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1. Introduction. Recently, there has been a lot of interest in non-commutative
versions of some well-known soliton equations, such as the KP equation, the
KdV equation, the Hirota–Miwa equation, the modified KP equation and the two-
dimensional Toda lattice [1,5–9,12,14,16,18,19,21–23]. There are a number of reasons
for this lack of commutativity. For example, the variables might be square matrices or
quarternions and so on. Another natural way in which the variables fail to commute
is because of a quantization of the phase space resulting in the normal product being
replaced by a Moyal product. In the approach taken here, it is not necessary to specify
the reason for the lack of commutivity. Often, the non-commutative version is obtained
simply by assuming that the coefficients in the Lax pair of the commutative equation
do not commute.

Quasi-determinants [2–4] play the almost similar role in non-commutative algebra
as determinants do in standard, commutative algebra. They arise in many situations
where determinants appear in commutative algebra and this suggests that they are a
very natural structure to use when working with non-commutative integrable systems.
In particular, determinants are ubiquitous as solutions of commutative integrable
systems and one way to obtain these is through the use of Darboux or binary Darboux
transformations. Quasi-determinant solutions of non-commutative versions of these
integrable systems arise in the same way. The reader is referred to the original papers
[2–4] for a detailed and general treatment of quasi-determinants (see also [14] for a
summary of the key results used in the current paper).

The semi-discrete Toda equation

d
dt

log
(

vk+1
n

vk
n

)
= vk+1

n+1 + vk
n−1 − vk

n − vk+1
n , (1.1)

was first considered in [11]. Some other related results were presented in [13,20,24].
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If one writes

vk
n = τ k+1

n+1 τ k
n−1

τ k+1
n τ k

n

,

and τ k
n satisfies the Hirota bilinear equation

Dtτ
k+1
n · τ k

n − τ k+1
n+1 τ k

n−1 + τ k+1
n τ k

n = 0, (1.2)

then vk
n satisfies (1.1). In (1.2) Dt denotes Hirota’s bilinear operator defined by [10]

Dn
t a(t) · b(t) ≡

(
∂

∂t
− ∂

∂t′

)n

a(t)b(t′)|t′=t.

This paper is concerned with the following non-commutative generalization of
(1.1):

vk
n uk

n = uk+1
n vk

n+1, (1.3)

vk
n+1,t + uk+1

n+1 − uk
n = 0, (1.4)

in which un and vn and their derivatives do not commute in general. By introducing
new variable Xk

n where

uk
n = Xk

n

(
Xk

n+1

)−1
, vk

n = Xk+1
n

(
Xk

n

)−1
,

(1.3) is satisfied identically and (1.4) becomes

(
Xk+1

n+1

(
Xk

n+1

)−1)
t + Xk+1

n+1

(
Xk+1

n+2

)−1 − Xk
n

(
Xk

n+1

)−1 = 0. (1.5)

In the commutative reduction, it is easy to show, by writing Xk
n = τ k

n−1/τ
k
n , that (1.5)

becomes

τ k+1
n+1 τ k

n+1

(
Dtτ

k+1
n · τ k

n − τ k+1
n+1 τ k

n−1 + τ k+1
n τ k

n

)
−τ k

n τ k+1
n

(
Dtτ

k+1
n+1 · τ k

n+1 − τ k+1
n+2 τ k

n + τ k+1
n+1 τ k

n+1

) = 0,

which is satisfied whenever the bilinear semi-discrete Toda equation (1.2) is satisfied,
thus verifying that indeed (1.3) and (1.4) is a non-commutative generalization of (1.1).
For the rest of this paper, we will refer to (1.5) as the non-commutative semi-discrete
Toda equation.

The main results of this paper are to show that this non-commutative system is
integrable in the sense that it has a Lax pair and the associated Darboux and binary
Darboux transformations may be iterated to construct families of exact solutions. We
show how these solutions may be expressed in terms of quasi-determinants of two
different types.

The paper is organized as follows. In Section 2, we present a Lax pair and its
Darboux transformation and describe how iteration of this transformation gives quasi-
casoratian solutions. An adjoint linear problem and binary Darboux transformations
are discussed in Section 3, and quasi-grammian solutions are obtained. Conclusions
are given in Section 4.
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2. Quasi-casoratian solutions obtained by Darboux transformations. The non-
commutativesemi-discrete Toda lattice (1.5) has Lax pair

φk
n,t = Xk

n

(
Xk

n+1

)−1
φk

n+1, (2.1)

φk+1
n+1 = φk

n − Xk+1
n+1

(
Xk

n+1

)−1
φk

n+1. (2.2)

This was obtained by discretizing the Lax pair of the non-Abelian Toda lattice [15,17]
and simplifying the Lax pair of the semi-discrete Toda equation with self-consistent
sources [20].

