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Abstract

We study the distribution of the orbits of real numbers under the beta-transformation Tβ for any β > 1.
More precisely, for any real number β > 1 and a positive function ϕ : N→ R+, we determine the Lebesgue
measure and the Hausdorff dimension of the following set:

E(Tβ, ϕ) = {(x, y) ∈ [0, 1] × [0, 1] : |T n
β x − y| < ϕ(n) for infinitely many n ∈ N}.
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1. Introduction

In 1957, Rényi [13] introduced the beta-expansions of real numbers as a generalisation
of the familiar integer base expansions. Since then, the study of the beta-expansion has
attracted considerable interest. The corresponding beta-dynamical system has recently
received much attention. One of the most important problems of the beta-dynamical
system is to study the distribution of the orbits.

Let β > 1 be a real number and Tβ : [0, 1]→ [0, 1] the transformation defined by

Tβ(x) = βx (mod 1) for any x ∈ [0, 1].

This map generates the beta-dynamical system ([0, 1], Tβ). Since Tβ is ergodic for the
well-known Parry measure νβ on [0, 1] (see Section 2), equivalent to the Lebesgue
measure L, Birkhoff’s ergodic theorem yields that for L-almost all x ∈ [0, 1], the orbit
is normally distributed in [0, 1] with respect to νβ. Therefore, for any x0 ∈ [0, 1] and
L-almost all x ∈ [0, 1],

lim inf
n→∞

|T n
β x − x0| = 0. (1.1)

It is a natural question to ask about the speed of convergence in (1.1). This leads to
the study of the Diophantine properties of the orbits in the beta-dynamical system
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in analogy with the classical theory of Diophantine approximation. This study
contributes to a better understanding of the distribution of the orbits in the beta-
dynamical system.

In 1967, Philipp [12] proved that for any β > 1, the transformation Tβ is not only
strongly mixing, but also the dynamical Borel–Cantelli lemma holds. More precisely,
given a sequence of balls {B(x0, rn)}n≥1 with centre x0 ∈ [0, 1] and shrinking radius
{rn}n≥1, let

D(Tβ, {rn}n≥1, x0) = {x ∈ [0, 1] : |T n
β x − x0| < rn for infinitely many n ∈ N}.

Philipp proved that

L(D(Tβ, {rn}n≥1, x0)) =


0 if

+∞∑
n=1

rn < +∞,

1 if
+∞∑
n=1

rn = +∞.

This is a typical example of the shrinking target problem [6] related to the Diophantine
properties of the orbits in a dynamical system.

In the case that
∑+∞

n=1 rn < +∞, the set D(Tβ, {rn}n≥1, x0) consists of points whose
orbits have good approximation properties near the point x0 and has null measure.
Inspired by the Jarnı́k–Besicovitch theorem [1, 7], Shen and Wang [17] studied the
Hausdorff dimension of the set D(Tβ, {rn}n≥1, x0) when

∑+∞
n=1 rn < +∞, and found that

its size is related to the sequence {rn}n≥1 in the sense that

dimH D(Tβ, {rn}n≥1, x0) =
1

1 + α
with α = lim inf

n→∞

logβ r−1
n

n
.

Notice that in the above results about D(Tβ, {rn}n≥1, x0), the point x0 is always
assumed to be fixed. One can then ask, what will happen if the point x0 is not fixed?
In particular, what can one say about the metric properties of the set

{(x, y) ∈ [0, 1] × [0, 1] : |T n
β x − y| < rn for infinitely many n ∈ N}

in the sense of measure and in the sense of dimension? Let β > 1 be any real number
and let ϕ : N→ R+ be a positive function. In this note, we determine the Lebesgue
measure and the Hausdorff dimension of the set

E(Tβ, ϕ) = {(x, y) ∈ [0, 1] × [0, 1] : |T n
β x − y| < ϕ(n) for infinitely many n ∈ N}.

The main results are the following theorems.

Theorem 1.1. Let ϕ : N→ R+ be a positive function. For any β > 1,

L2(E(Tβ, ϕ)) =


0 if

+∞∑
n=1

ϕ(n) < +∞,

1 if
+∞∑
n=1

ϕ(n) = +∞,

where L2 denotes the two-dimensional Lebesgue measure.
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Theorem 1.2. Let ϕ : N→ R+ be a positive function with
∑+∞

n=1 ϕ(n) < +∞. For any
β > 1,

dimH E(Tβ, ϕ) = 1 +
1

1 + α
, where α = lim inf

n→∞

logβ ϕ(n)−1

n
.

