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Starting from an alternative decomposition of the turbulent field, a multi-dimensional
statistical formalism for the description and understanding of turbulence in free-shear
flows is proposed and applied to the symmetries of planar temporal jets. The theoretical
framework is based on the exact equation for the second-order moment of the two-point
velocity increment and allows us to trace, for the first time, the spatially evolving cascade
processes at the basis of turbulence mixing and entrainment. Fascinating reverse energy
cascade mechanisms are found to be responsible for the generation of long and wide
structures in the interface region. Analogously to two-dimensional turbulence, the energy
provided by these spatially ascending reverse cascades is found to be eventually dissipated
by viscosity at large scales through friction shearing processes involving a thin cross-flow
layer of these large-scale structures. Finally, the external non-turbulent region of the jet is
also found to be active from an energetic point of view. It is found that pressure-mediated
non-local phenomena of displacement of almost quiescent fluid give rise to non-turbulent
fluctuations that in time, through transitional mechanisms, would contribute to the growth
of the turbulent jet. Overall, the unexpected paths taken by the scale-energy flux in the
combined physical/scale space, which are a substantial novelty with respect to known
descriptions of turbulent mixing and entrainment, may have major repercussions on our
theoretical understanding and modelling, as anticipated here by reduced equations capable
of giving a simple scale-dependent description of the rich dynamics of the flow.
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A. Cimarelli and others

1. Introduction

According to the Kolmogorov’s theory, the prominent feature of high-Reynolds-number
turbulent flows is the energy transfer from large to small scales believed to universally
occur in the inertial subrange. Kolmogorov’s groundbreaking intuition was reducing the
complex problem of turbulence to its essential features, by assuming homogeneity and
isotropy. In these conditions, the main process is the transfer of energy among scales
which is described by a single scalar quantity, the average dissipation rate. In this view,
the velocity increment between two points is a central object. Energy balance prescribes
its third-order moment to be linear in the separation r and proportional to dissipation.

In fact, actual turbulent flows have a much richer physics, involving, beyond energy
transfer in the space of scales, inhomogeneous and anisotropic processes such as spatial
fluxes and turbulence production. These phenomena simply arise from the fact that
every turbulent flow in reality has boundaries that, when not walls, are called turbulent
interfaces. Starting from the work of Corrsin & Kistler (1955), interfacial processes
occurring between flow regions at different turbulence levels triggered the interest of
many experimental, numerical and theoretical researches. Indeed, many types of turbulent
flows in nature and engineering are characterized by surfaces such as iso-velocity,
iso-vorticity and iso-concentration interfaces. The fluid transport process across the
interface, commonly referred to as turbulent entrainment, directly affects the mixing of
turbulence and controls the rate at which turbulent regions grow, thus governing the
exchanges of mass, momentum, heat and species; see da Silva et al. (2014) and references
therein.

The processes of turbulence entrainment and mixing take origin from the large-scale
structures of turbulence in the core flow region (Hussain 1986). A spatially evolving
cascade process is then initiated in the turbulent core whose final stage is the small-scale
motions populating the convoluted turbulent interface where viscous mechanisms
dominate (da Silva & Mètais 2002). Indeed, it is well known that the main mechanism by
which non-turbulent irrotational fluid becomes turbulent by crossing the interface is based
on small-scale motions dominated by viscous diffusion processes. By adapting themselves
to the flow background imposed by the large-scale features of the turbulent core, these
small-scale phenomena represent the last stage of the spatially evolving cascade process
of entrainment and mixing. The duality of these processes legitimates researches that
alternatively concentrate to the large scales and to the small scales, the first and last stage of
the process (Sreenivasan, Ramshankar & Meneveau 1989). As a consequence, the related
theories are spurious results of the observables used and, hence, are difficult to reconcile.
To overcome this duality, the theoretical framework of the generalized Kolmogorov
equation (Hill 2002; Dubrulle 2019) is here developed and applied. The formalism is based
on the second-order moment of the two-point velocity increment. The structure of the
equation, in the form of a divergence of a scale-energy flux, allows us to reconcile, for the
first time, the large- and small-scale features of the spatially evolving cascade process of
entrainment and mixing by tracing the scale-energy paths in the augmented space of scales
and positions.

