SOME THEOREMS ON DIFFERENCE SETS

HENRY B. MANN

A set a_{1}, \ldots, a_{k} of different residues mod v is called a difference set (v, k, λ) $(v>k>\lambda)$ if the congruence $a_{i}-a_{j} \equiv d(\bmod v)$ has exactly λ solutions for $d \not \equiv 0(\bmod v)$. Singer [4] has demonstrated the existence of a difference set $(v, k, 1)$ if $k-1$ is a prime power, and difference sets for $\lambda>1$ have been constructed by various authors; but necessary and sufficient conditions for the existence of a (v, k, λ) are not known. It has not been possible so far to find a difference set with $\lambda=1$ if $k-1$ is not a prime power and it has therefore been conjectured that no such difference set exists. The condition

$$
\begin{equation*}
k(k-1)=\lambda(v-1) \tag{1}
\end{equation*}
$$

is trivial. Owing to the efforts of Hall [2] and Hall and Ryser [3] efficient necessary conditions are now available by which a large number of (v, k, λ) can be shown to be impossible. Hall [2] in particular succeeded in eliminating all doubtful cases of ($v, k, 1$) with $k-1 \leqslant 100$ and this bound could easily be extended upward. It is the purpose of the present paper to improve some of the results of Hall [2] and Hall and Ryser [3].

A number t is called a multiplier of (v, k, λ) if $\left\{t a_{i}\right\} \equiv\left\{a_{j}+s\right\}(\bmod v)$ for some s. Hall and Ryser [3] generalizing a theorem of Hall [2] proved that every prime divisor p of $k-\lambda=n$ is a multiplier provided $p>\lambda$. The restriction $p>\lambda$ can sometimes be obviated by remembering that the residues which are not in (v, k, λ) form a ($v, v-k, v-2 k+\lambda$) with the same multiplier sustem as (v, k, λ).

We shall prove the following:
Theorem 1. If t is of even order with respect to a prime divisor q of v then n is a square if $\left(\frac{t}{q}\right)=-1$. If $\left(\frac{t}{q}\right)=+1$ then $n=b^{2}$ or $a^{2} q^{3}$, where a, b are integers.

Thus always $n=b^{2}$ if $n \neq 0(\bmod q)$.
Proof. Let t have order $2 f$ with respect to q then $t^{s} \equiv-1(\bmod q)$. We put

$$
\theta(x)=x^{a_{1}}+\ldots+x^{a_{k}} .
$$

Since t is a multiplier, we have for some s,

$$
\begin{equation*}
\theta\left(x^{t^{f}}\right) \equiv x^{s} \theta(x) \quad \bmod \left(x^{v}-1\right) \tag{2}
\end{equation*}
$$

Substituting a primitive q th root of unity ζ for x we have

$$
\begin{equation*}
\theta\left(\zeta^{v^{t}}\right)=\theta\left(\zeta^{-1}\right)=\zeta^{s} \theta(\zeta) \tag{3}
\end{equation*}
$$

Received December 11, 1950

The prime q must be odd, hence $2 r \equiv s(\bmod q)$, and since

$$
\theta(x) \theta\left(x^{-1}\right) \equiv n+\lambda\left(1+\ldots+x^{v-1}\right) \quad \bmod \left(x^{v}-1\right)
$$

it follows that

$$
\begin{equation*}
\left(\zeta^{\top} \theta(\zeta)\right)^{2}=n \tag{4}
\end{equation*}
$$

In the field $\mathfrak{F}(\zeta)$ generated by ζ over the field of rational numbers the field $\tilde{j}(\sqrt{ } \pm q)$ is the only quadratic subfield. Hence either n is a square or $n=a^{2} q$. In the latter case we have

$$
\begin{equation*}
\left(\zeta^{\gamma} \theta(\zeta)\right)= \pm a \vee q \tag{4a}
\end{equation*}
$$