We would like to make a remark about our motivation. Besides the Jarnı́k–
Besicovitch theorem, many classical results of metric Diophantine approximation can
find their traces in the beta-dynamical system. For any x0 ∈ [0, 1] and ψ : N→ R+ a
nonincreasing positive function, let

F(ψ, x0) = {x ∈ [0, 1] : ||nx − x0|| < ψ(n) for infinitely many n ∈ N},

where ||x|| denotes the distance of the real number x to the closest integer. By appealing
to Schmidt’s very general form of the Khintchine–Groshev theorem (see [15] and
[16]), the Lebesgue measure of F(ψ, x0) can be determined by

L(F(ψ, x0)) =


0 if

+∞∑
n=1

ψ(n) < +∞,

1 if
+∞∑
n=1

ψ(n) = +∞.

In the case
∑+∞

n=1 ψ(n) < +∞, Levesley [8] proved a general inhomogeneous Jarnı́k–
Besicovitch theorem, namely

dimH F(ψ, x0) =
2

1 + γ
with γ = lim inf

n→∞

logψ(n)−1

log n
.

When the point x0 is no longer assumed to be fixed, Dodson [3] studied the set

F̃(ψ) = {(x, y) ∈ [0, 1] × [0, 1] : ||nx − y|| < ψ(n) for infinitely many n ∈ N}

and proved that

dimH F̃(ψ) = 1 +
2

1 + γ
with γ = lim inf

n→∞

logψ(n)−1

log n
.

The above discussion indicates that there is a natural correspondence between the
metrical properties of the sets in metric Diophantine approximation and those for the
beta-dynamical Diophantine approximation.

For more results related to the orbits in the beta-dynamical system, the reader is
referred to the papers of Schmeling [14], Persson and Schmeling [11], Tan and Wang
[18], Li et al. [9] and the references therein.

The rest of this paper is organised as follows: in the next section, we give some
basic facts about beta-expansion and the beta-dynamical system. Theorems 1.1 and
1.2 will be proved in the last section.
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2. Properties of beta-expansion and the beta-dynamical system

Let β > 1 be a real number. The beta-expansion of a real number x ∈ [0, 1] in base β
is an infinite sequence ε(x, β) = (ε1(x, β), ε2(x, β), . . .) of integers with 0 ≤ εi(x, β) ≤ β
for all i, defined by

εi(x, β) = b βT i−1
β xc for all i ≥ 1,

where bxc denotes the integral part of the real number x.
For any x ∈ [0, 1] and n ∈ N, by the definition of beta-expansion (see [13]),

x =
ε1(x, β)
β

+
ε2(x, β)
β2 + · · · +

εn(x, β)
βn +

T n
β x

βn . (2.1)

Let Ωn
β = {0, 1, . . . , b βc}n for all n ∈ N and

Σn
β = {(ε1, . . . , εn) ∈ Ωn

β : there exists x ∈ [0, 1] such that εi(x, β) = εi for all 1 ≤ i ≤ n}.

Lemma 2.1 [13]. For any β > 1,

βn ≤ #Σn
β ≤

βn+1

β − 1
,

where # denotes the cardinality of a finite set.

For any n ∈ N and ω = (ω1, . . . , ωn) ∈ Σn
β, write

In(ω) = {x ∈ [0, 1] : εi(x, β) = ωi for all 1 ≤ i ≤ n};

then
[0, 1] =

⋃
ω∈Σn

β

In(ω). (2.2)

For the corresponding beta-dynamical system, it is well known (see, for example,
[2, 5, 10, 13]) that for any real number β > 1, there exists a unique probability measure
νβ, equivalent to the Lebesgue measure L on [0, 1], which is invariant under the beta-
transformation Tβ. Moreover, the transformation Tβ is ergodic for the measure νβ,
which is usually called the Parry measure.

3. Inhomogeneous Diophantine approximation

Proof of Theorem 1.1. Fix an arbitrary point y ∈ [0, 1]. We consider the sequence of
balls {B(y, ϕ(n))}n≥1. Let

D(Tβ, {ϕ(n)}n≥1, y) = {x ∈ [0, 1] : |T n
β x − y| < ϕ(n) for infinitely many n ∈ N}.

By Philipp’s result (see Section 1),

L(D(Tβ, {ϕ(n)}n≥1, y)) =


0 if

+∞∑
n=1

ϕ(n) < +∞,

1 if
+∞∑
n=1

ϕ(n) = +∞.
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Thus, if we write E = E(Tβ, ϕ) and Dy = D(Tβ, {ϕ(n)}n≥1, y) for simplicity, by using
Fubini’s theorem,

L2(E) =

∫ 1

0

∫ 1

0
χE((x, y)) dx dy =

∫ 1

0

∫ 1

0
χDy (x) dx dy =

∫ 1

0
L(Dy) dy,

where χA is the characteristic function of the set A. Therefore,

L2(E(Tβ, ϕ)) = L2(E) =


0 if

+∞∑
n=1

ϕ(n) < +∞,

1 if
+∞∑
n=1

ϕ(n) = +∞. �

In the case
∑+∞

n=1 ϕ(n) < +∞, by the result of Shen and Wang (see Section 1), for any
y ∈ [0, 1],

dimH D(Tβ, {ϕ(n)}n≥1, y) =
1

1 + α
with α = lim inf

n→∞

logβ ϕ(n)−1

n
.

