Changes in milk composition in obese rats consuming a high-fat diet

C. J. Bautista, S. Montaño, V. Ramirez, A. Morales, P. W. Nathanielsz, N. A. Bobadilla and E. Zambrano

1Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, 14080, Mexico
2Departamento de Nutrición Animal, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, 14080 Mexico
3Departamento de Nefrología y Metabolismo Mineral, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, 14080 Mexico
4Department of Animal Science, University of Wyoming, Laramie, WY 82071-3684, USA
5Instituto de Investigaciones Biomedicas, Universidad Nacional Autónoma de México, Mexico City, 04510 Mexico

(Submitted 9 March 2015 – Final revision received 10 September 2015 – Accepted 12 October 2015 – First published online 26 November 2015)

Abstract

Maternal obesity programmes offspring development. We addressed maternal obesity effects induced by high-fat diets on maternal mammary gland (MG) structure and function and offspring brain, liver and fat outcomes. Mothers were fed control (C, n 5) or obeseogenic (MO, n 5) diet from the time they were weaned through pregnancy beginning at 120 d, through lactation. At offspring postnatal day (PND) 20, milk leptin and nutrients were determined. At the end of lactation, maternal liver and MG fatty acid profile were measured. Desaturase (Δ6D and Δ5D) and elongase (ELOVL 5 and ELOVL 2) protein was measured by immunohistochemistry and Western blotting (WB) in the liver and WB in the MG. In mothers, liver, MG and milk fat content were higher in MO than in C. Liver arachidonic acid (AA) and EPA and MG EPA were lower in MO than in C. Liver desaturases were higher in MO. The MG was heavier in MO than in C, with decreased Δ5D expression in MO. Desaturases and elongases were immunolocalised in parenchymal cells of both groups. Milk yield, water, carbohydrate content, EPA and DHA were lower, whereas milk leptin and AA were higher in MO than in C. At PND 21 and 36, brain weight was less and fat depots were greater in MO offspring than in C. MO decreased male absolute brain weight but not female absolute brain weight. In conclusion, maternal obesity induced by an obesogenic diet negatively affects maternal liver and MG function with the production of significant changes in milk composition. Maternal obesity adversely affects offspring metabolism and development.

Key words: Maternal obesity: Mammary gland development: Maternal liver metabolism: Milk composition: Offspring development

Obesity and over-nutrition together constitute an ever-increasing world health problem\(^{(1)}\). Further maternal over-nutrition has been demonstrated to result in offspring metabolic programming\(^{(2,3)}\) in multiple organ systems, for example, pancreas and liver\(^{(22)}\), as well as in central and peripheral nervous systems involved in energy homoeostasis\(^{(4–7)}\). Human epidemiological\(^{(2,8)}\) and experimental animal studies\(^{(9–12)}\) have shown a correlation between maternal diet and milk composition. Few studies address the mechanisms by which maternal obesity induced by a high-fat diet regulates liver and mammary gland (MG) differentiation and function during lactation and the implications for the observed changes in milk synthesis and composition\(^{(13)}\). Long-chain PUFA (LC-PUFA) are essential for normal neonatal mamalian development. Arachidonic acid (AA, 20 : 4\(\Delta 6\)) and DHA (C22 : 6\(\Delta 6\Delta 3\)) are essential for neuronal developmental and cognitive function\(^{(14–16)}\). EPA (20 : 5\(\Delta 6\Delta 3\)) is the precursor of several eicosanoid products that are necessary for normal function of the immunological system\(^{(17,18)}\). The concentration of these lipids, AA and EPA = 2 % and DHA = 0.17 %, in rat milk fat is minimal\(^{(17,19)}\). Milk is by far the greatest source of these fatty acids for the neonate, as enzymatic activity of desaturases Δ6D and Δ5D and elongases ELOVL 5 and 2 is low in early life and the fetus and neonate cannot produce the required amounts of LC-PUFA\(^{(20,21)}\).