The proposed formalism strictly connects to turbulence theories and closures. As an
example, the generalized Komogorov equation has been used in Cimarelli, De Angelis
& Casciola (2013) to derive a reduced description of the reverse energy cascade in wall
turbulence. This reduced theory has been used in Cimarelli & De Angelis (2012, 2014) to
develop new physically based modelling approaches for large-eddy simulation. Indeed,
as shown in Germano (2007a,b), the second-order moment of the two-point velocity
increment is strictly related to turbulent stresses at different scales and can be directly
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Spatially evolving cascades in temporal planar jets

used to derive anisotropic and nonlinear turbulence closures as highlighted in Cimarelli,
Abbà & Germano (2019).

In closing the introduction to the work, it is worth noting that a previous attempt
to address the multiscale features of turbulent mixing has been already performed in
Cimarelli et al. (2015a) by analysing the spectral enstrophy budget equation in a shear-less
flow with turbulent/non-turbulent interface. The joint description of scales and positions
provided by the spectral enstrophy budget equation allowed us to measure and understand
interesting aspects of the turbulent entrainment. However, the spectral decomposition does
not allow for a definition of scales in statistically inhomogeneous directions and, hence,
the approach used lacks a distinction between spatial fluxes and scale-space fluxes in
these directions. On the contrary, the scale decomposition in the generalized Kolmogorov
equation is performed in physical space, thus allowing us to also define scales in the
inhomogeneous directions and to identify the related fluxes.

The paper is organized as follows. The details of the simulations performed are
described in § 2. The theoretical framework is presented in § 3 and applied to the numerical
database in §§ 4, 5 and 6 where the main results of the work are described. The work is
closed by concluding remarks in § 7 and by an appendix A where the self-similarity of the
flow is exploited in detail.

2. Turbulent temporal jet

Turbulent plane jets can be understood as a paradigm for free-shear flows. Indeed, the flow
is dominated by the presence of an inhomogeneous mean streamwise velocity profile and
by the interaction of two well-separated range of scales, i.e. large-scale vortices originating
from Kelvin–Helmholtz instabilities and small-scale fluctuations due to the development
of turbulence. Hence, several features of these type of flows can be understood as universal
being shared with other free-shear flows such as round jets, mixing layers and wakes.
A further step towards the study of the essential features of free-shear flows is to consider
the evolution of plane turbulent jets in time rather than in space. This choice allows
us to recover a statistical homogeneity in space while loosing that in time. This simple
exchange of statistical symmetries allows for a simpler formulation of the problem since
the statistical formalisms representing the inhomogeneity in time are represented by single
processes, e.g. momentum and energy flux in time, and, hence, are far less complex
than the formalisms representing inhomogeneity in space which involve multiple physical
processes, e.g. momentum flux in space, viscous, turbulent and pressure energy fluxes in
space and turbulence production due to mean velocity gradient in space. For these reasons,
direct numerical simulations of temporal jets represent a very useful tool for the analysis
of the essential features of free-shear flows (da Silva & Pereira 2008; van Reeuwijk &
Holzner 2014).

In the present work, we consider direct numerical simulation data of a temporal plane
jet performed by solving the Navier–Stokes equations

∂ui

∂xi
= 0,

∂ui

∂t
+ ∂uiuj

∂xj
= − 1

ρ

∂p
∂xi

+ ν
∂2ui

∂xj∂xj
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (2.1)

by means of a numerical code based on a fourth-order-accurate spatial discretization and
a third-order Adams–Bashforth scheme for time integration; see Craske & van Reeuwijk
(2015) and Verstappen & Veldman (2003). In (2.1) index i = 1, 2, 3 corresponds to the
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Figure 1. Direct numerical simulation of a planar temporal jet. Instantaneous flow realization at t = 120 shown
by means of iso-contours of the enstrophy field. Contour colours follow an exponential distribution. The flow
domain shown is truncated in z for readability reasons.

