
2
Autonomous Systems Architectures

In this chapter, we provide an introduction to architectures for autonomous
systems, specifically the software managing all the components within, and
interactions between components of, an autonomous system. The description
here is in no way comprehensive, and there are many other sources, for ex-
ample Brooks (1999) and Winfield (2012), that provide much more detail. We
will touch upon some of the theoretical aspects, such as layered/behavioural
versus symbolic/component views or continuous control versus discrete con-
trol, will discuss practical architectural styles, such as hierarchical control sys-
tems and hybrid architectures, and will highlight practical robotic middle-ware,
such as the Robot Operating System (ROS) (Quigley et al., 2009).

This background will help to motivate and explain the development of hy-
brid agent architectures. This style of autonomous system architecture will
then be the one we primarily use throughout the rest of this book.

2.1 Architectures for Autonomous Systems

Embodied autonomous systems comprise many different physical components.
Typically, these are sensors (such as cameras, infrared detectors, and mo-
tion trackers), components for propulsion (such as wheels, engines, legs, and
wings), communication (such as Bluetooth, GPS, screens, and voice), and more
general actuators (such as arms, magnets, and lifting aids). All these must be
brought together and controlled to achieve the tasks associated with the overall
system and, as is standard in Engineering, each of these physical components
will likely have some form of software control system that manages its behav-
iour. Predominantly, feedback control systems (which use sensors to monitor
the state of the system and then adjust actuators based on how far the sensor
readings are from some ideal) are used at this level to adapt the behaviour of
the component to that of its function and its environment.

13

https://doi.org/10.1017/9781108755023.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755023.002

14 Autonomous Systems Architectures

Once we have such control components, they can be organised into numer-
ous different architectures, some of which are briefly described.

Symbolic Artificial Intelligence: Sense–Plan–Act. A straightforward and
modular approach, rooted in methods for logical reasoning by machines (of-
ten referred to as symbolic artificial intelligence), is that of the sense–plan–act
architecture. Here, sensing is carried out to gather information about the sys-
tem’s environment, typically by invoking the system’s sensors. This is then
used to construct an internal ‘world model’, and then symbolic planning is in-
voked upon this world model in order to attempt to achieve the system’s goals.
The plan constructed is subsequently transformed into actions that are sent to
the lower-level components to undertake. And then the activity cycles back to
sensing.

Engineering: Hierarchical Control Systems. Once we have a collection of
controllers managing the system’s physical interactions, we can, in turn, gener-
ate a control system that, itself, manages a set of such sub-components. We can
think of the basic control systems as sitting at the bottom of some layered data
structure. Above these are the first layer of controllers, each of which manages
some subset of the systems at the bottom layer. Further control elements, in
the next layer up, handle sets of manager controllers, and so on. These lay-
ers can be viewed as a mathematical tree structure, with ‘leaves’ in the bottom
layer each connected to only one controller ‘node’ in the layer above, and these
nodes are connected to a single node in the layer above them. Each controller
handles data/activity from the layer below, packages these up, and then sends
them up to the node above. Similarly, a node interprets commands from above
and delegates them to subordinate nodes below. It is typical that nodes nearer
to the root of this tree deal with higher-level, more abstract, behaviours, while
leaf nodes typically characterise detailed sensor or actuator control.

Robotics: Subsumption Architecture. The above idea of an abstraction hier-
archy also influences subsumption architectures that are popular in robotics.
As in hierarchical control systems, the higher layers represent more abstract
behaviours than lower layers. Individual layers in a subsumption architecture
form finite state machines, all of which take input directly from the sensors.
Data is transmitted between the nodes of each layer in order to form a behav-
iour. A higher layer can subsume a lower layer by inserting new information
into the data connections between its nodes (Brooks, 1986). So, for example,
any decision made by a node may take into account decisions from nodes above
it because of data inserted by the higher-level node, but if no information comes

https://doi.org/10.1017/9781108755023.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755023.002

2.1 Architectures for Autonomous Systems 15

Discrete
Component

Hybrid System

Continuous
Component

Figure 2.1 Hybrid agent architecture

from higher up, a node acts independently. As this approach was developed
in part as a response to top-down planning approaches (such as sense–plan–
act, mentioned earlier in the chapter), there is no identifiable planning node.
Instead, behaviours at a node are activated through a combination of sensor
inputs and behaviours from above.