Let θk
n,i, i = 1, . . . , N be a particular set of eigenfunctions of the linear system and

from these define the row vector �k
n = (θk

n,1, . . . , θ
k
n,N). The Darboux transformation,

determined by the particular solution θk
n , for the non-commutative semi-discrete Toda

lattice is

φ̃k
n = φk

n − θk
n

(
θk

n+1

)−1
φk

n+1,

X̃k
n = θk

n

(
θk

n+1

)−1Xk
n+1.

This transformation may be iterated by defining

φk
n [l + 1] = φk

n [l] − θk
n [l]

(
θk

n+1[l]
)−1

φk
n+1[l], (2.3)

Xk
n [l + 1] = θk

n [l]
(
θk

n+1[l]
)−1Xk

n+1[l], (2.4)

where φk
n [1] = φk

n , Xk
n [1] = Xk

n and

θk
n [l] = φk

n [l]|φk
n →θk

n,l
. (2.5)

In particular,

φk
n [2] = φk

n − θk
n,1

(
θk

n+1,1

)−1
φk

n+1, (2.6)

Xk
n [2] = θk

n,1

(
θk

n+1,1

)−1Xk
n+1. (2.7)

In what follows, we shall show by induction that the results of N repeated Darboux
transformations, φk

n [N + 1] and Xk
n [N + 1], can be expressed in closed form as quasi-

determinants

φk
n [N + 1] =

∣∣∣∣∣∣∣∣∣∣

�k
n φk

n

�k
n+1 φk

n+1
...

...
�k

n+N φk
n+N

∣∣∣∣∣∣∣∣∣∣
, Xk

n [N + 1] = (−1)N

∣∣∣∣∣∣∣∣∣

�k
n 0

�k
n+1 0
...

...
�k

n+N 1

∣∣∣∣∣∣∣∣∣
Xk

n+N . (2.8)

The initial case N = 1 follows directly from (2.6) and (2.7). Also, using the non-
commutative Jacobi identity, row homological relations and definition of quasi-Plücker
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coordinates (see (2.3)–(2.5) in [14] for example), we have

φk
n [N + 2]

= φk
n [N + 1] − θk

n [N + 1]θk
n+1[N + 1]−1φk

n+1[N + 1]

=
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In a similar way, we also have
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n [N + 2] = θk
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...
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This proves the inductive step and the proof is complete.
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3. Quasi-grammian solutions obtained by binary Darboux transformations. The
linear equations (2.1) and (2.2) have the formal adjoint

−ψk
n,t = uk

n−1
†
ψk

n−1, (3.1)

ψk+1
n+1 = ψk

n + vk
n
†
ψk+1

n . (3.2)

As always with discrete Lax equations, some care is needed in defining their adjoint.
The key point is that they should be chosen in such a way that the compatibility
condition for (3.1) and (3.2) is identical to that of (2.1) and (2.2). In other words, (3.1)
and (3.2) also form a Lax pair for (1.1).

Following the standard construction of a binary Darboux transformation, one
introduces a potential �k

n = �(φk
n , ψk

n ) satisfying the following three conditions:

�k
n,t = −ψk

n
†
uk

nφ
k
n+1, (3.3)

�k+1
n − �k

n = ψk+1
n+1

†
φk

n , (3.4)

�k
n+1 − �k

n = −ψk
n+1

†
φk

n+1. (3.5)

A binary Darboux transformation is then defined by

φk
n [N + 1] = φk

n [N] − θk
n [N]�

(
θk

n [N], ρk
n [N]

)−1
�

(
φk

n [N], ρk
n [N]

)
, (3.6)

ψk
n [N + 1] = ψk

n [N] − ρk
n [N]�

(
θk

n−1[N], ρk
n−1[N]

)−†
�

(
θk

n−1[N], ψk
n−1[N]

)†
, (3.7)

Xn[N + 1] = (
I + θk

n [N]�
(
θk

n [N], ρk
n [N]

)−1
ρk

n [N]†
)
Xk

n [N], (3.8)

where φk
n [1] = φk

n , ψk
n [1] = ψk

n , Xk
n [1] = Xk

n and

θk
n [N] = φk

n [N]|φk
n →θk

n,N
, ρk

n [N] = ψk
n [N]|ψk

n →ρk
n,N

. (3.9)

Using the notation �k
n = (θk

n,1, . . . , θ
k
n,N) and Pk

n = (ρk
n,1, . . . , ρ

k
n,N), it is easy to

prove by induction that for N ≥ 1,

φk
n [N + 1] =

∣∣∣∣∣
�

(
�k

n, Pk
n

)
�

(
φk

n , Pk
n

)
�k

n φk
n

∣∣∣∣∣ , (3.10)