streamwise, spanwise and cross-flow (u, v,w) velocities and (x, y, z) directions, ρ is the
density and ν is the kinematic viscosity. The initial condition is a fluid layer that is
quiescent except for a thin region −H < z < H where the streamwise velocity is non-zero
and homogeneously distributed in the streamwise and spanwise directions,

u(x, y, z, 0) = U0

2

[
1 + tanh

(
H − |z|

2σ0

)]
, (2.2)

where σ0 = 2H/35 is the initial momentum thickness. In order to facilitate a rapid
transition to turbulence, a perturbation consisting of a uniform random noise is
superimposed, its intensity is 4 % the maximum initial velocity.

The flow problem considered here is for a Reynolds number Re = U0H/ν = 1000;
see figure 1 for a view of the enstrophy field. The computational domain is a cuboid of
size 96H × 96H × 48H and has been discretized by using 2304 × 2304 × 960 elements.
A variable time step has been used for the temporal integration in order to obtain a
condition CFL < 0.3. Three simulations have been performed. Every simulation is started
from the same initial conditions (2.2) except for the perturbation superimposed. Hence,
these simulations allow us to have statistically independent flow realizations and have been
used to improve the statistical convergence of the data by using the ensemble average. From
the initial conditions, the flow field is let to freely evolve in time. The total integration time
for each simulation is t = 160. When not specifically stated, in what follows variables are
presented dimensionless by using H for lengths and H/U0 for times.

After an initial transition when the system develops turbulence, the flow decays and
approaches a self-similar regime (Redford, Castro & Coleman 2012; Djenidi et al.
2016) characterized by a constant Taylor Reynolds number, Reλ = √

2kcl/3λcl/ν = 50,
where kcl is the centreline turbulent kinetic energy and λ = √

10νkcl/εcl is the Taylor
microscale with εcl the centreline turbulent dissipation. By following van Reeuwijk &
Holzner (2014), the self-similar regime can be further characterized by a temporal scaling
of the characteristic velocities which is proportional to t−1/2 and of the characteristic
lengths which is proportional to t1/2. Figure 2 confirms these behaviours. In particular,
it appears that turbulence has reached a dynamic equilibrium for t > 60 when all the
observables start to follow a self-similar behaviour. Figure 2 also shows the quality of
the grid resolution adopted to perform the simulations. Indeed, the minimum value of the
centreline Kolmogorov scale η = (ν3/εcl)

1/4 is shown to be reached for t = 40, leading to
a grid resolution Δx1,2/η ≈ 1.66 and Δx3/η ≈ 2. The resolution employed is even more
appropriate if we consider that the Kolmogorov scale increases from this minimum with
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Figure 2. Temporal behaviours of relevant statistical observables. (a) Centreline mean velocity Ucl(t). The
inset shows the centreline turbulent kinetic energy kcl(t) and turbulent dissipation εcl(t). (b) Jet half-widths
computed as the 50 % of the mean centreline velocity, h1/2(t), and as the 2 % of the mean centreline velocity
and enstrophy values, hU(t) and hΩ(t), respectively. The inset show the Kolomogorov η and Taylor λ scales
evaluated at the centreline.

time as η ∼ √
t and with the cross-flow position z since dissipation is maximum at the

centreline.
The computational domain is four times and twelve times larger in the two homogeneous

directions with respect to the domain used in van Reeuwijk & Holzner (2014) and da Silva
& Pereira (2008), respectively. This very large domain has been used in order to accurately
resolve the largest scales of the flow, thereby allowing us to improve the statistical
convergence because of the larger area spanned by the two homogeneous directions.
Indeed, the extent of the flow domain used in the present work is a result of the study of the
velocity two-point correlations from different simulations with different domain sizes. In
particular, two additional simulations with the same numerical setting but different domain
lengths, 24H × 24H × 36H and 72H × 48H × 36H, have also been considered. As shown
in figure 3, the correlation coefficient of streamwise velocity,

