p we have

LEMMA 1.2. If (e) denotes the cyclic group of N generated by
the multiplicative identity e then <N, +> = (e) ® <L, +.

Let £ be a generator of <L, +. With respect to the basis {e/f}

each element x ¢ N has the unique representation x = x, e + xzﬂ

where X, € C(p) ={0,1,2, ..., p-1}, i=1,2. Thus we take
<N, + =<C(p) X C(p), + where the addition + on C(p) X C(p) is
pointwise. Hence e =<1,0>, £ =<0,1> and L ={<0,x>l x ¢ C(p)} .

x.> ¢ N is associated with a matrix

As in [4] every element x = <x1, 2

where p2i : C(p) X C(p) = C(p) is a mapping with pZi (0,0) =0,
i=1,2, p21 (1,0) = 0 and p22 (1,0) = 1. Moreover the multiplication *
in N is given by

x>y > = <, x>0 MIy) = <y F o0, () Xy, xR, ()
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Let y = <y1, y.> ¢ N. Since L is an (N, N)-subgroup, <0, 1>~<y1,y2> =

2

<p21(y), (y)> ¢ L which implies that p21(Y) =0, y ¢ N. Using some

P22
rather technical lemmas we next show that P22 =p can be considered as

a map with domain C(p).
LEMMA 1.3. <0, 1>:<1, 1> = <0, 1>.

Proof. Let p(1,1) = k where k ¢ C(p). Then <0, 1>.<1,1> =<0, k>
and so for all y ¢ C(p), <y - ky, y><1,1> =<y - ky, y>. If u =<y -ky, y>¢ L
then there exists w e N such that wu =<1,0>. This in turn gives <1,1> =
wsus<i,1>=w.u =<1,0>. This contradiction shows that ue¢ L and
hence y = ky. But since k ¢ C(p), k =1 which is the desired result.

LEMMA 1.4, For all b e C(p), <0, 1>-<1,b> =<0, 1>.

Proof. The result is clear if b =0 or b =1. We note further that
<1, 1>m =<1, m'> where m' ¢ C(p), m' = m mod p. For if m =2 then
<1, 1><1, 1> =<1, 0>:<1, 1> + <0, 1><1, 1> =<1, 1> +<0, 1> =<1,2> and
<1, 157 = <1, n-1>:<1, 1> = <1, 0>e<1, 1> + (n-1) <0, 1><1, 1> = <1, n>. Then

b
using associativity, <0, 1>:<1,b> =<0, 1> <1, 1> =<0, 1>,

I re N and r ¢ L thenfor every non-zero xe¢ N, =xr # 0; otherwise

-1 -1
since r ¢ L, r is a unit and this implies x=x+ 1 = xrr =0e¢r =0.

Hence for all a (# 0) ¢ C(p), we have <0,1>.<a, 0> =<0,k>, k# 0 in C(p).

-1
Thus for all b e C(p), <0,1>«<a,b> =<0, 1>+ (<1,bk >«<a, 0>)= <0, 1> <a, 0>
=<0,k>. This proves:

LEMMA 1.5. I a(#0) ¢ C(p) then <0, 1>:.<a, 0> = <0,k> where
k #0 in C(p) and for all b e C(p), <0, 1>.<a,b> =<0, k>.

From Lemma 1.1 which shows <0, 1>«<0,b> =<0, 0> for all be N
(i.e., p(0,b) = 0) and the preceding lemma we see that p : <X1 X2> €

C(p) X C(p) = y ¢ C(p) depends only on the first component and can therefore
be considered as a map p * C(p) = C(p). Moreover the map p : C(p) > C(p)
associated with the near-ring N is independent of the choice { of generator
of L. For if k also generates L then amap 0 : C(p) - C(p) is determined
using the basis {e,k} of <N, . With respect to the basis {e,{}, k = af
for some a e C(p) and for every x e C(p), <0, a><x, 0> =<0, ap(x)>. With
respect to the basis {e, k} this same productin N is <0, o(x)>. Hence
o(x)k = ap(X)Z and since k = al # 0 in C(p) we have o(x) = p(x) for all

x ¢ C(p).

The associativity of the multiplication in N is equivalent to
M(x)* M(y) = M(x+y) (see [4]) where x = <x1, x2> , <y1, y2>, z = <z1, z2>
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in N which in turn implies p(X1)~ p(y1) = p(xiyi) in C(p). Moreover

::1 £0 in C(p) implies x = <x1, x2> has a left inverse in N and thus

there exists y = <Yy Y, with V%, 2 1 mod p and V4%, + sz(x1) = 0 mod p.
Hence p(xi) £ 0 for %, # 0. We have established:

THEOREM 1.6. Every local near-ring with cardinality p2 determines
amap p: C(p) = C(p) which satisfies

) (i) p(x) =0 <= x=0 , x ¢ C(p),
(ii) p is a group endomorphism of <C(p)- {0}, ->,

Conversely suppose we are given amap p : C(p) =~ C(p) which
satisfies conditions (S) of the above theorem. Using p we define a
multiplication * on <N, +> =z <C(p) X C(p), +> as follows:

1 2
, > % y = ,
(i:t) <xX,,X <y, ,y.> <x,,xX_>

0 p(yi)

It is easily verified that * is associative and right distributive
over +. Moreover <0,0> is a two-sided zero and <1,0> a two-sided
identity for * .