ψk
n [N + 1] =

∣∣∣∣∣�
(
�k

n−1, Pk
n−1

)†
�

(
�k

n−1, ψ
k
n−1

)†
Pk

n ψk
n

∣∣∣∣∣ (3.11)

and

�
(
φk

n [N + 1], ψk
n [N + 1]

) =
∣∣∣∣∣
�

(
�k

n, Pk
n

)
�

(
φk

n , Pk
n

)
�

(
�k

n, ψ
k
n

)
�

(
φk

n , ψk
n

)
∣∣∣∣∣ . (3.12)

We may thus after N binary Darboux transformations obtain

Xk
n [N + 1] = −

∣∣∣∣∣�
(
�k

n, Pk
n

)
Pk

n
†

�k
n −I

∣∣∣∣∣ Xk
n . (3.13)

https://doi.org/10.1017/S0017089508004837 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089508004837


126 C. X. LI AND J. J. C. NIMMO

In fact, we can prove the above results by induction. Using (3.10)–(3.12), we have

Xk
n [N + 2] = (

I + �k
n[N + 1]�

(
�k

n[N + 1], Pk
n[N + 1]

)−1Pk
n[N + 1]†

)
Xk

n [N + 1]

= −
⎛
⎝I +

∣∣∣∣∣
�

(
�k

n, Pk
n

)
�

(
θk

n,N+1, Pk
n

)
�k

n θk
n,N+1

∣∣∣∣∣
∣∣∣∣∣

�
(
�k

n, Pk
n

)
�

(
θk

n,N+1, Pk
n

)
�

(
�k

n, ρ
k
n,N+1

)
�

(
θk

n,N+1, ρ
k
n,N+1

)
∣∣∣∣∣
−1

∣∣∣∣∣∣
�

(
�k

n−1, Pk
n−1

)
Pk

n
†

�
(
�k

n−1, ρ
k
n−1,N+1

)
ρk

n,N+1
†

∣∣∣∣∣∣
⎞
⎠ ∣∣∣∣∣�

(
�k

n, Pk
n

)
Pk

n
†

�k
n −I

∣∣∣∣∣ Xk
n .

Noticing that

∣∣∣∣∣∣
�

(
�k

n−1, Pk
n−1

)
Pk

n
†

�
(
�k

n−1, ρ
k
n−1,N+1

)
ρk

n,N+1
†

∣∣∣∣∣∣
∣∣∣∣∣�

(
�k

n, Pk
n

)
Pk

n
†

�n −I

∣∣∣∣∣
= −(

ρk
n,N+1

† − �
(
�k

n−1, ρ
k
n−1,N+1

)
�

(
�k

n−1, Pk
n−1

)−1Pk
n
†)(

I + �k
n�

(
�k

n, Pk
n

)−1Pk
n
†)

= −ρk
n,N+1

† + �
(
�k

n−1, ρ
k
n−1,N+1

)
�

(
�k

n−1, Pk
n−1

)−1Pk
n
†

+ (
�

(
�k

n, ρ
k
n,N+1

) − �
(
�k

n−1, ρ
k
n−1,N+1

))
�

(
�k

n, Pk
n

)−1Pk
n
†

+ �
(
�k

n−1, ρ
k
n−1,N+1

)
�

(
�k

n−1, Pk
n−1

)−1(
�

(
�k

n−1, Pk
n−1

) − �
(
�k

n, Pk
n

))
�

(
�k

n, Pk
n

)−1Pk
n
†

= −ρk
n,N+1

† + �
(
�k

n, ρ
k
n,N+1

)
�

(
�k

n, Pk
n

)−1Pk
n
†

= −
∣∣∣∣∣∣

�
(
�k

n, Pk
n

)
Pk

n
†

�
(
�k

n, ρ
k
n,N+1

)
ρk

n,N+1
†

∣∣∣∣∣∣ ,
it follows that

Xk
n [N + 2] = −

∣∣∣∣∣∣∣
�

(
�k

n, Pk
n

)
�

(
θk

n,N+1, Pk
n

)
Pk

n
†

�
(
�k

n, ρ
k
n,N+1

)
�

(
θk

n,N+1, ρ
k
n,N+1

)
ρk

n,N+1
†

�k
n θk

n,N+1 −I

∣∣∣∣∣∣∣ Xk
n ,

as required.

4. Conclusions. In this paper, we have described a non-commutative version
of the semi-discrete Toda equation. We have obtained quasi-casoratian and quasi-
grammian solutions by means of discrete Darboux transformations and binary
Darboux transformations, respectively. We have given an inductive proof of the iterated
Darboux transformations and solutions by using quasi-determinant identities. Since
we have not at any point specified the nature of non-commutativity, the results obtained
here are valid whatever the reason for non-commutativity is.
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