The Galois group of $\mathfrak{F}(\zeta)$ over $\mathfrak{F}(\sqrt{ } q)$ is the group of automorphisms $\zeta \rightarrow \zeta^{a}$ where a is a quadratic residue $\bmod q$. If $\left(\frac{t}{q}\right)=-1$ then $\zeta \rightarrow \zeta^{t}$ maps $\sqrt{ } q$ into $-\sqrt{ } q$. Hence if t is a multiplier,

$$
\begin{gathered}
\zeta^{\tau t} \theta\left(\zeta^{t}\right)=\zeta^{\tau t+s_{1}} \theta(\zeta)=\mp a \vee \\
\zeta^{r t+s_{1}-\tau}=-1
\end{gathered}
$$

but this is impossible since q is odd.
The congruences $n \equiv 0(\bmod q), v \equiv 0(\bmod q)$ imply $n \equiv 0\left(\bmod q^{2}\right)$, since

$$
\begin{equation*}
\lambda v=n^{2}+(2 \lambda-1) n+\lambda^{2} \tag{5}
\end{equation*}
$$

but $n \equiv 0\left(\bmod q^{2}\right)$ and $n=a^{2} q$ imply $a \equiv 0(\bmod q)$, which proves the second part of Theorem 1.

Theorem 1a. If under the conditions of Theorem 1 we have $v=q$, then $k=v-1$.
For then $(v, n)=1$ and following the proof of Theorem 1 we are led to the equation

$$
\zeta^{\tau} \theta(\zeta)= \pm b, \quad b \text { integral. }
$$

But this relation is impossible unless $k=v-1$.
Theorem 1 is a considerable improvement over Hall's Corollary 4.7 and Hall and Ryser's Theorem 3.2.

Theorem 1 has many applications. We give a few indicating its use. In the following corollaries let p always denote a prime divisor of n which exceeds λ and suppose that (v, k, λ) exists. We also assume $v \equiv 1(\bmod 2)$ since for $v \equiv 0(\bmod 2), n$ must always be a square [1].

Corollary 1. If $\lambda=1$ and $n \equiv n_{1}$ or $n_{1}{ }^{2} \bmod \left(n_{1}{ }^{2}+n_{1}+1\right)$ and p is of even order with respect to $n_{1}{ }^{2}+n_{1}+1$, then n is a square.

For then $v=n^{2}+n+1 \equiv 0 \bmod \left(n_{1}{ }^{2}+n_{1}+1\right)$. Thus p is of even order with respect to a prime divisor q of v. Also in this case $(v, n)=1$.

For instance n must be a square in the following cases:

$$
\begin{array}{rlrl}
n \equiv 1 & (\bmod 3) & p \equiv 2 & (\bmod 3) \\
n \equiv 2,4(\bmod 7) & p \equiv 3,5,6 & (\bmod 7) \\
n \equiv 3,9(\bmod 13) & p \equiv 2,4,5,6,7,8,10,11,12(\bmod 13) \\
n \equiv 5,25(\bmod 31) & & \left(\frac{p}{31}\right)=-1 \\
n \equiv 6,36(\bmod 43) & & \left(\frac{p}{43}\right)=-1 \\
n \equiv 7,11(\bmod 19) & & \left(\frac{p}{19}\right)=-1
\end{array}
$$

and so forth.
Corollary 2. If a multiplier is quadratic non-residue modulo a prime divisor of v then n is a square. Moreover, if v is prime then $k=v-1$.

Corollary 3. If

$$
\left(\frac{(-1)^{\frac{1}{2}(p-1)} \lambda}{p}\right)=-1
$$

then n is a square; if further v is a prime then (v, k, λ) is impossible.
For by (5) we have

$$
\left(\frac{\lambda v}{p}\right)=\left(\frac{\lambda^{2}}{p}\right)=+1
$$

hence

$$
\left(\frac{v}{p}\right)=\left(\frac{\lambda}{p}\right)
$$

But

$$
\left(\frac{p}{v}\right)=(-1)^{\frac{1}{2}(p-1)^{\frac{1}{2}(v-1)}}\left(\frac{v}{p}\right)=\left(\frac{(-1)^{\frac{1}{2}(v-1)} \lambda}{p}\right)
$$

and the corollary follows from Theorems 1 and 1a.
The case $(91,45,22)$ already eliminated by Hall and Ryser is also quickly disposed of by Theorem 1 , since $23 \equiv-3(\bmod 13)$ and -3 has the order $6(\bmod 13)$.