We also note that for each y = <y1, y2> ‘¢ N the system

x 1 mod p

Hil

174

0 mod p

m

X, Tplyy)

has a unique solution mod p if and only if

Yy 0 Yy Y,
= # 0 mod p.

v, ply,) 0 P(Y1)
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That is, if and only if vy #0 in C(p). Hence if L denotes the set of
elements without left inverses in N then y = <y1, y2> ¢ L if and only if
v, = 0. It is clear that L is an (N, N)-subgroup and for x,y e N, ke L,
an easy computation shows x* (y + k) - x % y ¢ L. This proves:
THEOREM 1.7. I p * C(p) > C(p) satisfies conditions (S) of

Theorem 1.6 then N =<C(p) X C(p), +, *> is a local near-ring where
+ is point-wise addition and * is given by (¥ .

COROLLARY 1.8. The near-ring given in the above theorem is a
ring <=> p e End (<C(p), +>).

Proof. Let x, vy, ze N, x =<x,,x , Z. >,

>, y=<y1,y2> and z=<z1 2

1" 2

£ + = 3 + % = , > % + N + >
Then x (y Z) X % Yy X z <=><X,,X (y Z y Z
) ’

> % L V> F<x L, X > %<z, 7. >; i.e., <=>< +
<x,,x <y, v, + e zy0 2, i.e x‘l(y1 z

2 1
x1(y2 + ZZ) +x2p(y1 + z1)> = <x1y1, %
But this is true if and only if p (y1) + p(zi) = p(y1 + z1) .

1

v, +XZP(Y1)> +<Xiz1 +x2p(zi)>.

, X'IZZ

Theorems 1.6 and 1.7 show that every local near-ring of order p2

determines a function. p : C(p) = C(p) satisfying certain conditions (S)
and conversely every such function determines a local near-ring of order

pz. We next show there exists a bijection between the set of functions

satisfying (S) and the set of isomorphic classes of local near-rings of
2

order p .

LEMMA 1.9. Every map p : C(p) > C(p) satisfying conditions (S)
determines a set of isomorphic local near-rings.

Proof. Let N, and N2 be local near-rings of order p2 with

1
multiplications *1 and *2 respectively, given by P. Let e, denote
i
the identity of Ni and L; a generator of Li in Ni’ i=1,2. The map
g N1 - N2 given by ¢(e1) =e, and ¢(£1) = 12 is a group isomorphism.

It remains to show that ¢ is a near-ring homomorphism. To this end

let x = + = i

et x=x e, x221 and y Y4y +y2£2 in Ni.
+ + £ =

X ypey tlxy, tx, ply, ) £, and B(x . Y X y,8, * (X1Y

P (x)*, 0 (y)

Then x ’5‘1 y =
+ =
, Tx, Py, L,

Let N, =<N , +, * > N_=<N_, +, *%_> d : -

e 1 1 1 > > ,> an 1) N1 N2 be a
near-ring isomorphism. Suppose further that *i determines Pj,
i=1,2. As observed above, Py is independent of the choice of generator

of I_42 and so without loss of generality we use {ez, d(ﬂi)} as a basis of
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<N2, +> where {ei,ﬂi} is a basis of <N, +. Hence §(<1,0>) =

1’
<1, 0> ¢ N2 and @ (<0,1>) =<0,1> ¢ N2 . Thus for every xe¢ C(p),
<0, p, (x> =0(<0, p,(x)>) = (<0, 1> *,
<0, 1> *2 <x, 0> =<0, pZ(x)>; i.e., p1 = Py Together with Lemma 1.9
this establishes:

<x, 0>) = §(<0, 1>) *2 P (<x, 0>) =

THEOREM 1.10. ¥ N, =<N,, +, *i> are local near rings of order
= i i

2 . . . Y _ _
p where «<i determines pi, i=1, 2 then N1 :'NZ <=> p1 —p2 .

Thus, to determine the number of non-isomorphic local near-rings
<N, 4+, »> with <N, + g'<C(p) X C(p), + , which are not near-fields,
it suffices to find the number of maps p : C(p) - C(p) satisfying conditions
(S). This is precisely the cardinality of End (<C(p) - {0}, ->) which is
well-known to be p - 1 ([5]).

COROLLARY 1.141. Up to isomorphism there are p - 1 local near-

rings N =<N, +, > with additive group isomorphic to <C(p) X C(p), +
which are not near-fields.

In particular, local near-rings N of cardinality |N| =4 which
are not near-fields are local rings. For p >3 the maps p : C(p) > C(p)
given by
0 x =0,
p(x) =
1 otherwise,

. . 2 . .
determine local near-rings of orders p which are not rings.

2. Finite local near-rings with ILI = p. Let y be an arbitrary
element of a near-ring N. It is easily verified that the left annihilator
of y, A,(y)= {xe¢ N| xy =0}, isa leftideal of N.

Let N denote a finite local near-ring (not a near-field) and let
ye L, y#0. The map Gy : N— Ny given by ey(x.) =xy, xe N is an

N-epimorphism of NN and Ker GY :AJZ(Y)' Hence N/ ¥ Ny and

A, (y)
consequently |N| = IAﬁ(y)| * |[Ny|. But ye L implies Ny C L and

since Al(y) # N we have Aﬁ (y) C L. This proves:

THEOREM 2.1. I N is a finite local near-ring which is not a

near-field then |N| < ILIZ.
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COROLLARY 2.2. |L| =p<=>|N]| =p2.

Proof. If ,Nl = p2 then IL, = p since we are assuming ILI > 1.
Conversely if |L| = p then IN| < p2 implies INI = p2 since we know
INI = pn for some positive integer n.

Hence our results of §1 determine all local near-rings N with
IL, = p which are not near-fields.

COROLLARY 2.3. If N is a finite local near-ring with |L| =p
then <N, +> is an abelian group.
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