We hypothesised that a maternal obesity (MO) phenotype resulting from consumption of a high-fat diet during growth, gestation and lactation induces (1) alterations in maternal liver metabolism; (2) variations in MG differentiation and function; (3) adverse changes in maternal milk nutrient concentration;

Abbreviations: AA, arachidonic acid; C, control; LC-PUFA, long-chain PUFA; MG, mammary gland; MO, maternal obesity; PND, postnatal day; WB, Western blotting.

* Corresponding author: E. Zambrano, email zamgon@unam.mx
and (4) programmes offspring liver, fat and brain development in a sex-dependent manner.

Methods
To ensure homogeneity of mothers studied in the different experimental groups, female albino Wistar rats were obtained exclusively from Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico. All procedures were approved by INCMNSZ Animal Experimentation Ethics Committee. Animals were held in American Association for Accreditation of Laboratory Animal Care. We studied female rats F₀ fed control (C, control group; MO, maternal obesity group) or an obesogenic diet (MO, n 5) (Table 1) during growth (21–120 d of life) and pregnancy and lactation, as previously described in detail (22). Female rats were mated at 120 d of age. Mothers delivering litters over fourteen or under ten were excluded from the experiment. To ensure F₁ offspring homogeneity, on postnatal day (PND) 2, all F₁ litters studied were adjusted to ten pups with equal numbers of male and female pups whenever possible. A fixed amount of fresh food was provided daily. During lactation, the food remaining after 24 h was weighed daily (22). Offspring were weaned at PND 21, housed five per cage and fed the control diet.

Measurement of milk composition
Milk was obtained at PND 20. Food and pups were removed from mothers at 06.00 hours. After 4 h, 0.8 U oxytocin (ip) was administered to the mother and milk expressed 15 min later and quantified as total milk yield (ml). Milk samples were vortexed, divided into aliquots and frozen at −20 °C until analysis. Milk samples were thawed at 37 °C and vortexed before pipetting to ensure sample uniformity. Milk water was studied by gravimetric analysis. Milk carbohydrate concentration was determined by spectrophotometry (absorbance 492–550 nm) using the enzymatic glucose oxidase method (AccuTrack). Protein concentration was determined by the Bradford assay (Bio-Rad). Milk leptin concentration was determined by RIA, as previously described (23), using a commercial rat kit (Linco Research Inc.) with a detection limit of 0.5 ng/ml. Milk samples were assayed in duplicate.

Maternal liver and mammary gland collection
At PND 21, after a 4-h fast, mothers were rapidly euthanised by decapitation by experienced personnel trained in the use of the rodent guillotine (Thomas Scientific), and trunk blood was collected into polyethylene tubes, allowed to clot at 4 °C for 1 h, centrifuged at 1500 g for 15 min at 4 °C and serum was stored at −20 °C until assayed. Maternal liver (23) and MG chain were excised and weighed (24). The right inferior liver lobule was fixed for morphometric analysis and immunohistochemistry (IHC), whereas the left inferior liver lobule was immediately frozen at −75 °C for protein analysis by Western blotting (WB). The remainder of the liver was collected at −20 °C for Folch analysis and fatty acid profile. The MG beneath the 6th right nipple (counted from the cephalad end) was sectioned longitudinally into two halves and immediately immersion-fixed in 4 % paraformaldehyde in neutral PBS. After 24 h of fixation, tissue sections were dehydrated with ethanol at increasing concentrations from 75 to 95 % and embedded in paraffin. Sections (5 µm) were stained with haematoxylin–eosin. The MG beneath the 4th and 5th right nipples was frozen at −20 °C for Folch analysis and fatty acid profile. The MG below the 4th, 5th and 6th left nipples was immediately frozen at −75 °C for WB analysis (24).

Morphometric analysis
The percentage area stained for liver fat was evaluated at 100× magnification.

For each animal, ten MG pictures were analysed containing at least 150 lobules/rat at 10 ×. Area was expressed as the percentage of adipose and parenchymal tissues (acinar and ductal epithelium). In all, fifty acini per animal were measured at higher magnification (100×), and results were expressed as acini area; nucleus and cytoplasm area for cells in each acini (approximately 7–15 cells/ acinus) were measured and results were expressed as cytoplasm and nuclei size. All procedures were evaluated using the AxioVision software (24). All histological measurements were performed by two independent observers without knowledge of the source of the tissues, and the results were averaged.

