A NOTE ON INHOMOGENEOUS DIOPHANTINE APPROXIMATION IN BETA-DYNAMICAL SYSTEM

YUEHUA GE and FAN LÜ⊠

(Received 28 May 2014; accepted 12 July 2014; first published online 12 September 2014)

Abstract

We study the distribution of the orbits of real numbers under the beta-transformation T_{β} for any $\beta > 1$. More precisely, for any real number $\beta > 1$ and a positive function $\varphi : \mathbb{N} \to \mathbb{R}^+$, we determine the Lebesgue measure and the Hausdorff dimension of the following set:

$$E(T_{\beta}, \varphi) = \{(x, y) \in [0, 1] \times [0, 1] : |T_{\beta}^{n} x - y| < \varphi(n) \text{ for infinitely many } n \in \mathbb{N}\}.$$

2010 Mathematics subject classification: primary 11K55; secondary 28A80.

Keywords and phrases: beta-dynamical system, beta-expansion, inhomogeneous Diophantine approximation, Lebesgue measure, Hausdorff dimension.

1. Introduction

In 1957, Rényi [13] introduced the beta-expansions of real numbers as a generalisation of the familiar integer base expansions. Since then, the study of the beta-expansion has attracted considerable interest. The corresponding beta-dynamical system has recently received much attention. One of the most important problems of the beta-dynamical system is to study the distribution of the orbits.

Let $\beta > 1$ be a real number and $T_{\beta} : [0, 1] \to [0, 1]$ the transformation defined by

$$T_{\beta}(x) = \beta x \pmod{1}$$
 for any $x \in [0, 1]$.

This map generates the beta-dynamical system ([0, 1], T_{β}). Since T_{β} is ergodic for the well-known Parry measure ν_{β} on [0, 1] (see Section 2), equivalent to the Lebesgue measure \mathcal{L} , Birkhoff's ergodic theorem yields that for \mathcal{L} -almost all $x \in [0, 1]$, the orbit is normally distributed in [0, 1] with respect to ν_{β} . Therefore, for any $x_0 \in [0, 1]$ and \mathcal{L} -almost all $x \in [0, 1]$,

$$\liminf_{n \to \infty} |T_{\beta}^n x - x_0| = 0.$$
(1.1)

It is a natural question to ask about the speed of convergence in (1.1). This leads to the study of the Diophantine properties of the orbits in the beta-dynamical system

^{© 2014} Australian Mathematical Publishing Association Inc. 0004-9727/2014 \$16.00

in analogy with the classical theory of Diophantine approximation. This study contributes to a better understanding of the distribution of the orbits in the betadynamical system.

In 1967, Philipp [12] proved that for any $\beta > 1$, the transformation T_{β} is not only strongly mixing, but also the dynamical Borel–Cantelli lemma holds. More precisely, given a sequence of balls $\{B(x_0, r_n)\}_{n\geq 1}$ with centre $x_0 \in [0, 1]$ and shrinking radius $\{r_n\}_{n\geq 1}$, let

$$D(T_{\beta}, \{r_n\}_{n\geq 1}, x_0) = \{x \in [0, 1] : |T_{\beta}^n x - x_0| < r_n \text{ for infinitely many } n \in \mathbb{N}\}.$$

Philipp proved that

$$\mathcal{L}(D(T_{\beta}, \{r_n\}_{n\geq 1}, x_0)) = \begin{cases} 0 & \text{if } \sum_{n=1}^{+\infty} r_n < +\infty, \\ 1 & \text{if } \sum_{n=1}^{+\infty} r_n = +\infty. \end{cases}$$

This is a typical example of the shrinking target problem [6] related to the Diophantine properties of the orbits in a dynamical system.

