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A set au ... , a^ of different residues mod v is called a difference set (v, k, X) 
(v > k > X) if the congruence a< — aù = d (mod i/) has exactly X solutions for 
d 9^ 0 (mod Ï/). Singer [4] has demonstrated the existence of a difference set 
(v, fe, 1) if fe — 1 is a prime power, and difference sets for X > 1 have been 
constructed by various authors; but necessary and sufficient conditions for the 
existence of a (v, k, X) are not known. It has not been possible so far to find a 
difference set with X = 1 if k — 1 is not a prime power and it has therefore been 
conjectured that no such difference set exists. The condition 

(1) k(k - 1) = \(v - 1) 

is trivial. Owing to the efforts of Hall [2] and Hall and Ryser [3] efficient necessary 
conditions are now available by which a large number of (v, k,\) can be shown 
to be impossible. Hall [2] in particular succeeded in eliminating all doubtful 
cases of (v, k, 1) with k — 1 < 100 and this bound could easily be extended 
upward. It is the purpose of the present paper to improve some of the results 
of Hall [2] and Hall and Ryser [3]. 

A number t is called a multiplier of (v, k,\) if {tat} = {aj + s] (mod v) for 
some s. Hall and Ryser [3] generalizing a theorem of Hall [2] proved that every 
prime divisor p oî k — \ = n is a. multiplier provided p > X. The restriction 
p > X can sometimes be obviated by remembering that the residues which are 
not in {v, k, X) form a (v, v — k, v — 2k + X) with the same multiplier system 
as (v, k, X). 

We shall prove the following: 

THEOREM 1. If t is of even order with respect to a prime divisor q of v then n is 

a square if \-\ — ~~ 1- U' I - ) = + 1 then n = b2 or a2q*y where a, b are integers. 

Thus always n = b2 if n ^ 0 (mod q). 

Proof. Let t have order 2/ with respect to q then tf = — 1 (mod q). We put 

d(x) = xax + . . . + xa\ 

Since t is a multiplier, we have for some 5, 

(2) 6{xtf) = xs6(x) mod(A;c - 1). 

Substituting a primitive qth root of unity f for x we have 

(3) *(r(/) = eir1) = sse(t). 
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The prime g must be odd, hence 2r = s (mod g), and since 

d(x)d(x-1) = n + X(l + . . . + x*-1) mod(x9 - 1) 

it follows that 

(4) (fre(f))2 = ». 

In the field §(f) generated by f over the field of rational numbers the field 
5 ( \ / db g) is the only quadratic subfield. Hence either n is a square orw = a2g. 

In the latter case we have 

(4a) (rrff(f)) = ± aV2-

The Galois group of $(f) over 5(\/<z) is the group of automorphisms f—>fa 

where a is a quadratic residue mod g. If ( - J = — 1 then f —»fr maps \/<Z m t o 

— \/tf- Hence if / is a multiplier, 

f r l + I l _ r = _ ^ 

but this is impossible since q is odd. 

The congruences n = 0 (mod g), ^ = 0 (mod q) imply n = 0 (mod g2), 
since 

(5) X̂  = n + (2X - l)n + X2; 

but w = 0 (mod g2) and n = a2g imply a = 0 (mod g), which proves the second 
part of Theorem 1. 

THEOREM la. If under the conditions of Theorem 1 we have v — g, then k = v — 1. 

For then (v, n) — 1 and following the proof of Theorem 1 we are led to the 
equation 

f r0(f ) = ± &, & integral. 

But this relation is impossible unless & = z; — 1. 

Theorem 1 is a considerable improvement over Hall's Corollary 4.7 and Hall 
and Ryser's Theorem 3.2. 

Theorem 1 has many applications. We give a few indicating its use. In the 
following corollaries let p always denote a prime divisor of n which exceeds X 
and suppose that (z/, k, X) exists. We also assume v = 1 (mod 2) since for 
v = 0 (mod 2), n must always be a square [1], 

COROLLARY 1. If X = 1 an J w = nx or n? mod (wr + wi+ 1) and £ zs of even 
order with respect to n^- + wi + 1, /Aew w w a square. 
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For then v = n2 + n+l=0 mod {n^ + Wi + 1). Thus p is of even order 
with respect to a prime divisor q of v. Also in this case (v, w) = 1. 

For instance « must be a square in the following cases: 

n = 1 (mod 3) p == 2 (mod 3) 

w = 2, 4 (mod 7) /> == 3, 5, 6 (mod 7) 

« s 3, 9 (mod 13) p = 2, 4, 5, 6, 7, 8, 10, 11, 12 (mod 13) 

n = 5, 25 (mod 31) 

n = 6, 36 (mod 43) 

» = 7, 11 (mod 19) 

and so forth. 

COROLLARY 2. If a multiplier is quadratic non-residue modulo a prime divisor 
of v then n is a square. Moreover, if v is prime then k = v — 1. 

COROLLARY 3. If 

then n is a square; if further v is a prime then (v, k, X) is impossible. 

