Appendix A

An aide-mémoire on matrices

A. 1 Definitions and notation

An $m \times n$ matrix $\mathbf{A}=\left(A_{i j}\right) ; i=1, \ldots, m ; j=1, \ldots, n$; is an ordered array of $m n$ numbers, which may be complex:

$$
\mathbf{A}=\left(\begin{array}{l}
A_{11} A_{12} \ldots A_{1 n} \\
A_{21} A_{22} \ldots \\
\ldots \ldots \ldots \ldots \ldots \\
\ldots \ldots \ldots
\end{array}\right)
$$

$A_{i j}$ is the element of the i th row and j th column.
The complex conjugate of \mathbf{A}, written \mathbf{A}^{*}, is defined by

$$
\mathbf{A}^{*}=\left(A_{i j}^{*}\right) .
$$

The transpose of \mathbf{A}, written \mathbf{A}^{T}, is the $n \times m$ matrix defined by

$$
A_{j i}^{\mathrm{T}}=A_{i j}
$$

The Hermitian conjugate, or adjoint, of \mathbf{A}, written \mathbf{A}^{\dagger}, is defined by

$$
A_{j t}^{\dagger}=A_{i j}^{*}=A_{j i}^{\mathrm{T}}{ }^{*} \text {, or equivalently by } \mathbf{A}^{\dagger}=\left(\mathbf{A}^{\mathrm{T}}\right)^{*} .
$$

If λ, μ are complex numbers and \mathbf{A}, \mathbf{B} are $m \times n$ matrices, $\mathbf{C}=\lambda \mathbf{A}+\mu \mathbf{B}$ is defined by

$$
C_{i j}=\lambda A_{i j}+\mu B_{i j} .
$$

Multiplication of the $m \times n$ matrix \mathbf{A} by an $n \times l$ matrix \mathbf{B} is defined by $\mathbf{A B}=\mathbf{C}$, where \mathbf{C} is the $m \times l$ matrix given by

$$
C_{i k}=A_{i j} B_{j k}
$$

We use the Einstein convention, that a repeated 'dummy' suffix is understood to be summed over, so that

$$
A_{i j} B_{j k} \text { means } \sum_{j=1}^{n} A_{i j} B_{j k}
$$

Multiplication is associative: $(\mathbf{A B}) \mathbf{C}=\mathbf{A}(\mathbf{B C})$. If follows immediately from the definitions that

$$
(\mathbf{A B})^{*}=\mathbf{A}^{*} \mathbf{B}^{*},(\mathbf{A B})^{\mathrm{T}}=\mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}},(\mathbf{A B})^{\dagger}=\mathbf{B}^{\dagger} \mathbf{A}^{\dagger} .
$$

Block multiplication: matrices may be subdivided into blocks and multiplied by a rule similar to that for multiplication of elements, provided that the blocks are compatible. For example,

$$
\left(\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right)\binom{\mathbf{E}}{\mathbf{F}}=\binom{\mathbf{A E}+\mathbf{B F}}{\mathbf{C E}+\mathbf{D F}}
$$

provided that the l_{1} columns of \mathbf{A} and l_{2} columns of \mathbf{B} are matched by l_{1} rows of \mathbf{E} and l_{2} rows of \mathbf{F}. The proof follows from writing out the appropriate sums.

A. 2 Properties of $n \times n$ matrices

We now focus on 'square' $n \times n$ matrices. If \mathbf{A} and \mathbf{B} are $n \times n$ matrices, we can construct both $\mathbf{A B}$ and $\mathbf{B A}$. In general, matrix multiplication is non-commutative, i.e. in general, $\mathbf{A B} \neq \mathbf{B A}$.