In the case that $\sum_{n=1}^{+\infty} r_n < +\infty$, the set $D(T_{\beta}, \{r_n\}_{n\geq 1}, x_0)$ consists of points whose orbits have good approximation properties near the point x_0 and has null measure. Inspired by the Jarník–Besicovitch theorem [1, 7], Shen and Wang [17] studied the Hausdorff dimension of the set $D(T_{\beta}, \{r_n\}_{n\geq 1}, x_0)$ when $\sum_{n=1}^{+\infty} r_n < +\infty$, and found that its size is related to the sequence $\{r_n\}_{n\geq 1}$ in the sense that

$$\dim_H D(T_\beta, \{r_n\}_{n\geq 1}, x_0) = \frac{1}{1+\alpha} \quad \text{with } \alpha = \liminf_{n\to\infty} \frac{\log_\beta r_n^{-1}}{n}.$$

Notice that in the above results about $D(T_{\beta}, \{r_n\}_{n\geq 1}, x_0)$, the point x_0 is always assumed to be fixed. One can then ask, what will happen if the point x_0 is not fixed? In particular, what can one say about the metric properties of the set

$$\{(x, y) \in [0, 1] \times [0, 1] : |T_{\beta}^{n} x - y| < r_n \text{ for infinitely many } n \in \mathbb{N}\}\$$

in the sense of measure and in the sense of dimension? Let $\beta > 1$ be any real number and let $\varphi : \mathbb{N} \to \mathbb{R}^+$ be a positive function. In this note, we determine the Lebesgue measure and the Hausdorff dimension of the set

$$E(T_{\beta},\varphi) = \{(x,y) \in [0,1] \times [0,1] : |T_{\beta}^n x - y| < \varphi(n) \text{ for infinitely many } n \in \mathbb{N}\}.$$

The main results are the following theorems.

THEOREM 1.1. Let $\varphi : \mathbb{N} \to \mathbb{R}^+$ be a positive function. For any $\beta > 1$,

$$\mathcal{L}^{2}(E(T_{\beta},\varphi)) = \begin{cases} 0 & \text{if } \sum_{n=1}^{+\infty} \varphi(n) < +\infty, \\ & \text{if } \sum_{n=1}^{+\infty} \varphi(n) = +\infty, \end{cases}$$

where \mathcal{L}^2 denotes the two-dimensional Lebesgue measure.

THEOREM 1.2. Let $\varphi : \mathbb{N} \to \mathbb{R}^+$ be a positive function with $\sum_{n=1}^{+\infty} \varphi(n) < +\infty$. For any $\beta > 1$,

$$\dim_H E(T_\beta, \varphi) = 1 + \frac{1}{1+\alpha}, \quad \text{where } \alpha = \liminf_{n \to \infty} \frac{\log_\beta \varphi(n)^{-1}}{n}.$$

We would like to make a remark about our motivation. Besides the Jarník–Besicovitch theorem, many classical results of metric Diophantine approximation can find their traces in the beta-dynamical system. For any $x_0 \in [0, 1]$ and $\psi : \mathbb{N} \to \mathbb{R}^+$ a nonincreasing positive function, let

$$F(\psi, x_0) = \{x \in [0, 1] : ||nx - x_0|| < \psi(n) \text{ for infinitely many } n \in \mathbb{N}\},$$

where ||x|| denotes the distance of the real number x to the closest integer. By appealing to Schmidt's very general form of the Khintchine–Groshev theorem (see [15] and [16]), the Lebesgue measure of $F(\psi, x_0)$ can be determined by

$$\mathcal{L}(F(\psi, x_0)) = \begin{cases} 0 & \text{if } \sum_{n=1}^{+\infty} \psi(n) < +\infty, \\ 1 & \text{if } \sum_{n=1}^{+\infty} \psi(n) = +\infty. \end{cases}$$

In the case $\sum_{n=1}^{+\infty} \psi(n) < +\infty$, Levesley [8] proved a general inhomogeneous Jarník–Besicovitch theorem, namely

$$\dim_H F(\psi, x_0) = \frac{2}{1+\gamma} \quad \text{with } \gamma = \liminf_{n \to \infty} \frac{\log \psi(n)^{-1}}{\log n}.$$