Western blot analysis of protein concentration
A section of liver tissue and MG were homogenised in RIPA lysis buffer (PBS 1 %, NP-40 1 %, sodium deoxicolate 0.5 %, SDS 0.1 % and sodium azide 0.006 % (w/v)). The total lysate protein concentration was determined by the Bradford method. Protein samples were separated on 10 % SDS-PAGE gels and transferred to nylon membranes. Each membrane was probed with antibodies from Santa Cruz Biotechnology either to ΔΔD (sc-98480), ΔΔ5D (sc-101953), ELOVL 5 (sc-374138) or ELOVL 2 (sc-54874) at a 1:500 dilution in Tris-buffered saline Tween (20 mM Tris-HCl, 500 mM NaCl, pH 7.4, 0.01 % Tween-20) with 5 % non-fat dried milk, and incubated for at least 150 µg of total liver lysate was run. Western blot images were captured using an E3 biochemical imaging system (UVP) and spot

Table 1. Maternal diet composition

<table>
<thead>
<tr>
<th>Components (%)</th>
<th>C (%)</th>
<th>MO (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>22</td>
<td>23.5</td>
</tr>
<tr>
<td>Polysaccharide</td>
<td>31</td>
<td>21</td>
</tr>
<tr>
<td>Simple sugars</td>
<td>31</td>
<td>21</td>
</tr>
<tr>
<td>Fibre</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Minerals</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Vitamins</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Fat</td>
<td>5 (maize oil)</td>
<td>25 (20 lard + 5 maize oil)</td>
</tr>
<tr>
<td>SFA</td>
<td>0.8</td>
<td>8.7</td>
</tr>
<tr>
<td>Monosaturates</td>
<td>1.0</td>
<td>9.6</td>
</tr>
<tr>
<td>PUFA</td>
<td>3.2</td>
<td>6.4</td>
</tr>
<tr>
<td>Energy (kJ/g)</td>
<td>16.7</td>
<td>20.5</td>
</tr>
<tr>
<td>Energy (kcal/g)</td>
<td>4.0</td>
<td>4.9</td>
</tr>
</tbody>
</table>

C, control group; MO, maternal obesity group.
densitometry analysis was performed using the vision work system software (UVP). The first four spots of each gel contained samples from the C group and the next four spots contained samples from the MO group. A total of eight samples were included per gel. All results were normalised to β-actin as the loading control.

Immunohistochemistry analysis

Liver and MG paraffin sections (5 μm) were immunostained with Santa Cruz Biotechnology; rabbit polyclonal Δ6D (sc-98480) and Δ5D (sc-101953), and goat polyclonal ELOVL 5 (sc-374138) and ELOVL 2 (sc-54874) 1:200 dilution, ABC Elite kit, Vector Laboratories and visualised using 2.5 % nickel sulphate with 0.02 % DAB (3,3′-diaminobenzidine tetrahydrochloride) chromogen in 0.175 M-sodium acetate. Cell counts were performed on an Olympus BX51 light microscope using image analysis software (Image-Pro Plus, version 3.1; Media Cybernetics Inc.). For the data analyses of protein in the liver by IHC, we used the imageJ software as previously described. For MG, the IHC was used only for immunolocalisation, as the distribution of lobules and fat was very different between control and MO mothers.

Fatty acid analysis

Maternal liver, MG, milk and offspring liver lipids were extracted with hexane (3 ml), and the mixture was centrifuged at 1500 g for 1 min. The organic phase was pooled and 120–150 μl of methanol was added until the organic phase turned transparent, and then 1 g of Na2SO4 was added and vortexed to provide the residue for analysis. The organic phase was evaporated under a stream of N2.

