Appendix A

An aide-mémoire on matrices

A.1 Definitions and notation

An $m \times n$ matrix $\mathbf{A} = (A_{ij}); i = 1, ..., m; j = 1, ..., n$; is an ordered array of mn numbers, which may be complex:

$$\mathbf{A} = \begin{pmatrix} A_{11}A_{12} \dots A_{1n} \\ A_{21}A_{22} \dots \\ \dots \\ A_{m1} \dots & A_{mn} \end{pmatrix}$$

 A_{ij} is the *element* of the *i*th row and *j*th column.

The *complex conjugate* of A, written A^* , is defined by

$$\mathbf{A}^* = (A_{ij}^*).$$

The *transpose* of **A**, written \mathbf{A}^{T} , is the $n \times m$ matrix defined by

$$A_{ji}^{\mathrm{T}} = A_{ij}.$$

The *Hermitian conjugate*, or *adjoint*, of **A**, written \mathbf{A}^{\dagger} , is defined by

$$A_{jt}^{\dagger} = A_{ij}^{*} = A_{ji}^{T*}$$
, or equivalently by $\mathbf{A}^{\dagger} = (\mathbf{A}^{T})^{*}$

If λ , μ are complex numbers and **A**, **B** are $m \times n$ matrices, $C = \lambda A + \mu B$ is defined by

$$C_{ij} = \lambda A_{ij} + \mu B_{ij}.$$

Multiplication of the $m \times n$ matrix **A** by an $n \times l$ matrix **B** is defined by AB = C, where **C** is the $m \times l$ matrix given by

$$C_{ik} = A_{ij}B_{jk}.$$

We use the Einstein convention, that a repeated 'dummy' suffix is understood to be summed over, so that

$$A_{ij}B_{jk}$$
 means $\sum_{j=1}^n A_{ij}B_{jk}$.

Multiplication is associative: (AB)C = A(BC). If follows immediately from the definitions that

$$(\mathbf{AB})^* = \mathbf{A}^* \mathbf{B}^*, \ (\mathbf{AB})^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}}, \ (\mathbf{AB})^{\dagger} = \mathbf{B}^{\dagger} \mathbf{A}^{\dagger}.$$

Block multiplication: matrices may be subdivided into blocks and multiplied by a rule similar to that for multiplication of elements, provided that the blocks are compatible. For example,

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} E \\ F \end{pmatrix} = \begin{pmatrix} AE + BF \\ CE + DF \end{pmatrix}$$

provided that the l_1 columns of **A** and l_2 columns of **B** are matched by l_1 rows of **E** and l_2 rows of **F**. The proof follows from writing out the appropriate sums.

A.2 Properties of $n \times n$ matrices

We now focus on 'square' $n \times n$ matrices. If **A** and **B** are $n \times n$ matrices, we can construct both **AB** and **BA**. In general, matrix multiplication is non-commutative, i.e. in general, $AB \neq BA$.

The $n \times n$ identity matrix or unit matrix I is defined by $I_{ij} = \delta_{ij}$, where δ_{ij} is the Kronecker δ :

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

From the rule for multiplication,

$$IA = AI = A$$

for any **A**. **A** is said to be *diagonal* if $A_{ij} = 0$ for $i \neq j$.

Determinants: with a square matrix $\hat{\mathbf{A}}$ we can associate the *determinant* of \mathbf{A} , denoted by det \mathbf{A} or $|A_{ij}|$, and defined by

$$\det \mathbf{A} = \varepsilon_{ij\ldots t} A_{1i} A_{2j} \ldots A_{nt}$$

(remember the summation convention) where

$$\varepsilon_{i\,j\ldots t} = \begin{cases} 1 & \text{if } i, j, \ldots, t \text{ is an even permutation of } 1, 2, \ldots, n, \\ -1 & \text{if } i, j, \ldots, t \text{ is an odd permutation of } 1, 2, \ldots, n, \\ 0 & \text{otherwise.} \end{cases}$$

An important result is

$$det(AB) = det A det B.$$

Note also

$$\det \mathbf{A}^{\mathrm{T}} = \det \mathbf{A}, \quad \det \mathbf{I} = 1.$$

If det $\mathbf{A} \neq 0$ the matrix \mathbf{A} is said to be *non-singular*, and det $\mathbf{A} \neq \mathbf{0}$ is a necessary and sufficient condition for a unique inverse \mathbf{A}^{-1} to exist, such that

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}.$$

Evidently,

$$(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}.$$

The trace of a matrix A, written TrA, is the sum of its diagonal elements:

 $\operatorname{Tr} \mathbf{A} = A_{ii}$.