To some extent, we can see the aforementioned sense–plan–act and subsump-
tion approaches as mirror structures; each is hierarchical: one being driven
primarily by the control/input aspects, the other being driven primarily by
abstract/planning aspects. Neither of these approaches is without problems.
The sense–plan–act approach, in its simplest form, can potentially be too slow
when limited computational resources are available since it represents a cen-
tralised approach to reasoning about the current situation in its entirety. The
tightly constrained cycle can restrict flexibility and efficiency, especially if the
system becomes embroiled in time-consuming planning over complex models.
Subsumption architectures are typically more efficient, but are often seen as
being quite opaque; decisions are made somewhere in the hierarchy, but the
reasons for these decisions can be hard to isolate.

There are a range of variations and approaches that attempt to take elements
from each of these. These can often be classed under the umbrella term hy-
brid architectures (Figure 2.1), which typically involve the interaction between
continuous components that deal with reasoning with numbers often involving
differential equations and produce outputs that are numbers and that are of-
ten continuous in a mathematical sense – meaning that similar inputs generate
similar outputs. Discrete components deal with more logical reasoning over
whether facts are true or false and whether their outputs tend to be zeros and
ones (or trues and falses).

Artificial Intelligence: Three–Layer Architectures. These architectures are
again hierarchical, with the higher level being concerned with abstract plan-
ning and deliberation, while the lowest-level layer is concerned with feedback

https://doi.org/10.1017/9781108755023.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755023.002

16 Autonomous Systems Architectures

control mechanisms (Firby, 1990). The activity within the layers of a three-
layer architecture tends to be much more autonomous than that prescribed by
the fixed sense–plan–act cycle. So, sensing can be going on while deliberation
occurs and both might be occurring in the background while external commu-
nication is being undertaken.

Engineering: Hybrid Control Systems. In a traditional hierarchical control
system, all layers use continuous control controllers. Hybrid control systems
typically mix continuous and discrete components. The continuous nodes are
feedback control systems, as often with mathematically continuous behaviour.
The discrete nodes control activity amongst the continuous nodes and, often,
provide discontinuous changes in behaviour switching between quite different
continuous controllers depending upon the situation – so two similar sets of in-
puts may produce very different behaviours. This kind of behaviour is difficult
to produce using hierarchies of continuous controllers. Continuous control-
lers tend to be efficient at optimising with respect to the system’s environment
but, if the situation changes radically, this optimisation might be inappropriate.
The discrete component gives the possibility of making a significant change,
potentially between distinct continuous control regimes, either provoked by a
big change in the environment or possibly by an internal choice.

These hybrid architectures are both flexible and very popular, but again have
problems. From our viewpoint, their primary problem is that, as with subsump-
tion architectures, the reasons for decisions are often very hard to discern. Re-
cently, and particularly in autonomous vehicles, the use of hybrid agent archi-
tectures has increased.

2.2 Agent Architectures

An ‘agent’ is an abstraction developed to capture autonomous behaviour within
complex, dynamic systems (Wooldridge, 2002). It is defined by Russell and
Norvig (2003) as something that ‘can be viewed as perceiving its environment
through sensors and acting upon that environment through effectors’. There
are many versions of the ‘agent’ concept (Franklin and Graesser, 1996), in-
cluding ones in which the environment it perceives and acts upon is a software
system, but the basic concept lends itself naturally to robotic and autonomous
systems in which a decision-making component must perceive and act upon
some external environment.

In agent architectures for autonomous systems, we encapsulate decision-
making as a component programmed as an agent within the larger system.

https://doi.org/10.1017/9781108755023.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755023.002

2.2 Agent Architectures 17

Since the core new aspect of such a system is autonomous decision-making we
can see how this decision-making agent component has a key role in this type
of architecture. The agent must make decisions based on the perceptions it has
from its environment (which is often dynamic and unpredictable) and under
hard deadlines. In principle, the agent might learn new high-level behaviours
besides making choices about behaviours. As suggested by Wooldridge (2002),
an agent must fundamentally be capable of flexible autonomous action. Since
we are encapsulating decision-making within these components, we require
them to be, as much as possible, rational agents. These are loosely defined as
agents that ‘do the right thing’ (Russell and Norvig, 2003).