For by (5) we have 

® = -~ 1 

(ê) = -- 1 

(£) = -- 1 

hence ®-($-
0)-®-

But 

$ _(_,)„(,)_ (i=i)p). 
and the corollary follows from Theorems 1 and la. 

The case (91, 45, 22) already eliminated by Hall and Ryser is also quickly 
disposed of by Theorem 1, since 23 = — 3 (mod 13) and — 3 has the order 
6 (mod 13). 

We shall call a prime p an extraneous multiplier if p is a multiplier but 
n ^ 0 (mod p). We shall prove 

THEOREM 2. The prime p is a multiplier if and only if 

(6) B{x)v = xs6(x) modd(£, xv~ 1). 

If p is an extraneous multiplier then 

(6) e{x)v'1 = xs modd(£, xv - 1) 
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ifk^O (mod p), and 

(6") dix)73'1 = xs - T(x) modd(£, xv - 1), 

T(x) = 1 + x + . . . + * p - \ ifk = 0 (mod £). 

Proof. If £ is a multiplier we have 

xs6{x) s 0(xp) s 0(x)p modd(£, * ' - 1). 

On the other hand, d(x)p = xs6(x), modd (p, x r - 1), implies 6{xp) = xs6(x), 
modd (p, xv — 1). Since 6{xv) and xs0(x) are polynomials whose coefficients 
are either 1 or 0, it follows from this that 

B(xv) = xs9(x) modOt* - 1). 

Hence p is a multiplier. 
If p is an extraneous multiplier we multiply (6) by 0(x-1) and obtain 

(7) B(x)p-l{n + \T(x)) s x5(n + \ r ( * ) ) modd (p, xv - 1), 

(7') nd{x)p-1 + \kv~lT{x) = *'(n + xr (x) ) modd (£, xv - 1). 

If jfe ^ 0 (mod £) then kp~l = 1 (mod />)• If k s= 0 (mod £) then » s= - X 
(mod />). Also x sr(x) = T(x), mod (xr — 1), and the second part of the theorem 
follows easily from (7) and (7'). 

COROLLARY 1. If 2 is a multiplier for (y, k, X) then either n = 0 (mod 2) or 
k = v - 1. 

For otherwise Theorem 2 gives either 

6{x) = xs modd (2, s* - 1), 

or 
0(*) = xs + 7 » modd (2, *c - 1) 

and the corollary follows. 

COROLLARY 2. If 3 is a multiplier for (v, k, 1) //ze?z n = 0 (mod 3). 

For otherwise either 

(8) 0(x)2 = xs modd (3, s* - 1), 

or 

(8') 0(x)2 = xs - T(x) modd (3, *" - 1). 

But xm occurs in d(x)2 only if m = at + â  and then exactly twice if i ^ j and 
exactly once if i = j , whilst xm does not occur for exactly \n(n + 1) values of m. 
Thus (8) and (8') are both impossible, and the corollary follows. 

The following two theorems serve to show the non-existence of (v, k, 1) in a 
large number of doubtful cases. 
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THEOREM 3. If tu t2, tz, tA are multipliers of (v, k, 1) such that h + t2 = h, 
t2 9^ t± (mod v) then h + tt is not a multiplier. 

For in this case we have a difference set ah . . . , ak which remains fixed under 
all multipliers [2]. If t\ + /4 = tb (mod v) is a multiplier, then for every a in this 
difference set 

ah + at2 = a/3 = #& (mod z>), 

a/i + a/4 = at s = at (mod v), 

ak — a i = a/2 — a/4 (mod ft)-

Hence, since A = 1, either at2 = afc (mod i>) which implies a = 0 or at* = a£4, 
a(/2 — /4) = 0 (mod z/)- Hence for all a we have a(t2 — tÀ) = 0 (mod i'); but 
since every m ^ at — aj (mod z;) it follows that t2 — tA = 0 (mod z/). 

COROLLARY 1. If 2, p, q are multipliers for (v, k, 1) am/ p ^ q (mod t?) //iew 
p + q is not a multiplier. 

This follows since £ + p = 2p is a multiplier. 

COROLLARY 2. If 2 and 2k + 1 are multipliers then 2k = 1 (mod i>)- ^/ 2 and 
2* — 1 are multipliers then 2k — 1 = 1 (mod ^). 

This follows at once from Corollary 1 with £ = 1. 

THEOREM 4. / / /i, /2, tz, U are multipliers for (v, k, 1) and (h — t2) = (t:i — t*) 

then 
(9) (h - *2)(*i - /3) = 0 (mod v). 

For again let #i, . . . , ak be the set that remains fixed under all multipliers. 
Then for any a in this set, 

ha — t2a = /3& — / ^ (mod v). 

Hence either ha = /2a (mod z>) or t\a == /3& (mod z>)- Hence for all a, and therefore 
for every number m, we must have 

(ti — /2)(/i — /3)w = 0 (mod v), 

whence the theorem. 

Theorem 4 was extensively used, but not explicitly stated, by Hall [2J. 
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