Preparation of fatty acid methyl esters

Samples for fatty acid methyl esters (FAME) were prepared as previously described. Briefly, 2 ml of methanol, 100 μl of toluene and 40 μl of 2 % methanolic sulphuric acid were added to the above residue and heated at 90°C for 2 h. Tubes were then placed on ice, and 1 ml of 5 % NaCl was added. FAME were extracted with hexane (3 x 2 ml), and the mixture was centrifuged at 1500 g for 1 min. The organic phase was pooled and evaporated under a stream of N2. Hexane (200 μl) was added to the residue, which was then centrifuged at 1500 g for 5 min. The clear solution was injected in an Agilent model 6850 GC equipped with a flame ionisation detector. Automatic split injection was carried out using an Agilent 6850 auto sampler. The chromatographic column was an HP-INNOWax capillary column (30 m, 0.25 mm, 0.25 μm) (J & W Scientific). One hundred twenty-five micrograms of heptadecanoic acid was added to 100 mg of tissue as an internal standard. A 1-μl sample was injected in split mode (50:1) at 250°C. The carrier gas was He, with a constant linear velocity of 24 cm/s, and the interface temperature was maintained at 280°C. The oven temperature was raised from 50 to 230°C. Identification of the FAME was based upon retention times obtained for methyl ester standards from PolyScience, and each one was expressed as a percentage of total fatty acid in the sample.

Quantification of TAG

Liver TAG were extracted using the Folch method and quantified with a colorimetric (absorbance 546 nm) commercial kit from RANDOX. Briefly, 10 μl of lipids was diluted in 1000 μl of enzyme reagent and incubated for 10 min at 20–25°C. All samples were assayed in duplicate.

Offspring parameters at postnatal day 21 and 36

After weaning, all offspring were fed chow diet. Offspring body weight was determined at random in two male and two female F1 pups/litter per age (n=5 litters). At PND 21 and 36, pups were fasted for 4 h and euthanised by decapitation. Offspring adipose tissue from visceral and retroperitoneal areas was collected and weighed together with the brain and liver.

Statistical analysis

Statistical analysis was performed using unpaired Student’s t test with P set at <0.05. Results from WB were normalised with β-actin and compared between groups. Offspring data from the same litter were averaged for analysis to provide 5 litters per group. Preliminary analysis for differences according to the sex of the pup at PND 21 revealed no difference, and thus all data at this age were pooled. At PND 36, the results were expressed by sex. All data are presented as mean values with their standard errors.

Results

Maternal parameters at postnatal day 21

Maternal body weight in the C and MO groups (C = 352 (SEM 6) g and MO = 356 (SEM 14) g) at PND 21 were similar. However, total body adipose tissue weight was higher in MO than in C mothers (C = 4 (SEM 0.2) g and MO = 19 (SEM 3) g; P<0.01). Using average data for the lactation period, food intake (C = 63 (SEM 2.6) g and MO = 50 (SEM 2.8) g/d) and energy intake (C = 1054 (SEM 42) kJ/d (C = 252 (SEM 10) kcal/d) and MO = 1025 (SEM 59) kJ/d (MO = 245 (SEM 14) kcal/d) were similar between groups. Fat intake was higher in MO than in C (C = 5.2 (SEM 0.2) g/d and MO = 12.5 (SEM 0.7) g/d; P<0.05).

Maternal liver analysis at postnatal day 21

Liver weight was similar in both groups, whereas the percentage of liver fat was higher in MO than in C (Table 2). The percentages of AA and EPA were lower in MO than in C, whereas DHA was similar in the two groups (Fig. 1(a), (b) and (c)). Finally, the hepatic fatty acid profile exhibited more SFA and monosatuarates and less n-3 and n-6 PUFA in MO than in C (Table 2).

Maternal liver Δ6D, Δ5D, ELOVL 5 and 2 protein expression by Western blotting and immunohistochemistry at postnatal day 21

Hepatic Δ6D and Δ5D protein abundance and the percentage of immunostained tissue area were higher in MO than in C mothers (Fig. 2(a) and (b)). ELOVL 5 was similar in both groups (Fig. 2(c)).
ELOVL 2 immunostaining was lower in MO than in C, but protein levels by WB were similar in the two groups (Fig. 2(d)).

Mammary gland weight and morphometric analysis at postnatal day 21

At PND 21 MG weight, total fat by Folch and percentage of fat by histological analysis were higher in MO than in C (Table 2 and Fig. 3(d)). Histological analysis showed smaller acini and cytoplasm area and nuclei size in MO than in C (Fig. 3(a), (b), (c) and (e)). The percentages of AA and DHA were similar between groups (Fig. 1(d) and (f)), whereas EPA was lower in MO than in C (Fig. 1). Fatty acid analysis showed more SFA and less n-3 and n-6 PUFA in MO than C mothers (Table 2).