Since the 1980s, the agent approach, and the concept of rational agents in
particular, has spawned a vast range of research (Bond and Gasser, 1988; Brat-
man et al., 1988; Cohen and Levesque, 1990; Davis and Smith, 1983; Durfee
et al., 1989; Shoham, 1993), not only regarding the philosophy behind au-
tonomous decision-making but also programming languages/frameworks and
practical industrial exploitation.1 It has become clear that the agent metaphor is
very useful in capturing many practical situations involving complex systems
comprising flexible, autonomous, and distributed components.

Yet, it turns out that the ‘rational agent’ concept on its own is still not
enough! Continuous control systems, neural networks, genetic algorithms, and
so on, can all make decisions (and in many cases are designed to make these
decisions rationally) and so are autonomous. However, while agents compris-
ing such components can indeed act autonomously, the reasons for their choice
of actions are often opaque. Consequently, these systems are very hard to
develop and control. From our point of view, they are also difficult to for-
mally analyse, and hence difficult to use where reliability and transparency are
paramount.

In reaction to these issues, the beliefs–desires–intentions model of agency
has become more popular as a mechanism for implementing decision-making.
Agents following this model are sometimes referred to as cognitive agents.
Again, there are many variations on this (Bratman, 1987; Rao and Georgeff,
1992; Wooldridge and Rao, 1999), and we will examine these further in Chap-
ter 3, but we consider a cognitive agent to be one which

must have explicit reasons for making the choices it does, and should be able to explain
these if necessary.

1 IFAAMAS — The International Foundation for Autonomous Agents and Multiagent Systems
– www.ifaamas.org.

https://doi.org/10.1017/9781108755023.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755023.002

18 Autonomous Systems Architectures

Rational cognitive agents typically provide

1. pro-activeness
that is, the agent is not driven solely by events and so it takes the initiative
and generates, and attempts to achieve, its own goals

2. social activity
that is, the agent interacts with other (sometimes human) agents and can
cooperate with these in order to achieve some of its goals

3. deliberation
that is, the agent can reason about its current state and can modify its subse-
quent actions and future goals according to its knowledge about situation.

Crucially, rational cognitive agents adapt their autonomous behaviour in an
analysable fashion to cater for the dynamic aspects of their environment, re-
quirements, goals, and knowledge.

Example 2.1 Spacecraft Landing
Imagine a cognitive agent controlling a spacecraft that is attempting to land on
a planet. The agent has:

control of dynamic activity for example, thrust, direction, and so on;

information (i.e., ‘knowledge’/‘belief’) for example, about the terrain and
target landing sites;

motivations (i.e., ‘goals’). . . for example, to land soon, and to remain aloft
until safe to land.

The cognitive agent must dynamically

• assess, and possibly revise, the information held
• generate new motivations or revise current ones
• decide what to do, that is, deliberate over motivations/information

So, the requirement for reasoned decisions and explanations has refined the
basic hybrid agent architecture approach (Figure 2.2) in order to require that
the discrete agent component is actually a cognitive agent. These autonomous
systems are based on the hybrid combination of

1. cognitive agent for high-level autonomous (discrete) decisions and
2. traditional control systems for low-level (continuous) activities.

https://doi.org/10.1017/9781108755023.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755023.002

2.2 Agent Architectures 19

Autonomous System

control

[low-level, continuous] [high-level, discrete]

e.g., reasoning, goal

selection, prediction

cooperation

e.g., manipulation,

path following,

reaction, obstacle

avoidance

Rational Agent

decisions

Control System

Figure 2.2 Hybrid agent architecture

These can be easier to understand, program, and maintain and, often, be much
more flexible.

It is important to note that, while there is typically just one cognitive agent,
as autonomous (and particularly robotic) systems have become more complex,
such architectures have involved an increasing number of other components.
These could be multiple sensor control systems (including sophisticated im-
age classification systems for perception), learning systems, planners, sched-
ulers, monitors, navigation components, and so on. These will not all be trad-
itional control systems, but can be composed of neural networks, genetic algo-
rithms, or any mechanism for finding solutions to adaptive problems. We will
touch on the wider issue of verification of these complex modular systems in
Chapter 5.