Cuu(ri, z, t) = 〈u′(xi + ri, z, t)u′(xi, z, t)〉
〈u′u′〉(z, t)

, (2.3)

highlights significant differences in terms of correlation and anti-correlation lengths and
shapes by varying the domain size. In particular, only the largest domain size appears to
show a clear decorrelation of the velocity field. These results clearly highlight the need
of using very large domains in order to capture the statistically relevant largest scales of
the flow. It is worth pointing out that in such a flow configuration, the largest scales are
represented by the large-scale vortices originating from the Kelvin–Helmholtz instability.
Given the inviscid nature of this instability, we argue that such a constraint on the domain
size is not mitigated by an increase of the Reynolds number.

In the present work, average quantities denoted as 〈·〉 are computed by making use
of the ensemble average between the different flow realizations and by taking advantage
of the statistical symmetries of the flow. In particular, a spatial average is also performed
in the two statistically homogeneous streamwise and spanwise directions. Furthermore,
the flow exhibits a statistical symmetry in the cross-flow direction so that a transformation
z → −z leaves quantities such as 〈u〉 and 〈uiui〉 statistically invariant while reversing the
sign of quantities such as 〈uw〉 and ∂〈·〉/∂z. In conclusion, the average of a generic quantity
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Figure 3. Two-point correlation coefficient of streamwise velocity, Cuu, evaluated at the centreline for t = 120
as a function of the streamwise increment rx (a) and of the spanwise one ry (b). Results from three simulations
with a different domain size: 24H × 24H × 36H (dashed–dotted line), 72H × 48H × 36H (dashed line) and
96H × 96H × 48H (solid line).

β is defined as

〈β〉(z, t) = 1
N

N∑
i=1

1
2

(
1

LxLy

∫∫
β(x, y, z, t) dxdy ± 1

LxLy

∫∫
β(x, y,−z, t) dxdy

)
,

(2.4)

where N = 3 is the number of flow realizations simulated and Lx and Ly are
the dimensions of the flow domain in the streamwise and spanwise directions. In the
following, the Kolmogorov length and velocity scales, η and uη, will be used for the
non-dimensionalization of flow variables and will be denoted with a superscript ∗; see
appendix A for the related scaling in the self-similar regime. Finally, the customary
Reynolds decomposition of the flow in a mean and fluctuating field will be adopted, i.e.
ui = Ui + u′

i.

3. Theoretical framework

Temporal jets are freely evolving turbulent flows characterized by a flux of momentum
and kinetic energy both in space and time. In the case of planar jets, these transports in
physical space occur on average only in the cross-flow direction. In these flow settings, the
mean momentum equations read as

∂U
∂t

+ ∂

∂z

(
〈u′w′〉 − ν

∂U
∂z

)
︸ ︷︷ ︸
ϕ13=ϕturb

13 +ϕvisc
13

= 0, (3.1)

∂

∂z

(
P
ρ

+ 〈w′w′〉
)

︸ ︷︷ ︸
ϕ33=ϕpress

33 +ϕturb
33

= 0. (3.2)

The only non-zero mean momentum is in the streamwise direction, U, and its flux in time
is given by the unbalance of its turbulent and viscous fluxes in the cross-flow direction,
ϕ13 = ϕturb

13 + ϕvisc
13 /= 0. On the contrary, the mean momentum in the cross-flow direction

is null and turbulent and pressure fluxes in the cross-flow direction balance themselves,
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Spatially evolving cascades in temporal planar jets

ϕ33 = ϕ
press
33 + ϕturb

33 = 0. As already stated, also the mean and turbulent kinetic energy is
characterized by a flux in time and in the cross-flow direction. The mean kinetic energy
budget reads as