When the point x_0 is no longer assumed to be fixed, Dodson [3] studied the set

$$\widetilde{F}(\psi) = \{(x, y) \in [0, 1] \times [0, 1] : ||nx - y|| < \psi(n) \text{ for infinitely many } n \in \mathbb{N}\}\$$

and proved that

$$\dim_H \widetilde{F}(\psi) = 1 + \frac{2}{1 + \gamma} \quad \text{with } \gamma = \liminf_{n \to \infty} \frac{\log \psi(n)^{-1}}{\log n}.$$

The above discussion indicates that there is a natural correspondence between the metrical properties of the sets in metric Diophantine approximation and those for the beta-dynamical Diophantine approximation.

For more results related to the orbits in the beta-dynamical system, the reader is referred to the papers of Schmeling [14], Persson and Schmeling [11], Tan and Wang [18], Li *et al.* [9] and the references therein.

The rest of this paper is organised as follows: in the next section, we give some basic facts about beta-expansion and the beta-dynamical system. Theorems 1.1 and 1.2 will be proved in the last section.

2. Properties of beta-expansion and the beta-dynamical system

Let $\beta > 1$ be a real number. The beta-expansion of a real number $x \in [0, 1]$ in base β is an infinite sequence $\varepsilon(x, \beta) = (\varepsilon_1(x, \beta), \varepsilon_2(x, \beta), \ldots)$ of integers with $0 \le \varepsilon_i(x, \beta) \le \beta$ for all i, defined by

$$\varepsilon_i(x,\beta) = \lfloor \beta T_\beta^{i-1} x \rfloor$$
 for all $i \ge 1$,

where $\lfloor x \rfloor$ denotes the integral part of the real number x.

For any $x \in [0, 1]$ and $n \in \mathbb{N}$, by the definition of beta-expansion (see [13]),

$$x = \frac{\varepsilon_1(x,\beta)}{\beta} + \frac{\varepsilon_2(x,\beta)}{\beta^2} + \dots + \frac{\varepsilon_n(x,\beta)}{\beta^n} + \frac{T_\beta^n x}{\beta^n}.$$
 (2.1)

Let $\Omega_{\beta}^{n} = \{0, 1, \dots, \lfloor \beta \rfloor\}^{n}$ for all $n \in \mathbb{N}$ and

 $\Sigma_{\beta}^{n} = \{(\varepsilon_{1}, \dots, \varepsilon_{n}) \in \Omega_{\beta}^{n} : \text{ there exists } x \in [0, 1] \text{ such that } \varepsilon_{i}(x, \beta) = \varepsilon_{i} \text{ for all } 1 \leq i \leq n\}.$

Lemma 2.1 [13]. *For any* β > 1,

$$\beta^n \le \# \Sigma_{\beta}^n \le \frac{\beta^{n+1}}{\beta - 1},$$

where # denotes the cardinality of a finite set.

For any $n \in \mathbb{N}$ and $\omega = (\omega_1, \dots, \omega_n) \in \Sigma_{\beta}^n$, write

$$I_n(\omega) = \{x \in [0, 1] : \varepsilon_i(x, \beta) = \omega_i \text{ for all } 1 \le i \le n\};$$

then

$$[0,1] = \bigcup_{\omega \in \Sigma_R^n} I_n(\omega). \tag{2.2}$$

For the corresponding beta-dynamical system, it is well known (see, for example, [2, 5, 10, 13]) that for any real number $\beta > 1$, there exists a unique probability measure ν_{β} , equivalent to the Lebesgue measure \mathcal{L} on [0, 1], which is invariant under the beta-transformation T_{β} . Moreover, the transformation T_{β} is ergodic for the measure ν_{β} , which is usually called the Parry measure.