It follows from the definition that

$$Tr(\mathbf{AB}) = A_{ii}B_{ii} = B_{ii}A_{ii} = Tr(\mathbf{BA}),$$

and hence

$$Tr(ABC) = Tr(BCA) = Tr(CAB).$$

A.3 Hermitian and unitary matrices

Hermitian and unitary matrices are square matrices of particular importance in quantum mechanics. In a matrix formulation of quantum mechanics, dynamical observables are represented by Hermitian matrices, while the time development of a system is determined by a unitary matrix.

A matrix **H** is *Hermitian* if it is equal to its Hermitian conjugate:

$$\mathbf{H} = \mathbf{H}^{\dagger}, \text{ or } H_{ij} = H_{ij}^{*}.$$

The diagonal elements of a Hermitian matrix are therefore real, and an $n \times n$ Hermitian matrix is specified by $n + 2n(n-1)/2 = n^2$ real numbers.

A matrix **U** is *unitary* if

$$\mathbf{U}^{-1} = \mathbf{U}^{\dagger}, \text{ or } \mathbf{U}\mathbf{U}^{\dagger} = \mathbf{U}^{\dagger}\mathbf{U} = \mathbf{I}.$$

The product of two unitary matrices is also unitary.

A unitary transformation of a matrix A is a transformation of the form

$$\mathbf{A} \rightarrow \mathbf{A}' = \mathbf{U}\mathbf{A}\mathbf{U}^{-1} = \mathbf{U}\mathbf{A}\mathbf{U}^{\dagger},$$

where U is a unitary matrix. The transformation preserves algebraic relationships:

$$(\mathbf{AB})' = \mathbf{A}'\mathbf{B}',$$

and Hermitian conjugation

 $(\mathbf{A}')^{\dagger} = \mathbf{U}\mathbf{A}^{\dagger}\mathbf{U}^{\dagger}.$

Also

$$Tr\mathbf{A}' = Tr\mathbf{A}, \quad \det \mathbf{A}' = \det \mathbf{A}.$$

An important theorem of matrix algebra is that, for each Hermitian matrix ${\bf H}$, there exists a unitary matrix ${\bf U}$ such that

$$\mathbf{H}' = \mathbf{U}\mathbf{H}\mathbf{U}^{-1} = \mathbf{U}\mathbf{H}\mathbf{U}^{\dagger} = \mathbf{H}_D$$

is a real diagonal matrix.

A necessary and sufficient condition that Hermitian matrices \mathbf{H}_1 and \mathbf{H}_2 can be brought into the diagonal form by the same unitary transformation is

$$\mathbf{H}_1\mathbf{H}_2 - \mathbf{H}_2\mathbf{H}_1 = 0.$$

It follows from this (see Problem A.3) that a matrix **M** can be brought into diagonal form by a unitary transformation if and only if

$$\mathbf{M}\mathbf{M}^{\dagger} - \mathbf{M}^{\dagger}\mathbf{M} = 0.$$

Note that unitary matrices satisfy this condition.

https://doi.org/10.1017/9781009401685.026 Published online by Cambridge University Press

An arbitrary matrix \mathbf{M} which does not satisfy this condition can be brought into real diagonal form by a generalised transformation involving two unitary matrices, \mathbf{U}_1 and \mathbf{U}_2 say, which may be chosen so that

$$\mathbf{U}_1 \mathbf{M} \mathbf{U}_2^{\mathsf{T}} = \mathbf{M}_D$$

is diagonal (see Problem A.4).

If \mathbf{H} is a Hermitian matrix, the matrix

 $\mathbf{U} = \exp(\mathbf{i}\mathbf{H})$

is unitary. The right-hand side of this equation is to be understood as defined by the series expansion

$$\mathbf{U} = \mathbf{I} + (\mathbf{i}\mathbf{H}) + (\mathbf{i}\mathbf{H})^2/2! + \cdots$$

Then

$$\mathbf{U}^{\dagger} = \mathbf{I} + (-\mathbf{i}\mathbf{H}^{\dagger}) + (-\mathbf{i}\mathbf{H}^{\dagger})^{2}/2! + \cdots$$

= exp(-\mathbf{i}\mathbf{H}^{\dagger}) = exp(-\mathbf{i}\mathbf{H}) = \mathbf{U}^{-1}

(the operation of Hermitian conjugation being carried out term by term). Conversely, any unitary matrix U can be expressed in this form. Since an $n \times n$ Hermitian matrix is specified by n^2 real numbers, it follows that a unitary matrix is specified by n^2 real numbers.