∂K
∂t

= − ∂

∂z

(
〈u′w′〉U − ν

∂K
∂z

)
︸ ︷︷ ︸

Ψz=Ψ turb
z +Ψ visc

z

+〈u′w′〉∂U
∂z︸ ︷︷ ︸

−Pt

− ν ∂U
∂z
∂U
∂z︸ ︷︷ ︸

E

, (3.3)

where K = UU/2, while the turbulent kinetic energy budget is

∂〈k〉
∂t

= − ∂

∂z

(
〈kw′〉 + 1

ρ
〈p′w′〉 − ν

∂〈k〉
∂z

)
︸ ︷︷ ︸

ψz=ψ turb
z +ψpress

z +ψvisc
z

−〈u′w′〉∂U
∂z︸ ︷︷ ︸

Pt

− ν
〈
∂u′

i
∂xj

∂u′
i

∂xj

〉
︸ ︷︷ ︸

ε

, (3.4)

where k = u′
iu

′
i/2. Contrary to the mean momentum balance equations, source and sink

terms also appear together with spatial fluxes in the cross-flow direction in the kinetic
energy budget equations. In particular, in the mean kinetic energy budget (3.3), only a
sink term appears that is the sum of production of turbulent fluctuations, Pt, and viscous
dissipation by mean shear, E. The unbalance of this sink with the transport due to turbulent
and viscous fluxes, ∂Ψz/∂z, governs the time variation of mean kinetic energy. In the
turbulent kinetic energy budget (3.4), the turbulence production term Pt is, on the contrary,
a source. Hence, the sum Pt − ε can be both positive and negative, thus establishing
source and sink flow regions. The energy transports due to turbulent, pressure and viscous
fluxes, ∂ψz/∂z, partially conform with these regions by extracting energy in the source and
releasing it in the sink regions. The unbalance between source/sink and spatial transports
governs the flux of turbulent kinetic energy in time.

The class of processes described by the mean momentum and energy budget equations
are phenomena that occur in physical space. Hence, in the context of free-shear flows,
these equations enable the study of the phenomena and positions where momentum
and turbulence are developed and the transport mechanisms sustaining the spreading
and entrainment of the jet. However, turbulence is known to also be characterized by
phenomena taking place in the space of scales such as the turbulent cascade and, in
free-shear flows, the large-scale engulfment and small-scale nibbling mechanisms of
entrainment. This duality of description of the same physical phenomenon is a result of
the statistical observables used for its study. The drawback is the development of different
theories as spurious results of approaches that do not support the occurrence of phenomena
simultaneously involving different scales and positions.

To overcome this scale/position duality, in the present work we propose the use of
an alternative formalism, the so-called generalized Kolmogorov equation (Hill 2002). It
is a differential equation that, in its original form valid for homogeneous and isotropic
turbulence, can be traced back to Kolmogorov himself (Kolmogorov 1991a,b). The
theoretical framework is based on the exact equation for the second-order moment of
the velocity increment, δui = u′

i(x
′′, t)− u′

i(x
′, t), the so-called second-order structure

function, δq2 = δuiδui (Dubrulle 2019). The second-order structure function depends
both on the separation vector ri = x′′

i − x′
i and on the position of the mid-point xci =

(x′′
i + x′

i)/2. Hence, in the general case 〈δq2〉 depends upon seven independent variables,
the three coordinates of the mid-point position xc, the three-dimensional scale separation r
and time t. The generalized Kolmogorov equation has been used in several works to study
the energetics of turbulence in the complete space of scales and positions, we mention only
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few of them, e.g. Danaila et al. (2001), Marati, Casciola & Piva (2004), Cimarelli et al.
(2013, 2015b, 2016), Saikrishnan et al. (2012) for turbulent channel flows, Mollicone et al.
(2018) for separated flows, Rincon (2006), Togni, Cimarelli & De Angelis (2015, 2019) for
thermally driven turbulence, Gomes-Fernandes, Ganapathisubramani & Vassilicos (2015);
Portela, Papadakis & Vassilicos (2017) for turbulent wakes and Burattini, Antonia &
Danaila (2005), Sadeghi, Lavoie & Pollard (2016) for round jets. Here, we extend the use
of the generalized Kolmogorov equation to the symmetries of a turbulent planar temporal
jet. The equation reads as