Aside: Governor/Arbiter Agents. While these hybrid agent architectures are
increasingly popular, many autonomous systems are still constructed using
complex control hierarchies. We will see later that the possibility of identi-
fying a high-level decision-making component can be advantageous for deep
analysis, particularly where legal, safety, or ethical arguments need to be made.
However, even for more opaque control architectures, there is a useful op-
tion. If the idea of an agent is not built into the architecture, we can, in some
cases, add an agent to the system as an arbiter or governor (Figure 2.3). Here,
the agent decides whether to approve or reject any proposed course of action
for the autonomous system. This means, for example, that decisions about the
safety, legality, or ethics of any course of action are assessed in a discrete (and
analysable) way.

This is the approach taken by Arkin in his proposed ethical governor (Arkin,
2008) used in military uncrewed aerial vehicle (UAV) operations. This gov-
ernor conducts an evaluation of the ethical appropriateness of a plan prior to

https://doi.org/10.1017/9781108755023.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755023.002

20 Autonomous Systems Architectures

Governor

Agent
Autonomous

System

Proposed

action/plan

Approve

or reject

Figure 2.3 Governor architecture

its execution, prohibiting plans deemed unethical. Similarly, Woodman et al.
(2012) developed a protection layer, which aims to filter out unsafe
actions.

Though not explicitly constructed with an agent at its core, we can still view
these system–agent pairs as hybrid agent systems.

We will see examples of these governor architectures in Chapters 10 and 13.

2.3 Modularity in Modern Robotic Software

It is widely recognised that robotic systems need to be programmed in a modu-
lar fashion, allowing software packages from different suppliers to be inte-
grated into a single system. There are a number of technologies available to
support this integration. One of the better known of these technologies is the
Robot Operating System (ROS) (Quigley et al., 2009). This system enables
individual software components, termed nodes, to specify their behaviour in
terms of the messages they exchange with other parts of the system and pro-
vides support for nodes to communicate via ROS core nodes. The ROS dis-
tribution provides APIs for programming nodes in C and Python, and there
is also support for programming ROS nodes in other languages (Crick et al.,
2011).

The Robot Operating System does not impose any particular architecture
upon a system built using it. Nodes may operate in publisher–subscriber or
client–server modes (or both at once for different functionalities). Links may
be made freely between any nodes in the system, as it is the structure of these
links that will determine the particular architecture of any system built us-
ing ROS. However, the abstraction imposed by ROS upon an autonomous
system – that of self-contained nodes that communicate via messages – has
proved powerful and appealing, enabling the easy reuse of particular compo-
nents for, for instance, image processing across multiple systems.

https://doi.org/10.1017/9781108755023.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755023.002

2.4 Practical Systems 21

2.4 Practical Systems

In this book, we discuss the development of rational cognitive agent languages
for programming autonomous systems, particularly in aerospace and robotics,
and so we focus on the use of hybrid agent architectures. The cognitive agent
can be programmed in any of the many agent programming languages, almost
all of which have interpreters implemented in Java. Examples of such systems
include

Autonomous Convoying System The autonomous convoy is a queue of ve-
hicles in which the first is controlled by a human driver, but subse-
quent vehicles are controlled autonomously (Kamali et al., 2017).2

The autonomously controlled ‘follower’ vehicles maintain a safe dis-
tance from the vehicle in front. When a human driving a vehicle
wishes to join a convoy, they signal their intent to the convoy lead
vehicle, together with the position in the convoy they wish to join.
Autonomous systems in the lead vehicle then instructs the vehicle that
will be behind the new one to drop back, creating a gap for it to move
into. When the gap is large enough, the human driver is informed that
they may change lane. Once this is achieved, autonomous systems
take control and move all the vehicles to the minimum safe convoy-
ing distance. Similar protocols are followed when a driver wishes to
leave the convoy.