3. Inhomogeneous Diophantine approximation

PROOF OF THEOREM 1.1. Fix an arbitrary point $y \in [0, 1]$. We consider the sequence of balls $\{B(y, \varphi(n))\}_{n\geq 1}$. Let

 $D(T_{\beta}, \{\varphi(n)\}_{n\geq 1}, y) = \{x \in [0, 1] : |T_{\beta}^n x - y| < \varphi(n) \text{ for infinitely many } n \in \mathbb{N}\}.$

By Philipp's result (see Section 1),

$$\mathcal{L}(D(T_{\beta}, \{\varphi(n)\}_{n\geq 1}, y)) = \begin{cases} 0 & \text{if } \sum_{n=1}^{+\infty} \varphi(n) < +\infty, \\ 1 & \text{if } \sum_{n=1}^{+\infty} \varphi(n) = +\infty. \end{cases}$$

Thus, if we write $E = E(T_{\beta}, \varphi)$ and $D_y = D(T_{\beta}, \{\varphi(n)\}_{n \ge 1}, y)$ for simplicity, by using Fubini's theorem,

$$\mathcal{L}^{2}(E) = \int_{0}^{1} \int_{0}^{1} \chi_{E}((x, y)) \, dx \, dy = \int_{0}^{1} \int_{0}^{1} \chi_{D_{y}}(x) \, dx \, dy = \int_{0}^{1} \mathcal{L}(D_{y}) \, dy,$$

where χ_A is the characteristic function of the set A. Therefore,

$$\mathcal{L}^{2}(E(T_{\beta},\varphi)) = \mathcal{L}^{2}(E) = \begin{cases} 0 & \text{if } \sum_{n=1}^{+\infty} \varphi(n) < +\infty, \\ & \text{if } \sum_{n=1}^{+\infty} \varphi(n) = +\infty. \end{cases}$$

In the case $\sum_{n=1}^{+\infty} \varphi(n) < +\infty$, by the result of Shen and Wang (see Section 1), for any $y \in [0, 1]$,

$$\dim_H D(T_{\beta}, \{\varphi(n)\}_{n\geq 1}, y) = \frac{1}{1+\alpha} \quad \text{with } \alpha = \liminf_{n\to\infty} \frac{\log_{\beta} \varphi(n)^{-1}}{n}.$$

Then [4, Corollary 7.12] implies that

$$\dim_H E(T_{\beta}, \varphi) \ge 1 + \frac{1}{1 + \alpha}.$$

Therefore, in order to prove Theorem 1.2, we only need to prove that

$$\dim_H E(T_\beta, \varphi) \le 1 + \frac{1}{1 + \alpha}$$
.

PROOF OF THEOREM 1.2. For simplicity, we write $E = E(T_{\beta}, \varphi)$. For all $n \in \mathbb{N}$, let

$$E_n = \{(x, y) \in [0, 1] \times [0, 1] : |T_{\beta}^n x - y| < \varphi(n)\};$$

then

$$E = \bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} E_n. \tag{3.1}$$

For all $n \in \mathbb{N}$, let $J_n(i) = [i\varphi(n)/\beta^n, ((i+1)\varphi(n))/\beta^n] \cap [0, 1]$ for all $0 \le i \le \lfloor \beta^n/\varphi(n) \rfloor$. Then

$$[0,1] = \bigcup_{0 \le i \le |\beta^n/\varphi(n)|} J_n(i).$$

Thus, by (2.2),

$$[0,1] \times [0,1] = \bigcup_{\omega \in \Sigma_n^n} \bigcup_{0 \le i \le \lfloor \beta^n / \varphi(n) \rfloor} I_n(\omega) \times J_n(i).$$

Therefore,

$$E_n = \bigcup_{\omega \in \Sigma_n^n} \bigcup_{0 \le i \le \lfloor \beta^n/\varphi(n) \rfloor} \{(x, y) \in I_n(\omega) \times J_n(i) : |T_{\beta}^n x - y| < \varphi(n)\}.$$