∂〈δq2〉
∂t

+ ∂〈δq2δu′
i〉

∂ri
+ ∂〈δq2δU〉

∂rx︸ ︷︷ ︸
−Tr

− 2ν
∂2〈δq2〉
∂ri∂ri︸ ︷︷ ︸
−Dr

+ ∂〈δq2w̃′〉
∂zc

+ 2
ρ

∂〈δp′δw′〉
∂zc

− ν

2
∂2〈δq2〉
∂zc∂zc︸ ︷︷ ︸

−Tz

= −2〈δu′δw′〉
(̃
∂U
∂z

)
− 2〈δu′w̃′〉δ

(
∂U
∂z

)
︸ ︷︷ ︸

Π

−4 ν
˜

〈
∂u′

i
∂xj

∂u′
i

∂xj

〉
︸ ︷︷ ︸

ε̃

, (3.5)

where ·̃ denotes the two-point mean operator that, for a generic quantity, reads as
β̃ = (β(x′′, t)+ β(x′, t))/2. To highlight its conservative form, (3.5) can be rewritten as

∂〈δq2〉
∂t

+ ∂φri

∂ri
+ ∂φzc

∂zc
= ξ, (3.6)

where
∂φri

∂ri
= ∂

∂ri
(φturb

ri
+ φmean

ri
+ φvisc

ri
), (3.7)

∂φzc

∂zc
= ∂

∂zc
(φturb

zc
+ φpress

zc
+ φvisc

zc
) (3.8)

are the divergence of fluxes occurring in the space of scales ri and in physical space zc,
respectively. In particular, the scale-space flux φri is given by three contributions

φturb
ri

= 〈δq2δu′
i〉, φmean

ri
= 〈δq2δU〉δi1, φvisc

ri
= −2ν

∂〈δq2〉
∂ri

(3.9a–c)

due to inertial turbulent fluctuations, to mean advection and to viscous diffusion,
respectively. On the other hand, the spatial flux is given by three contributions

φturb
zc

= 〈δq2w̃′〉, φpress
zc

= 2
ρ

〈δp′δw′〉, φvisc
zc

= −ν
2
∂〈δq2〉
∂zc

(3.10a–c)

due to inertial turbulent fluctuations, to pressure fluctuations and viscous diffusion,
respectively. These transport terms are partially driven by a source term which is the
balance between turbulence production and dissipation,

ξ = Π − 4ε̃. (3.11)

The unbalance between transports and sources governs the flux of scale energy in time,
that in a symbolic form reads as

∂〈δq2〉
∂t

= Tr + Dr + Tz + ξ. (3.12)

In line with the single-point energy budgets, the generalized Kolmogorov equation allows
for the study of the source and sink regions of the flow and of the fluxes connecting
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Figure 4. (a) Mean velocity and turbulent intensity profiles: U∗ (solid line),
√〈u′u′〉∗ (dashed line),

√〈v′v′〉∗
(dashed–dotted line) and

√〈w′w′〉∗ (dotted line). (b) Mean momentum equation. Main panel: 10∂U∗/∂t∗

(delta), mean streamwise momentum fluxes ϕturb∗
13 (solid) and ϕvisc∗

13 (dash). Inset panel: mean cross-flow
momentum fluxes ϕturb∗

33 (solid) and ϕpress∗
33 (dash).

these regions. However, the strength of the formalism is such that all these processes are
both scale and position dependent, and, as a consequence, also fluxes in the space of scales
can be defined, i.e. φri .

