
Appendix A

An aide-mémoire on matrices

A.1 Definitions and notation

An m × n matrix A = (Ai j ); i = 1, . . . , m; j = 1, . . . , n; is an ordered array of mn
numbers, which may be complex:

A =

⎛
⎜⎜⎜⎝

A11 A12 . . . A1n

A21 A22 . . .

. . . . . . . . . . . . . . .

Am1 . . . Amn

⎞
⎟⎟⎟⎠ .

Ai j is the element of the ith row and jth column.
The complex conjugate of A, written A∗, is defined by

A∗ = (A∗
i j ).

The transpose of A, written AT, is the n × m matrix defined by

AT
j i = Ai j .

The Hermitian conjugate, or adjoint, of A, written A†, is defined by

A†
j t = A∗

i j = AT
j i

∗, or equivalently byA† = (AT)∗.

If λ, μ are complex numbers and A, B are m × n matrices, C = λA + μB is defined
by

Ci j = λAi j + μBi j .

Multiplication of the m × n matrix A by an n × l matrix B is defined by AB = C,
where C is the m × l matrix given by

Cik = Ai j B jk .

We use the Einstein convention, that a repeated ‘dummy’ suffix is understood to be
summed over, so that

Ai j B jk means
n∑

j=1

Ai j B jk .
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Multiplication is associative: (AB)C = A(BC). If follows immediately from the
definitions that

(AB)∗ = A∗B∗, (AB)T = BTAT, (AB)† = B†A†.

Block multiplication: matrices may be subdivided into blocks and multiplied by a rule
similar to that for multiplication of elements, provided that the blocks are compatible. For
example, (

A B
C D

) (
E
F

)
=

(
AE + BF
CE + DF

)

provided that the l1 columns of A and l2 columns of B are matched by l1 rows of E and l2

rows of F. The proof follows from writing out the appropriate sums.

A.2 Properties of n × n matrices

We now focus on ‘square’ n × n matrices. If A and B are n × n matrices, we can construct
both AB and BA. In general, matrix multiplication is non-commutative, i.e. in general,
AB �= BA.

The n × n identity matrix or unit matrix I is defined by Ii j = δi j , where δi j is the
Kronecker δ:

δi j =
{

1 if i = j,
0 if i �= j.

From the rule for multiplication,

IA = AI = A

for any A. A is said to be diagonal if Ai j = 0 for i �= j .
Determinants: with a square matrix A we can associate the determinant of A, denoted

by det A or |Ai j |, and defined by

det A = εi j ...t A1i A2 j . . . Ant

(remember the summation convention) where

εi j ...t =
{

1 if i, j, . . . , t is an even permutation of 1, 2, . . . , n,
−1 if i, j, . . . , t is an odd permutation of 1, 2, . . . , n,

0 otherwise.

An important result is

det(AB) = det A det B.

Note also

det AT = det A, det I = 1.

If det A �= 0 the matrix A is said to be non-singular, and det A �= 0 is a necessary and
sufficient condition for a unique inverse A−1 to exist, such that

AA−1 = A−1A = I.

Evidently,

(AB)−1 = B−1A−1.
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The trace of a matrix A, written TrA, is the sum of its diagonal elements:

TrA = Aii .

It follows from the definition that

Tr(AB) = Ai j B ji = B ji Ai j = Tr(BA),

and hence

Tr(ABC) = Tr(BCA) = Tr(CAB).

A.3 Hermitian and unitary matrices

Hermitian and unitary matrices are square matrices of particular importance in quantum
mechanics. In a matrix formulation of quantum mechanics, dynamical observables are
represented by Hermitian matrices, while the time development of a system is determined
by a unitary matrix.

A matrix H is Hermitian if it is equal to its Hermitian conjugate:

H = H†, or Hi j = H∗
j i .

The diagonal elements of a Hermitian matrix are therefore real, and an n × n Hermitian
matrix is specified by n + 2n(n − 1)/2 = n2 real numbers.

A matrix U is unitary if

U−1 = U†, or UU† = U†U = I.