The $n \times n$ identity matrix or unit matrix I is defined by $I_{i j}=\delta_{i j}$, where $\delta_{i j}$ is the Kronecker δ :

$$
\delta_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

From the rule for multiplication,

$$
\mathbf{I} \mathbf{A}=\mathbf{A I}=\mathbf{A}
$$

for any \mathbf{A}. \mathbf{A} is said to be diagonal if $A_{i j}=0$ for $i \neq j$.
Determinants: with a square matrix A we can associate the determinant of A, denoted by $\operatorname{det} \mathbf{A}$ or $\left|A_{i j}\right|$, and defined by

$$
\operatorname{det} \mathbf{A}=\varepsilon_{i j \ldots t} A_{1 i} A_{2 j} \ldots A_{n t}
$$

(remember the summation convention) where

$$
\varepsilon_{i j \ldots t}=\left\{\begin{aligned}
1 & \text { if } i, j, \ldots, t \text { is an even permutation of } 1,2, \ldots, n \\
-1 & \text { if } i, j, \ldots, t \text { is an odd permutation of } 1,2, \ldots, n, \\
0 & \text { otherwise. }
\end{aligned}\right.
$$

An important result is

$$
\operatorname{det}(\mathbf{A B})=\operatorname{det} \mathbf{A} \operatorname{det} \mathbf{B}
$$

Note also

$$
\operatorname{det} \mathbf{A}^{\mathrm{T}}=\operatorname{det} \mathbf{A}, \quad \operatorname{det} \mathbf{I}=1
$$

If $\operatorname{det} \mathbf{A} \neq 0$ the matrix \mathbf{A} is said to be non-singular, and $\operatorname{det} \mathbf{A} \neq \mathbf{0}$ is a necessary and sufficient condition for a unique inverse \mathbf{A}^{-1} to exist, such that

$$
\mathbf{A A}^{-1}=\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}
$$

Evidently,

$$
(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}
$$

The trace of a matrix \mathbf{A}, written $\operatorname{Tr} \mathbf{A}$, is the sum of its diagonal elements:

$$
\operatorname{Tr} \mathbf{A}=A_{i i}
$$

It follows from the definition that

$$
\operatorname{Tr}(\mathbf{A B})=A_{i j} B_{j i}=B_{j i} A_{i j}=\operatorname{Tr}(\mathbf{B A}),
$$

and hence

$$
\operatorname{Tr}(\mathbf{A B C})=\operatorname{Tr}(\mathbf{B C A})=\operatorname{Tr}(\mathbf{C A B})
$$

A. 3 Hermitian and unitary matrices

Hermitian and unitary matrices are square matrices of particular importance in quantum mechanics. In a matrix formulation of quantum mechanics, dynamical observables are represented by Hermitian matrices, while the time development of a system is determined by a unitary matrix.

A matrix \mathbf{H} is Hermitian if it is equal to its Hermitian conjugate:

$$
\mathbf{H}=\mathbf{H}^{\dagger}, \quad \text { or } \quad H_{i j}=H_{j i}^{*} .
$$

The diagonal elements of a Hermitian matrix are therefore real, and an $n \times n$ Hermitian matrix is specified by $n+2 n(n-1) / 2=n^{2}$ real numbers.

A matrix \mathbf{U} is unitary if

$$
\mathbf{U}^{-1}=\mathbf{U}^{\dagger}, \quad \text { or } \quad \mathbf{U U}^{\dagger}=\mathbf{U}^{\dagger} \mathbf{U}=\mathbf{I} .
$$

The product of two unitary matrices is also unitary.
A unitary transformation of a matrix \mathbf{A} is a transformation of the form

$$
\mathbf{A} \rightarrow \mathbf{A}^{\prime}=\mathbf{U A U}^{-1}=\mathbf{U A U}^{\dagger}
$$

where \mathbf{U} is a unitary matrix. The transformation preserves algebraic relationships:

$$
(\mathbf{A B})^{\prime}=\mathbf{A}^{\prime} \mathbf{B}^{\prime},
$$

and Hermitian conjugation

$$
\left(\mathbf{A}^{\prime}\right)^{\dagger}=\mathbf{U} \mathbf{A}^{\dagger} \mathbf{U}^{\dagger}
$$