Maternal mammary gland Δ6D, Δ5D, ELOVL 5 and 2 protein expression by Western blotting and immunohistochemistry localisation at postnatal day 21

Δ6D, ELOVL 5 and ELOVL 2 protein expression by WB were similar in C and MO (Fig. 4). However, Δ5D was lower in MO than in C (Fig. 4(b)). Δ6D, Δ5D, ELOVL 5 and ELOVL 2 were immunolocalised in parenchymal cells of both groups (Fig. 4).

Milk composition at postnatal day 20

Milk production and milk percentage water, carbohydrate content, EPA, DHA, n-3 PUFA and SFA were lower (Fig. 5(a), (b), (c), (h), (i) and (j)), whereas milk leptin, total fat, AA, monosaturates and fatty acids were higher in MO than in C (Fig. 5(e), (f), (g) and (j)). The percentages of protein and n-6 PUFA were similar in the two groups (Fig. 5(d) and (j)).

Pup development at postnatal day 21 and 36

Pup body weights were similar in the two groups at birth as were pup body and liver weights at PND 21 (Table 3). However, pup weight gain during lactation was greater in MO. Body weight at PND 36 was similar between groups in both sexes, but both C and MO male pups weighed more than female pups. Absolute adipose tissue weight and adipose tissue weight relative to body weight was greater in MO pups than in C at PND 21 and 36. Adipose tissue weight in male pups was greater than in female pups at PND 36 in both groups. Brain weight at PND 21 was less in MO compared with C, but when expressed

Table 2. Maternal liver and mammary gland (MG) parameters at postnatal day (PND) 21

<table>
<thead>
<tr>
<th>Groups</th>
<th>C</th>
<th>MO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SEM</td>
</tr>
<tr>
<td>Liver parameters at PND 21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver weight (g)</td>
<td>15 ± 0.4</td>
<td>15 ± 0.4</td>
</tr>
<tr>
<td>Total liver fat (%)</td>
<td>6.9 ± 0.26</td>
<td>12.4* ± 0.48</td>
</tr>
<tr>
<td>Liver fat (% area)</td>
<td>0.49 ± 0.13</td>
<td>7.13* ± 1.08</td>
</tr>
<tr>
<td>SFA</td>
<td>40 ± 3</td>
<td>49* ± 4</td>
</tr>
<tr>
<td>Monosaturates</td>
<td>16 ± 1</td>
<td>29* ± 3</td>
</tr>
<tr>
<td>n-3 PUFAs</td>
<td>19 ± 1</td>
<td>10* ± 2</td>
</tr>
<tr>
<td>n-6 PUFAs</td>
<td>24 ± 2</td>
<td>11* ± 3</td>
</tr>
<tr>
<td>MG at PND 21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MG weight (g)</td>
<td>21 ± 2</td>
<td>29* ± 2</td>
</tr>
<tr>
<td>Total MG fat (%)</td>
<td>9.2 ± 0.5</td>
<td>13.4* ± 0.4</td>
</tr>
<tr>
<td>MG fat (% area)</td>
<td>29 ± 3</td>
<td>54* ± 4</td>
</tr>
<tr>
<td>SFA</td>
<td>39 ± 2</td>
<td>52* ± 3</td>
</tr>
<tr>
<td>Monosaturates</td>
<td>24 ± 2</td>
<td>27* ± 2</td>
</tr>
<tr>
<td>n-3 PUFAs</td>
<td>13 ± 1</td>
<td>11* ± 1</td>
</tr>
<tr>
<td>n-6 PUFAs</td>
<td>24 ± 2</td>
<td>13* ± 1</td>
</tr>
</tbody>
</table>

C, control group; MO, maternal obesity group. * Significantly different compared with C (P < 0.05).