Given $\omega \in \Sigma_{\beta}^n$ and $0 \le i \le \lfloor \beta^n/\varphi(n) \rfloor$ and any $x \in I_n(\omega)$ and $y \in J_n(i)$, if $(x, y) \in E_n$, then

$$\left|T_{\beta}^{n}x - \frac{i\varphi(n)}{\beta^{n}}\right| \leq |T_{\beta}^{n}x - y| + \left|y - \frac{i\varphi(n)}{\beta^{n}}\right| < \varphi(n) + \frac{\varphi(n)}{\beta^{n}} < 2\varphi(n).$$

Hence,

$$E_{n} \subset \bigcup_{\omega \in \Sigma_{\beta}^{n}} \bigcup_{0 \le i \le \lfloor \beta^{n}/\varphi(n) \rfloor} \left\{ (x, y) \in I_{n}(\omega) \times J_{n}(i) : \left| T_{\beta}^{n} x - \frac{i\varphi(n)}{\beta^{n}} \right| < 2\varphi(n) \right\}$$

$$= \bigcup_{\omega \in \Sigma_{\beta}^{n}} \bigcup_{0 \le i \le \lfloor \beta^{n}/\varphi(n) \rfloor} \left(\left\{ x \in I_{n}(\omega) : \left| T_{\beta}^{n} x - \frac{i\varphi(n)}{\beta^{n}} \right| < 2\varphi(n) \right\} \times J_{n}(i) \right). \tag{3.2}$$

Notice that for any $\omega = (\omega_1, \omega_2, \dots, \omega_n) \in \Sigma_{\beta}^n$ and $x \in I_n(\omega)$, by (2.1),

$$x = \frac{\omega_1}{\beta} + \frac{\omega_2}{\beta^2} + \dots + \frac{\omega_n}{\beta^n} + \frac{T_{\beta}^n x}{\beta^n}.$$

Then

$$\left|\left\{x\in I_n(\omega): \left|T_{\beta}^n x - \frac{i\varphi(n)}{\beta^n}\right| < 2\varphi(n)\right\}\right| \le \frac{4\varphi(n)}{\beta^n},$$

where |A| denotes the diameter of the set A. Thus, for any $\omega \in \Sigma_{\beta}^{n}$ and $0 \le i \le \lfloor \beta^{n}/\varphi(n) \rfloor$,

$$\left| \left\{ x \in I_n(\omega) : \left| T_{\beta}^n x - \frac{i\varphi(n)}{\beta^n} \right| < 2\varphi(n) \right\} \times J_n(i) \right| < \frac{5\varphi(n)}{\beta^n}. \tag{3.3}$$

By (3.1) and (3.2), it is clear that for any $N \in \mathbb{N}$, the family

$$\left\{ \left\{ x \in I_n(\omega) : \left| T_{\beta}^n x - \frac{i\varphi(n)}{\beta^n} \right| < 2\varphi(n) \right\} \times J_n(i) : n \ge N, \omega \in \Sigma_{\beta}^n, 0 \le i \le \left\lfloor \frac{\beta^n}{\varphi(n)} \right\rfloor \right\}$$

is a cover of the set *E*. Recall that $\alpha = \liminf_{n \to \infty} (\log_{\beta} \varphi(n)^{-1}/n)$. Thus, for any $s > 1 + (1/(1+\alpha))$, by (3.1)–(3.3) and Lemma 2.1,

$$\mathcal{H}^{s}(E) \leq \liminf_{N \to \infty} \sum_{n \geq N} \sum_{\omega \in \Sigma_{\beta}^{n}} \sum_{0 \leq i \leq \lfloor \beta^{n}/\varphi(n) \rfloor} \left| \left\{ x \in I_{n}(\omega) : \left| T_{\beta}^{n} x - \frac{i\varphi(n)}{\beta^{n}} \right| < 2\varphi(n) \right\} \times J_{n}(i) \right|^{s}$$