Also

$$
\operatorname{Tr} \mathbf{A}^{\prime}=\operatorname{Tr} \mathbf{A}, \quad \operatorname{det} \mathbf{A}^{\prime}=\operatorname{det} \mathbf{A} .
$$

An important theorem of matrix algebra is that, for each Hermitian matrix \mathbf{H}, there exists a unitary matrix \mathbf{U} such that

$$
\mathbf{H}^{\prime}=\mathbf{U H U}^{-1}=\mathbf{U H U}^{\dagger}=\mathbf{H}_{D}
$$

is a real diagonal matrix.
A necessary and sufficient condition that Hermitian matrices \mathbf{H}_{1} and \mathbf{H}_{2} can be brought into the diagonal form by the same unitary transformation is

$$
\mathbf{H}_{1} \mathbf{H}_{2}-\mathbf{H}_{2} \mathbf{H}_{1}=0
$$

It follows from this (see Problem A.3) that a matrix \mathbf{M} can be brought into diagonal form by a unitary transformation if and only if

$$
\mathbf{M} \mathbf{M}^{\dagger}-\mathbf{M}^{\dagger} \mathbf{M}=0
$$

Note that unitary matrices satisfy this condition.

An arbitrary matrix \mathbf{M} which does not satisfy this condition can be brought into real diagonal form by a generalised transformation involving two unitary matrices, \mathbf{U}_{1} and \mathbf{U}_{2} say, which may be chosen so that

$$
\mathbf{U}_{1} \mathbf{M U}_{2}^{\dagger}=\mathbf{M}_{D}
$$

is diagonal (see Problem A.4).
If \mathbf{H} is a Hermitian matrix, the matrix

$$
\mathbf{U}=\exp (\mathrm{i} \mathbf{H})
$$

is unitary. The right-hand side of this equation is to be understood as defined by the series expansion

$$
\mathbf{U}=\mathbf{I}+(\mathrm{i} \mathbf{H})+(\mathrm{i} \mathbf{H})^{2} / 2!+\cdots
$$

Then

$$
\begin{aligned}
\mathbf{U}^{\dagger} & =\mathbf{I}+\left(-\mathrm{i} \mathbf{H}^{\dagger}\right)+\left(-\mathrm{i} \mathbf{H}^{\dagger}\right)^{2} / 2!+\cdots \\
& =\exp \left(-\mathrm{i} \mathbf{H}^{\dagger}\right)=\exp (-\mathrm{i} \mathbf{H})=\mathbf{U}^{-1}
\end{aligned}
$$

(the operation of Hermitian conjugation being carried out term by term). Conversely, any unitary matrix \mathbf{U} can be expressed in this form. Since an $n \times n$ Hermitian matrix is specified by n^{2} real numbers, it follows that a unitary matrix is specified by n^{2} real numbers.

A. 4 A Fierz transformation

It is easy to show that any 2×2 matrix \mathbf{M} with complex elements may be expressed as a linear combination of the matrices $\widetilde{\sigma}^{\mu}$.

$$
\mathbf{M}=Z_{\mu} \widetilde{\sigma}^{\mu}
$$

and $Z_{\mu}=\frac{1}{2} \operatorname{Tr}\left(\widetilde{\sigma}^{\mu} \mathbf{M}\right)$, since $\operatorname{Tr}\left(\widetilde{\sigma}^{\mu} \tilde{\sigma}^{\nu}\right)=2 \delta_{\mu \nu}$.
Consider the expression
$g_{\mu \nu}\left\langle a^{*}\right| \widetilde{\sigma}^{\mu}|b\rangle\left\langle c^{*}\right| \widetilde{\sigma}^{\nu}|d\rangle$, where $|a\rangle,|b\rangle,|c\rangle,|d\rangle$ are two-component spinor fields. Using the result above, we can replace the matrix $|b\rangle\left\langle c^{*}\right|$ by

$$
\begin{aligned}
|b\rangle\left\langle c^{*}\right| & =\frac{1}{2} \operatorname{Tr}\left(\widetilde{\sigma}^{\lambda}|b\rangle\left\langle c^{*}\right|\right) \tilde{\sigma}^{\lambda} \\
& =-\frac{1}{2}\left\langle c^{*}\right| \widetilde{\sigma}^{\lambda}|b\rangle \widetilde{\sigma}^{\lambda}
\end{aligned}
$$

The last step is evident on putting in the spinors indices, and the minus sign arises from the interchange of anticommuting spinor fields.