Fig. 1. Maternal liver at postnatal day (PND) 21. (a) Arachidonic acid (AA, %), (b) EPA (%) and (c) DHA (%), and maternal mammary gland (MG) at PND 21, (d) AA (%), (e) EPA (%) and (f) DHA (%). Values are means (n 5), with their standard errors represented by vertical bars. * Mean value was significantly different (P < 0.05). C: Control (C); MO: maternal obesity (MO).
as relative brain weight to body weight they were similar. At PND 36, brain weights were similar in C and MO female pups, whereas in male pups brain weight was lighter in MO than in C (Table 3). Brain weight relative to body weight was lower in male MO than in female MO. Female brain weight was lighter in comparison with male brain weight in the C offspring at PND 36.

There was no difference in liver weight at PND 21 and 36 between groups. However, liver weight in MO male pups was heavier than in MO female pups. Liver weight relative to body weight was lower in MO female pups compared with C and in C male pups compared with C female pups. Total liver fat and TAG were similar among groups and sexes (Table 3).
Discussion

Milk protein, carbohydrates and lipids such as LC-PUFA are essential components for optimal offspring growth, brain development and maturation of the immune system. There is a clear association between maternal obesity and failure of milk production in human and animal studies\(^{25-27}\). However, effects of a high-fat diet consumption and maternal obesity on maternal liver and MG synthesis of enzymes related to milk production and composition are not well-documented. Our data show that maternal obesity adversely affects liver and MG function, resulting in decreased milk fatty acid quality, associated with negative effects in offspring development. We previously reported that female rats exposed to a 25% fat diet from their own weaning to adult life and through gestation and lactation show elevated insulin, glucose, homeostasis model assessment (HOMA), leptin, TAG and cholesterol at the end of their lactation period\(^{3}\). The present study shows that maternal obesity because of a high-fat diet affects maternal hepatic and MG function, alters milk nutrient concentration and negatively programmes offspring metabolism.

The liver has a critical role in fatty acid metabolism, including control of the synthesis and production of LC-PUFA during lactation\(^{17}\). The fatty acids are then transported to the MG where they constitute key components of milk. Maternal high-fat intake during lactation alters blood lipid concentrations and liver metabolism with consequences for maternal homeostasis, oxidative stress, lipogenesis and \(\beta\)-oxidation\(^{3,19,26-30}\). In the present study, the maternal high-fat diet increased maternal liver fat without any effect on liver weight. Importantly, the
percentages of n-3 PUFA and n-6 PUFA and AA and EPA were lower in MO mothers, whereas SFA and monounsaturates increased relative to C mothers. Δ5D and Δ5D were increased probably because of negative feedback regulation by decreased ELVOL 2 expression in MO mothers compared with C rats. Availability of milk nutrients is determined by the interaction of dietary intake, intestinal absorption and maternal metabolism in several tissues especially the liver and MG. There is evidence to indicate that desaturases are increased in a fatty liver(13,31,32), which would explain the increased abundance of desaturases and elongases that we observed in the livers of the obese mothers. However, there is also low dietary PUFA increase liver desaturases and elongases(21) and therefore in our study we might have expected these enzymes to decrease in obese mothers given their increased PUFA intake. A potential explanation of this apparent contradiction would be that it is not the total PUFA in the diet that regulates the hepatic production of these enzymes but the ratio of PUFA:SFA. In agreement with these findings, López-Vicario et al.(35) produced non-alcoholic steatohepatitis in mice by feeding them with a high-fat diet resulting in an increase of liver Δ5D and n-6 PUFA.