We shall call a prime p an extraneous multiplier if p is a multiplier but $n \neq 0(\bmod p)$. We shall prove

Theorem 2. The prime p is a multiplier if and only if

$$
\begin{equation*}
\theta(x)^{p} \equiv x^{s} \theta(x) \quad \operatorname{modd}\left(p, x^{v}-1\right) \tag{6}
\end{equation*}
$$

If p is an extraneous multiplier then

$$
\theta(x)^{p-1} \equiv x^{s} \quad \operatorname{modd}\left(p, x^{v}-1\right)
$$

if $k \not \equiv 0(\bmod p)$, and

$$
\theta(x)^{p-1} \equiv x^{s}-T(x) \quad \operatorname{modd}\left(p, x^{p}-1\right)
$$

$$
T(x)=1+x+\ldots+x^{0-1}, \text { if } k \equiv 0(\bmod p)
$$

Proof. If p is a multiplier we have

$$
x^{s} \theta(x) \equiv \theta\left(x^{p}\right) \equiv \theta(x)^{p} \quad \operatorname{modd}\left(p, x^{y}-1\right)
$$

On the other hand, $\theta(x)^{p} \equiv x^{s} \theta(x)$, modd ($p, x^{p}-1$), implies $\theta\left(x^{p}\right) \equiv x^{s} \theta(x)$, modd ($p, x^{p}-1$). Since $\theta\left(x^{p}\right)$ and $x^{s} \theta(x)$ are polynomials whose coefficients are either 1 or 0 , it follows from this that

$$
\theta\left(x^{p}\right) \equiv x^{s} \theta(x) \quad \bmod \left(x^{t}-1\right)
$$

Hence p is a multiplier.
If p is an extraneous multiplier we multiply (6) by $\theta\left(x^{-1}\right)$ and obtain

$$
\begin{array}{ll}
\theta(x)^{p-1}(n+\lambda T(x)) \equiv x^{s}(n+\lambda T(x)) & \operatorname{modd}\left(p, x^{v}-1\right) \\
n \theta(x)^{p-1}+\lambda k^{p-1} T(x) \equiv x^{s}(n+\lambda T(x)) & \operatorname{modd}\left(p, x^{v}-1\right)
\end{array}
$$

If $k \not \equiv 0(\bmod p)$ then $k^{p-1} \equiv 1(\bmod p)$. If $k \equiv 0(\bmod p)$ then $n \equiv-\lambda$ $(\bmod p)$. Also $x^{s} T(x) \equiv T(x), \bmod \left(x^{0}-1\right)$, and the second part of the theorem follows easily from (7) and (7^{\prime}).

Corollary 1. If 2 is a multiplier for (v, k, λ) then either $n \equiv 0(\bmod 2)$ or $k=v-1$.

For otherwise Theorem 2 gives either

$$
\theta(x) \equiv x^{s} \quad \operatorname{modd}\left(2, x^{v}-1\right)
$$

or

$$
\theta(x) \equiv x^{s}+T(x) \quad \operatorname{modd}\left(2, x^{x}-1\right)
$$

and the corollary follows.
Corollary 2. If 3 is a multiplier for $(v, k, 1)$ then $n \equiv 0(\bmod 3)$.
For otherwise either

$$
\theta(x)^{2} \equiv x^{s} \quad \operatorname{modd}\left(3, x^{x}-1\right)
$$

or

$$
\begin{equation*}
\theta(x)^{2} \equiv x^{s}-T(x) \quad \operatorname{modd}\left(3, x^{v}-1\right) \tag{8'}
\end{equation*}
$$

But x^{m} occurs in $\theta(x)^{2}$ only if $m=a_{i}+a_{j}$ and then exactly twice if $i \neq j$ and exactly once if $i=j$, whilst x^{m} does not occur for exactly $\frac{1}{2} n(n+1)$ values of m. Thus (8) and (8^{\prime}) are both impossible, and the corollary follows.