We now have

$$
g_{\mu \nu}\left\langle a^{*}\right| \widetilde{\sigma}^{\mu}|b\rangle\left\langle c^{*}\right| \widetilde{\sigma}^{\nu}|d\rangle=-\frac{1}{2} g_{\mu \nu}\left\langle a^{*}\right| \widetilde{\sigma}^{\mu} \widetilde{\sigma}^{\lambda} \widetilde{\sigma}^{\nu}\left|d><c^{*}\right| \widetilde{\sigma}^{\lambda}|b\rangle .
$$

Using the algebraic identity

$$
g_{\mu \nu} \tilde{\sigma}^{\mu} \widetilde{\sigma}^{\lambda} \widetilde{\sigma}^{\nu}=-2 g_{\rho \lambda} \tilde{\sigma}^{\rho}
$$

gives $g_{\mu \nu}\left\langle a^{*}\right| \widetilde{\sigma}^{\mu}|b\rangle\left\langle c^{*}\right| \widetilde{\sigma}^{\nu}|d\rangle=g_{\rho \lambda}\left\langle a^{*}\right| \widetilde{\sigma}^{\rho}|d\rangle\left\langle c^{*}\right| \widetilde{\sigma}^{\lambda}|b\rangle$.
This is an example of a Fierz transformation.

Problems

A. 1 Show that

$$
\varepsilon_{i j \ldots t} A_{\alpha i} A_{\beta j} \cdots A_{\nu t}=\varepsilon_{\alpha \beta \ldots \nu} \operatorname{det} \mathbf{A} .
$$

A. 2 Show that if \mathbf{A}, \mathbf{B} are Hermitian, then $\mathrm{i}(\mathbf{A B}-\mathbf{B A})$ is Hermitian.
A. 3 Show that an arbitrary square matrix \mathbf{M} can be written in the form $\mathbf{M}=\mathbf{A}+i \mathbf{B}$, where \mathbf{A} and \mathbf{B} are Hermitian matrices. Find \mathbf{A} and \mathbf{B} in terms of \mathbf{M} and \mathbf{M}^{\dagger}. Hence show that \mathbf{M} may be put into diagonal form by a unitary transformation if and only if $\mathbf{M} \mathbf{M}^{\dagger}-\mathbf{M}^{\dagger} \mathbf{M}=0$.
A. 4 If \mathbf{M} is an arbitrary square matrix, show that $\mathbf{M M}^{\dagger}$ is Hermitian and hence can be diagonalised by a unitary matrix \mathbf{U}_{1}, so that we can write

$$
\mathbf{U}_{1}\left(\mathbf{M M}^{\dagger}\right) \mathbf{U}_{1}^{\dagger}=\mathbf{M}_{D}^{2}
$$

where \mathbf{M}_{D} is diagonal with real diagonal elements ≥ 0. Suppose none are zero. Define the Hermitian matrix $\mathbf{H}=\mathbf{U}_{1}{ }^{\dagger} \mathbf{M}_{D} \mathbf{U}_{1}$. Show that $\mathbf{V}=\mathbf{H}^{-1} \mathbf{M}$ is unitary. Hence show that

$$
\mathbf{M}=\mathbf{U}_{1}^{\dagger} \mathbf{M}_{D} \mathbf{U}_{2},
$$

where $\mathbf{U}_{2}=\mathbf{U}_{1} \mathbf{V}$ is a unitary matrix.