The relative proportions of cellular compartments change markedly during MG development in pregnancy and lactation. Adipose tissue is replaced by parenchymal tissue(27). In our study, MG development in obese mothers did not produce the normal structure with resultant changes in MG function. In our study, MG development in obese mothers did not produce the normal structure with resultant changes in MG function. In our study, MG development in obese mothers did not produce the normal structure with resultant changes in MG function. In our study, MG development in obese mothers did not produce the normal structure with resultant changes in MG function. In our study, MG development in obese mothers did not produce the normal structure with resultant changes in MG function. In our study, MG development in obese mothers did not produce the normal structure with resultant changes in MG function. In our study, MG development in obese mothers did not produce the normal structure with resultant changes in MG function. In our study, MG development in obese mothers did not produce the normal structure with resultant changes in MG function. In our study, MG development in obese mothers did not produce the normal structure with resultant changes in MG function. In our study, MG development in obese mothers did not produce the normal structure with resultant changes in MG function. In our study, MG development in obese mothers did not produce the normal structure with resultant changes in MG function. In our study, MG development in obese mothers did not produce the normal structure with resultant changes in MG function. In our study, MG development in obese mothers did not produce the normal structure with resultant changes in MG function. In our study, MG development in obese mothers did not produce the normal structure with resultant changes in MG function. In our study, MG development in obese mothers did not produce the normal structure with resultant changes in MG function. In our study, MG development in obese mothers did not produce the normal structure with resultant changes in MG function. In our study, MG development in obese mothers did not produce the normal structure with resultant changes in MG function. In our study, MG development in obese mothers did not produce the normal structure with resultant changes in MG function. In our study, MG development in obese mothers did not produce the normal structure with resultant changes in MG function. In our study, MG development in obese mothers did not produce the normal structure with resultant changes in MG function. In our study, MG development in obese mothers did not produce the normal structure with resultant changes in MG function. In our study, MG development in obese mothers did not produce the normal structure with resultant changes in MG function. In our study, MG development in obese mothers did not produce the normal structure with resultant changes in MG function. In our study, MG development in obese mothers did not produce the normal structure with resultant changes in MG function. In our study, MG development in obese mothers did not produce the normal structure with resultant changes in MG function. In our study, MG development in obese mothers did not produce the normal structure with resultant changes in MG function. In our study, MG development in obese mothers did not produce the normal structure with resultant changes in MG function. In our study, MG development in obese mothers did not produce the normal structure with resultant changes in MG function. In our study, MG development in obese mothers did not produce the normal structure with resultant changes in MG function. In our study, MG development in obese mothers did not produce the normal structure with resultant changes in MG function. In our study, MG development in obese mothers did not produce the normal structure with resultant changes in MG function. In our study, MG development in obese mothers did not produce the normal structure with resultant changes in MG function. In our study, MG development in obese mothers did not produce the normal structure with resultant changes in MG function. In our study, MG development in obese mothers did not produce the normal structure with resultant changes in MG function. In our study, MG development in obese mothers did not produce the normal structure with resultant changes in MG function.
were associated with decreased brain weight and more larger fat depots in offspring at PND 21 and 36, supporting our reported findings of negative effects on adult metabolic function [42], as well as cognitive function leading to behavior impairment [22]. Absolute weight is the best overall indicator of the total number of synapses and neurons, and clearly absolute function throughout life will be affected by having a smaller absolute brain size than controls. In addition, low milk DHA concentrations have been reported [14, 40] to affect offspring neural cell membranes and to induce damage in cognitive function during early life.

One very interesting sex-dependent observation in our study was that both absolute and relative brain weight decreased in male pups but not in female pups. These phenotypic changes are in keeping with the findings of negative effects on adult metabolic function [42], as well as cognitive function leading to behavior impairment [22]. Absolute weight is the best overall indicator of the total number of synapses and neurons, and clearly absolute function throughout life will be affected by having a smaller absolute brain size than controls. In addition, low milk DHA concentrations have been reported [14, 40] to affect offspring neural cell membranes and to induce damage in cognitive function during early life.

In conclusion, our results indicate that maternal high-fat diet and pregnancy and lactation and effects on milk composition and offspring outcomes.

Acknowledgements

This work was supported by Fundacion Mexicana para la Salud y Fundación Mexicana para la salud Hepatica (C. J. B., FUNSALUD and FUNDHEPA) and Consejo Nacional de Ciencia y Tecnología (CONACYT, E. Z., 155166 and C. J. B., 257645) Mexico. FUNSALUD, FUNDHEPA AND CONACYT had no role in the design, analysis or writing of this article.

C. J. B., researched data, responsible for the study design and manuscript writing; S. M., V. R., researched data; A. M., contributed to the discussion and reviewed the manuscript; P. W. N. and N. A. B., responsible for the study design and preparation of the manuscript; E. Z., responsible for the study design and preparation of the manuscript.

The authors declare that there are no conflicts of interest.

References