Then [4, Corollary 7.12] implies that

dimH E(Tβ, ϕ) ≥ 1 +
1

1 + α
.

Therefore, in order to prove Theorem 1.2, we only need to prove that

dimH E(Tβ, ϕ) ≤ 1 +
1

1 + α
.

Proof of Theorem 1.2. For simplicity, we write E = E(Tβ, ϕ). For all n ∈ N, let

En = {(x, y) ∈ [0, 1] × [0, 1] : |T n
β x − y| < ϕ(n)};

then

E =

∞⋂
N=1

∞⋃
n=N

En. (3.1)

For all n ∈ N, let Jn(i) = [iϕ(n)/βn, ((i + 1)ϕ(n))/βn] ∩ [0, 1] for all 0 ≤ i ≤
b βn/ϕ(n)c. Then

[0, 1] =
⋃

0≤i≤bβn/ϕ(n)c

Jn(i).

Thus, by (2.2),
[0, 1] × [0, 1] =

⋃
ω∈Σn

β

⋃
0≤i≤b βn/ϕ(n)c

In(ω) × Jn(i).

Therefore,

En =
⋃
ω∈Σn

β

⋃
0≤i≤b βn/ϕ(n)c

{(x, y) ∈ In(ω) × Jn(i) : |T n
β x − y| < ϕ(n)}.
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Given ω ∈ Σn
β and 0 ≤ i ≤ b βn/ϕ(n)c and any x ∈ In(ω) and y ∈ Jn(i), if (x, y) ∈ En,

then ∣∣∣∣∣T n
β x −

iϕ(n)
βn

∣∣∣∣∣ ≤ |T n
β x − y| +

∣∣∣∣∣y − iϕ(n)
βn

∣∣∣∣∣ < ϕ(n) +
ϕ(n)
βn < 2ϕ(n).

Hence,

En ⊂
⋃
ω∈Σn

β

⋃
0≤i≤b βn/ϕ(n)c

{
(x, y) ∈ In(ω) × Jn(i) :

∣∣∣∣∣T n
β x −

iϕ(n)
βn

∣∣∣∣∣ < 2ϕ(n)
}

=
⋃
ω∈Σn

β

⋃
0≤i≤b βn/ϕ(n)c

({
x ∈ In(ω) :

∣∣∣∣∣T n
β x −

iϕ(n)
βn

∣∣∣∣∣ < 2ϕ(n)
}
× Jn(i)

)
. (3.2)

Notice that for any ω = (ω1, ω2, . . . , ωn) ∈ Σn
β and x ∈ In(ω), by (2.1),

x =
ω1

β
+
ω2

β2 + · · · +
ωn

βn +
T n
β x

βn .

Then ∣∣∣∣∣{x ∈ In(ω) :
∣∣∣∣∣T n
β x −

iϕ(n)
βn

∣∣∣∣∣ < 2ϕ(n)
}∣∣∣∣∣ ≤ 4ϕ(n)

βn ,

where |A| denotes the diameter of the set A. Thus, for anyω ∈ Σn
β and 0 ≤ i ≤ bβn/ϕ(n)c,∣∣∣∣∣{x ∈ In(ω) :

∣∣∣∣∣T n
β x −

iϕ(n)
βn

∣∣∣∣∣ < 2ϕ(n)
}
× Jn(i)

∣∣∣∣∣ < 5ϕ(n)
βn . (3.3)

By (3.1) and (3.2), it is clear that for any N ∈ N, the family{{
x ∈ In(ω) :

∣∣∣∣∣T n
β x −

iϕ(n)
βn

∣∣∣∣∣ < 2ϕ(n)
}
× Jn(i) : n ≥ N, ω ∈ Σn

β, 0 ≤ i ≤
⌊
βn

ϕ(n)

⌋}
is a cover of the set E. Recall that α = lim infn→∞ (logβ ϕ(n)−1/n). Thus, for any
s > 1 + (1/(1 + α)), by (3.1)–(3.3) and Lemma 2.1,

H s(E) ≤ lim inf
N→∞

∑
n≥N

∑
ω∈Σn

β

∑
0≤i≤b βn/ϕ(n)c

∣∣∣∣∣{x ∈ In(ω) :
∣∣∣∣∣T n

β x −
iϕ(n)
βn

∣∣∣∣∣ < 2ϕ(n)
}
× Jn(i)

∣∣∣∣∣s
≤ lim inf

N→∞

∑
n≥N

∑
ω∈Σn

β

∑
0≤i≤b βn/ϕ(n)c

(5ϕ(n)
βn

)s

≤ lim inf
N→∞

∑
n≥N

βn+1

β − 1
·

2βn

ϕ(n)
·

(5ϕ(n)
βn

)s
< +∞.

This gives that

dimH E(Tβ, ϕ) = dimH E ≤ 1 +
1

1 + α
. �
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