4. Inhomogeneity and flow regions

Before analysing the compound space of scales and positions described by the generalized
Kolmogorov equation (3.5), it is useful to divide the flow in different regions characterized
by well-defined physical processes. Indeed, the flow while freely evolving in time, is
characterized by a strong statistical inhomogeneity in the cross-flow direction as clearly
highlighted by the mean velocity and turbulent intensity profiles shown in figure 4(a).
In particular, the flow can be idealized as characterized by a turbulent core where the
mean flow and the turbulent fluctuations are intense and by an interface region where
entrainment processes occur. From the mean flow point of view, both these two flow
regions are characterized by a cross-flow spreading. As shown in figure 4(b), a positive
turbulent flux of mean streamwise momentum in the cross-flow direction, ϕturb

13 > 0, is
found to cover the entire flow domain. The intensity of the turbulent flux far exceeds the
still positive contribution given by the viscous flux, ϕvisc

13 ≈ 0, thus sustaining a spreading
of the mean streamwise momentum profile ϕ13 = ϕturb

13 + ϕvisc
13 > 0. As a consequence,

the time variation of the mean streamwise momentum is positive in the outer jet region
∂U/∂t > 0 and negative in the inner jet region ∂U/∂t < 0. The cross-over between
decaying and enhancing mean momentum is z∗ ≈ 60, corresponding to the peak value of
the turbulent flux ϕturb

13 . Due to the symmetries of the flow, the mean cross-flow momentum
is zero and, as shown in the inset of figure 4(b), a balance of positive turbulent flux,
ϕturb

33 > 0, and negative pressure flux, ϕpress
33 < 0, takes place.

In line with the processes governing momentum, the mean kinetic energy budget also
highlights that the entire flow domain is characterized by a cross-flow spreading. As shown
in the inset of figure 5, the temporal jet is characterized by a continuous flux of mean
kinetic energy from its core towards the outer interface region, Ψz = Ψ turb

z + Ψ visc
z > 0.

Both viscous diffusion and turbulent fluxes are positive but the contribution of the
turbulent flux far exceeds that due to viscosity, Ψ turb

z 
 Ψ visc
z > 0. As a consequence,

the turbulent transport term ∂Ψ turb
z /∂z is the dominant term of the budget. As shown in
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Figure 5. Mean kinetic energy budget. Main panel: ∂K∗/∂t∗ (delta), −P∗
t (solid), −E∗ (dash), −∂Ψ turb∗

z /∂z∗

(dash-dot) and −∂Ψ visc∗
z /∂z∗ (dash–dot–dot). Insets: Ψ turb∗

z (dash–dot) and Ψ visc∗
z (dash–dot–dot).
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Figure 6. Turbulent kinetic energy budget. Main panels: ∂〈k〉∗/∂t∗ (delta), P∗

t (solid), −ε∗ (dash),
−∂ψ turb∗

z /∂z∗ (dash–dot), −∂ψpress∗
z /∂z∗ (dot) and −∂ψvisc∗

z /∂z∗ (dash–dot–dot). Insets: ψ turb∗
z (dash–dot),

ψ
press∗
z (dot) and ψvisc∗

z (dash–dot–dot). The overall behaviour is shown in (a) while an enlargment of the
behaviour in the interface region is shown in (b).

the main panel of figure 5, ∂Ψ turb
z /∂z drains kinetic energy for z∗ < 45 to feed the outer

region of the jet for z∗ > 45 with a peak intensity at z∗ ≈ 80. The other terms of the
budget are negligible with the exception of the turbulence production term −Pt which
drains kinetic energy from the mean flow to sustain turbulent fluctuations and, hence, it is
negative with a peak intensity at z∗ ≈ 60. These two processes of turbulence production
and turbulent transport govern the behaviour of mean kinetic energy and their unbalance
results in a time variation of mean kinetic energy. In accordance with the mean momentum
results, the cross-over between decaying and enhancing mean kinetic energy is z∗ ≈ 60.