The product of two unitary matrices is also unitary.
A unitary transformation of a matrix A is a transformation of the form

A → A′ = UAU−1 = UAU†,

where U is a unitary matrix. The transformation preserves algebraic relationships:

(AB)′ = A′B′,

and Hermitian conjugation

(A′)† = UA†U†.

Also

TrA′ = TrA, det A′ = det A.

An important theorem of matrix algebra is that, for each Hermitian matrix H, there
exists a unitary matrix U such that

H′ = UHU−1 = UHU† = HD

is a real diagonal matrix.
A necessary and sufficient condition that Hermitian matrices H1 and H2 can be brought

into the diagonal form by the same unitary transformation is

H1H2 − H2H1 = 0.

It follows from this (see Problem A.3) that a matrix M can be brought into diagonal form
by a unitary transformation if and only if

MM† − M†M = 0.

Note that unitary matrices satisfy this condition.
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An arbitrary matrix M which does not satisfy this condition can be brought into real
diagonal form by a generalised transformation involving two unitary matrices, U1 and U2

say, which may be chosen so that

U1MU†
2 = MD

is diagonal (see Problem A.4).
If H is a Hermitian matrix, the matrix

U = exp(iH)

is unitary. The right-hand side of this equation is to be understood as defined by the series
expansion

U = I + (iH) + (iH)2/2! + · · ·
Then

U† = I + (−iH†) + (−iH†)2/2! + · · ·
= exp(−iH†) = exp(−iH) = U−1

(the operation of Hermitian conjugation being carried out term by term). Conversely, any
unitary matrix U can be expressed in this form. Since an n × n Hermitian matrix is
specified by n2 real numbers, it follows that a unitary matrix is specified by n2 real
numbers.

A.4 A Fierz transformation

It is easy to show that any 2 × 2 matrix M with complex elements may be expressed as a
linear combination of the matrices σ̃ μ.

M = Zμσ̃ μ,

and Zμ = 1
2
Tr (σ̃ μM), since Tr (σ̃ μσ̃ ν) = 2δμν .

Consider the expression
gμν〈a∗|σ̃ μ|b〉〈c∗|σ̃ ν |d〉, where |a〉, |b〉, |c〉, |d〉 are two-component spinor fields. Using
the result above, we can replace the matrix |b〉〈c∗| by

|b〉〈c∗| = 1

2
T r (σ̃ λ|b〉〈c∗|)σ̃ λ

= −1

2
〈c∗|σ̃ λ|b〉σ̃ λ.

The last step is evident on putting in the spinors indices, and the minus sign arises from
the interchange of anticommuting spinor fields.

We now have

gμν〈a∗|σ̃ μ|b〉〈c∗|σ̃ ν |d〉 = −1

2
gμν〈a∗|σ̃ μσ̃ λσ̃ ν |d >< c∗|σ̃ λ|b〉.

Using the algebraic identity

gμνσ̃
μσ̃ λσ̃ ν = −2gρλσ̃

ρ,

gives gμν〈a∗|σ̃ μ|b〉〈c∗|σ̃ ν |d〉 = gρλ〈a∗|σ̃ ρ |d〉〈c∗|σ̃ λ|b〉.
This is an example of a Fierz transformation.
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Problems

A.1 Show that

εi j ...t Aαi Aβ j · · · Aνt = εαβ...ν det A.

A.2 Show that if A, B are Hermitian, then i(AB − BA) is Hermitian.

A.3 Show that an arbitrary square matrix M can be written in the form M = A + iB,
where A and B are Hermitian matrices. Find A and B in terms of M and M†. Hence
show that M may be put into diagonal form by a unitary transformation if and only

if MM† − M†M = 0.

A.4 If M is an arbitrary square matrix, show that MM† is Hermitian and hence can be
diagonalised by a unitary matrix U1, so that we can write

U1(MM†)U1
† = MD

2

where MD is diagonal with real diagonal elements ≥ 0. Suppose none are zero. Define
the Hermitian matrix H = U1

†MDU1. Show that V = H−1M is unitary. Hence show
that

M = U1
†MDU2,

where U2 = U1V is a unitary matrix.
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