$$\leq \liminf_{N \to \infty} \sum_{n \geq N} \sum_{\omega \in \Sigma_{\beta}^{n}} \sum_{0 \leq i \leq \lfloor \beta^{n}/\varphi(n) \rfloor} \left(\frac{5\varphi(n)}{\beta^{n}} \right)^{s}$$

$$\leq \liminf_{N \to \infty} \sum_{n \geq N} \frac{\beta^{n+1}}{\beta - 1} \cdot \frac{2\beta^{n}}{\varphi(n)} \cdot \left(\frac{5\varphi(n)}{\beta^{n}} \right)^{s} < +\infty.$$

This gives that

$$\dim_H E(T_\beta, \varphi) = \dim_H E \le 1 + \frac{1}{1 + \alpha}.$$

References

- [1] A. S. Besicovitch, 'Sets of fractional dimension (IV): on rational approximation to real numbers', J. Lond. Math. Soc. 9 (1934), 126–131.
- [2] K. Dajani and C. Kraaikamp, *Ergodic Theory of Numbers*, Carus Mathematical Monographs, 29 (The Mathematical Association of America, Washington, DC, 2002).
- [3] M. M. Dodson, 'A note on metric inhomogeneous Diophantine approximation', *J. Aust. Math. Soc. Ser. A* **62** (1997), 175–185.
- [4] K. Falconer, Fractal Geometry. Mathematical Foundations and Applications, 2nd edn (John Wiley, Chichester, 2003).
- [5] A. O. Gel'fond, 'A common property of number systems', Izv. Akad. Nauk 23 (1959), 809–814 (in Russian).
- [6] R. Hill and S. Velani, 'The ergodic theory of shrinking targets', *Invent. Math.* 119 (1995), 175–198.
- [7] V. Jarník, 'Diophantische approximationen und Hasudorffsches mass', Mat. Sb. 36 (1929), 371–382.
- [8] J. Levesley, 'A general inhomogeneous Jarník–Besicovitch theorem', J. Number Theory 71 (1998), 65–80.
- [9] B. Li, T. Persson, B. W. Wang and J. Wu, 'Diophantine approximation of the orbit of 1 in the dynamical system of beta expansion', *Math. Z.* **276** (2014), 799–827.
- [10] W. Parry, 'On the β -expansion of real numbers', Acta Math. Hungar. 11 (1960), 401–416.
- [11] T. Persson and J. Schmeling, 'Dyadic Diophantine approximation and Katok's horseshoe approximation', Acta Arith. 132 (2008), 205–230.
- [12] W. Philipp, 'Some metrical theorems in number theory', *Pacific J. Math.* **20** (1967), 109–127.
- [13] A. Rényi, 'Representations for real numbers and their ergodic properties', Acta Math. Hungar. 8 (1957), 477–493.
- [14] J. Schmeling, 'Symbolic dynamics for β -shifts and self-normal numbers', *Ergod. Th. & Dynam. Syst.* **17** (1997), 675–694.
- [15] W. Schmidt, 'A metrical theorem in Diophantine approximation', Canad. J. Math. 12 (1960), 619–631.
- [16] W. M. Schmidt, 'Metrical theorems on fractional parts of sequences', Trans. Amer. Math. Soc. 110 (1964), 493–518.
- [17] L. M. Shen and B. W. Wang, 'Shrinking target problems for beta-dynamical system', Sci. China Math. 56 (2013), 91–104.
- [18] B. Tan and B. W. Wang, 'Quantitive recurrence properties of beta dynamical systems', *Adv. Math.* **228** (2011), 2071–2097.

YUEHUA GE, Huazhong University of Science and Technology,

Wuhan 430074, PR China

e-mail: geyuehua1001@126.com

FAN LÜ, Huazhong University of Science and Technology,

Wuhan 430074, PR China

e-mail: lvfan1123@163.com