A.4 A Fierz transformation

It is easy to show that any 2 × 2 matrix **M** with complex elements may be expressed as a linear combination of the matrices $\tilde{\sigma}^{\mu}$.

$$\mathbf{M} = Z_{\mu} \widetilde{\sigma}^{\mu}$$

and $Z_{\mu} = \frac{1}{2} \operatorname{Tr} \left(\widetilde{\sigma}^{\mu} \mathbf{M} \right)$, since $\operatorname{Tr} \left(\widetilde{\sigma}^{\mu} \widetilde{\sigma}^{\nu} \right) = 2 \delta_{\mu\nu}$.

Consider the expression

 $g_{\mu\nu}\langle a^*|\widetilde{\sigma}^{\mu}|b\rangle\langle c^*|\widetilde{\sigma}^{\nu}|d\rangle$, where $|a\rangle$, $|b\rangle$, $|c\rangle$, $|d\rangle$ are two-component spinor fields. Using the result above, we can replace the matrix $|b\rangle\langle c^*|$ by

$$\begin{split} |b\rangle\langle c^*| &= \frac{1}{2}Tr(\widetilde{\sigma}^{\lambda}|b\rangle\langle c^*|)\widetilde{\sigma}^{\lambda} \\ &= -\frac{1}{2}\langle c^*|\widetilde{\sigma}^{\lambda}|b\rangle\widetilde{\sigma}^{\lambda}. \end{split}$$

The last step is evident on putting in the spinors indices, and the minus sign arises from the interchange of anticommuting spinor fields.

We now have

$$g_{\mu\nu}\langle a^*|\widetilde{\sigma}^{\mu}|b\rangle\langle c^*|\widetilde{\sigma}^{\nu}|d\rangle = -\frac{1}{2}g_{\mu\nu}\langle a^*|\widetilde{\sigma}^{\mu}\widetilde{\sigma}^{\lambda}\widetilde{\sigma}^{\nu}|d\rangle < c^*|\widetilde{\sigma}^{\lambda}|b\rangle.$$

Using the algebraic identity

$$g_{\mu\nu}\widetilde{\sigma}^{\mu}\widetilde{\sigma}^{\lambda}\widetilde{\sigma}^{\nu} = -2g_{\rho\lambda}\widetilde{\sigma}^{\rho},$$

gives $g_{\mu\nu}\langle a^*|\widetilde{\sigma}^{\mu}|b\rangle\langle c^*|\widetilde{\sigma}^{\nu}|d\rangle = g_{\rho\lambda}\langle a^*|\widetilde{\sigma}^{\rho}|d\rangle\langle c^*|\widetilde{\sigma}^{\lambda}|b\rangle.$

This is an example of a Fierz transformation.

Problems

A.1 Show that

$$\varepsilon_{ij\ldots t} A_{\alpha i} A_{\beta j} \cdots A_{\nu t} = \varepsilon_{\alpha \beta \ldots \nu} \det \mathbf{A}.$$

- A.2 Show that if A, B are Hermitian, then i(AB BA) is Hermitian.
- **A.3** Show that an arbitrary square matrix **M** can be written in the form $\mathbf{M} = \mathbf{A} + i\mathbf{B}$, where **A** and **B** are Hermitian matrices. Find **A** and **B** in terms of **M** and \mathbf{M}^{\dagger} . Hence show that **M** may be put into diagonal form by a unitary transformation if and only if $\mathbf{M}\mathbf{M}^{\dagger} \mathbf{M}^{\dagger}\mathbf{M} = 0$.
- A.4 If M is an arbitrary square matrix, show that MM^{\dagger} is Hermitian and hence can be diagonalised by a unitary matrix U₁, so that we can write

$$\mathbf{U}_1(\mathbf{M}\mathbf{M}^{\dagger})\mathbf{U}_1^{\dagger} = \mathbf{M}_D^2$$

where \mathbf{M}_D is diagonal with real diagonal elements ≥ 0 . Suppose none are zero. Define the Hermitian matrix $\mathbf{H} = \mathbf{U}_1^{\dagger} \mathbf{M}_D \mathbf{U}_1$. Show that $\mathbf{V} = \mathbf{H}^{-1} \mathbf{M}$ is unitary. Hence show that

$$\mathbf{M} = \mathbf{U}_1^{\dagger} \mathbf{M}_D \mathbf{U}_2,$$

where $\mathbf{U}_2 = \mathbf{U}_1 \mathbf{V}$ is a unitary matrix.