Maintenance of minimum safe distances between vehicles is han-
dled by two low-level control systems. When the convoy is in for-
mation, control is managed using distance sensors and wireless mes-
sages from the lead vehicle. These messages inform the convoy when
the lead vehicle is braking or accelerating and so allow smooth re-
sponses from the whole convoy to these events. This reduces the safe
minimum distance to one where fuel efficiency gains are possible. In
some situations control uses sensors alone (e.g., during leaving and
joining). In these situations the minimum safe distance is larger.

A cognitive agent system manages the messaging protocols for
leaving and joining, and switches between the control systems for
distance maintenance. For instance, if a communication breakdown
is detected, the agent switches to safe distance control based on sen-
sors alone. A simulation of the vehicle control systems was created in
MATLAB3 and connected to the TORCS4 racing car simulator.

2 Software available from github.com/VerifiableAutonomy.
3 uk.mathworks.com.
4 torcs.sourceforge.net.

https://doi.org/10.1017/9781108755023.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755023.002

22 Autonomous Systems Architectures

We will discuss this system in more detail with a focus on its veri-
fication in Chapter 11.

An Autonomous Robotic Arm The autonomous robotic arm system performs
sort and segregate tasks such as waste recycling or nuclear waste man-
agement5 (Aitken et al., 2014, 2017). The system is required to view
a set of items on a tray and identify those items. It must determine
what should be done with each one (e.g., composted, used for paper
recycling or glass recycling) and then move each item to a suitable
location.

The system integrates computer vision, a robot arm, and agent-
based decision-making. It is implemented in ROS (Quigley et al.,
2009). Computer vision identifies items on a tray (Shaukat et al.,
2015). Their identities and locations are communicated to the agent
that makes decisions about what should be done with each object.
These decisions involve, for instance, sending anything that is plant
matter to be composted, paper for recycling, and bricks for landfill.
These decisions are then enacted by control systems.

Satellite Formations Traditionally, a satellite is a large and very expensive
piece of equipment, tightly controlled by a ground team with lit-
tle scope for autonomy. Recently, however, the space industry has
sought to abandon large monolithic platforms in favour of multiple,
smaller, more autonomous, satellites working in teams to accomplish
the task of a larger vehicle through distributed methods. The sys-
tem described here embeds existing technology for generating feed-
back controllers and configuring satellite systems within an agent-
based decision-maker. The agent relies on discrete information (e.g.,
‘a thruster is broken’), while system control uses continuous informa-
tion (e.g., ‘thruster fuel pressure is 65.3’).

In the example a group of satellites can assume and maintain vari-
ous formations while performing fault monitoring and recovery. This
allows them to undertake collaborative surveying work in environ-
ments such as geostationary and low Earth orbits and among semi-
charted asteroid fields. The system and scenarios are described more
fully in Lincoln et al. (2013). We describe its verification in Chapter 8.

Lego Rovers The LEGO Rovers system (Figure 2.4) was developed to intro-
duce the concepts of abstraction and cognitive agent programming to

5 The robotic arm system involves proprietary software developed jointly by the universities of
Liverpool, Sheffield, and Surrey and National Nuclear Labs. Requests for access to the code or
experimental data should be made to Profs Fisher, Veres, or Gao.

https://doi.org/10.1017/9781108755023.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755023.002

2.4 Practical Systems 23

Figure 2.4 The LEGO Rovers system. Image courtesy of Phil Jimmieson and
Sophie Dennis. Used with permission

school children.6 It is used in science clubs by volunteer members of
the STEM Ambassador scheme,7 and has also been used in larger-
scale events and demonstrations. The activity introduces the user to a
teleoperated LEGO robot and asks them to imagine it is a planetary
rover. The robot’s sensors are explained; the user is shown how the
incoming data is abstracted into beliefs such as obstacle or path us-
ing simple thresholds and can then create simple rules for a software
agent, using a GUI, which dictates how the robot should react to the
appearance and disappearance of obstacles, and so on. Aspects of the
LEGO Rovers architecture are described in Dennis et al. (2016).

6 legorovers.csc.liv.ac.uk/ software available at github.com/legorovers.
7 www.stemnet.org.uk/ambassadors/.

https://doi.org/10.1017/9781108755023.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755023.002