The following two theorems serve to show the non-existence of $(z, k, 1)$ in a large number of doubtful cases.

Theorem 3. If $t_{1}, t_{2}, t_{3}, t_{4}$ are multipliers of $(v, k, 1)$ such that $t_{1}+t_{2} \equiv t_{3}$, $t_{2} \not \equiv t_{4}(\bmod v)$ then $t_{1}+t_{4}$ is not a multiplier.

For in this case we have a difference set a_{1}, \ldots, a_{k} which remains fixed under all multipliers [2]. If $t_{1}+t_{4} \equiv t_{5}(\bmod v)$ is a multiplier, then for every a in this difference set

$$
\begin{array}{lr}
a t_{1}+a t_{2} \equiv a t_{3} \equiv a_{k} & (\bmod v), \\
a t_{1}+a t_{4} \equiv a t_{5} \equiv a_{\imath} & (\bmod v) \\
a_{k}-a_{l} \equiv a t_{2}-a t_{4} & (\bmod v)
\end{array}
$$

Hence, since $\lambda=1$, either $a t_{2} \equiv a_{k}(\bmod v)$ which implies $a \equiv 0$ or $a t_{2} \equiv a t_{4}$, $a\left(t_{2}-t_{4}\right) \equiv 0(\bmod v)$. Hence for all a we have $a\left(t_{2}-t_{4}\right) \equiv 0(\bmod v)$; but since every $m \equiv a_{i}-a_{j}(\bmod v)$ it follows that $t_{2}-t_{4} \equiv 0(\bmod v)$.

Corollary 1. If $2, p, q$ are multipliers for $(v, k, 1)$ and $p \not \equiv q(\bmod z)$ then $p+q$ is not a multiplier.

This follows since $p+p=2 p$ is a multiplier.
Corollary 2. If 2 and $2^{k}+1$ are multipliers then $2^{k} \equiv 1(\bmod v)$. If 2 and $2^{k}-1$ are multipliers then $2^{k}-1 \equiv 1(\bmod v)$.

This follows at once from Corollary 1 with $p=1$.
Theorem 4. If $t_{1}, t_{2}, t_{3}, t_{4}$ are multipliers for $(v, k, 1)$ and $\left(t_{1}-t_{2}\right)=\left(t_{3}-t_{4}\right)$ then

$$
\begin{equation*}
\left(t_{1}-t_{2}\right)\left(t_{1}-t_{3}\right) \equiv 0 \quad(\bmod v) \tag{9}
\end{equation*}
$$

For again let a_{1}, \ldots, a_{k} be the set that remains fixed under all multipliers. Then for any a in this set,

$$
t_{1} a-t_{2} a \equiv t_{3} a-t_{4} a
$$

Hence either $t_{1} a \equiv t_{2} a(\bmod v)$ or $t_{1} a \equiv t_{3} a(\bmod v)$. Hence for all a, and therefore for every number m, we must have

$$
\left(t_{1}-t_{2}\right)\left(t_{1}-t_{3}\right) m \equiv 0 \quad(\bmod \tau)
$$

whence the theorem.
Theorem 4 was extensively used, but not explicitly stated, by Hall [2].

References

1. S. Chowla and H. J. Ryser, Combinatorial problems, Can. J. Math., vol. 2 (1950), 93-99.
2. Marshall Hall, Jr., Cyclic projective planes, Duke Math. J., vol. 14 (1947), 1079-1090.
3. Marshall Hall, Jr. and H. J. Ryser, Cyclic incidence matrices, Can. J. Math., vol. \ddagger (1951), 495-502.
4. James Singer, A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc., vol. 43 (1938), 377-385.
Ohio State University