Contrary to the mean momentum and mean kinetic energy processes, the behaviour
of turbulent kinetic energy allows us to characterize the flow in different flow regions
depending on the physical process sustaining turbulence. As shown in figure 6(a),
turbulence production Pt is active in an intermediate region in between the core and
outer part of the jet where the mean shear is maximum; see also figure 4(a). On the
other hand, turbulent dissipation −ε shows a decrease of its intensity moving from the
jet core towards the interface region. The spatial transport −∂ψz/∂z is dominated by
the turbulent and pressure terms being that the viscous diffusion is negligible almost
everywhere, ∂ψz/∂z ≈ ∂(ψ turb

z + ψ
press
z )/∂z.

The overall picture is the following. In the intermediate region, 15 < z∗ < 106
(production region I), fluctuations are mainly sustained by turbulence production.
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The available turbulent energy is drained by both local turbulent dissipation processes −ε
and by turbulent transport mechanisms −∂ψ turb

z /∂z < 0 which overcomes the opposite in
sign pressure transport contribution −∂ψ turb

z /∂z > 0. The balance is negative giving rise
to a peak of turbulent kinetic energy decay in time within this region, ∂〈k〉/∂t < 0. The
energy subtracted by the turbulent transport is then transferred towards the inner and outer
regions of the jet. In particular, for z∗ < 15 (inner region II) and z∗ > 106 (outer region III),
the dominant process sustaining turbulence is the turbulent transport, −∂ψ turb

z /∂z > 0,
and the budget in these two regions reduces to

∂〈k〉
∂t

≈ − ∂

∂z
(ψ turb

z + ψpress
z )− ε (4.1)

since production is almost negligible. The main difference between these two regions
is that in the inner region II both turbulent and pressure transports are positive,
−∂ψ turb

z /∂z > −∂ψpress
z /∂z > 0, but the balance with dissipation is negative leading to

a turbulent energy decay, ∂〈k〉/∂t < 0. On the contrary, in the outer region III the pressure
transport is negative but the turbulent transport is positive and large enough to have a
positive balance with dissipation leading to ∂〈k〉/∂t > 0 and reaching its maximum for
z∗ ≈ 125.

Overall, we observe that, for z∗ < 180, the turbulent transport is more intense than the
pressure one and plays a role of draining of turbulent energy from region I to feed regions II
and III. Accordingly, as shown in the inset of figure 6(a), a cross-over location z∗ ≈ 40 can
be defined splitting the flow in regions traversed by a negative turbulent flux, ψ turb

z < 0,
directed towards the jet centreline for z∗ < 40 from regions traversed by a positive flux,
ψ turb

z > 0, towards the jet interface for z∗ > 40. On the other hand, pressure transport
drains turbulent energy in the outer region III to feed the inner regions of the jet (regions
I and II). Hence, for z∗ < 180, the turbulent jet is entirely traversed by a negative pressure
flux, ψpress

z < 0, as shown in the inset of figure 6(a). Note that the jet interface defined as
the 2 % of the jet centreline enstrophy is located at z∗ = h∗

Ω = 171.
Different considerations can be drawn for the external region IV, for z∗ > 180, i.e.

further away from the putative jet interface at z∗ = h∗
Ω = 171. As for the outer region III,

fluctuations in this region of the flow are sustained by transport mechanisms. However, as
shown in figure 6(b), in this case the contribution of the pressure transport turns out to be
positive, −∂ψpress

z /∂z > 0 and, for z∗ > 210, it overcomes the contribution of the turbulent
transport, i.e. −∂ψpress

z /∂z > −∂ψ turb
z /∂z > 0. Interestingly, for z∗ > 210, the turbulent

dissipation is almost null, thus suggesting that the fluctuations observed at the external
region of the jet are not turbulent in nature. Hence, in this region the balance reduces to

∂〈k〉
∂t

≈ −∂ψ
press
z

∂z
> 0. (4.2)

We conjecture that such time increasing of the kinetic energy content is induced by
large-scale pressure fluctuations induced by the large-scale vortex pattern of the jet
reminiscent of the Kelvin–Helmholtz instability. Hence, we argue that the transport of
turbulent kinetic energy also occurs in the non-turbulent region further away from the
jet interface throughout non-local interactions of the large-scale jet pattern with the
surrounding quiescent fluid mediated by the pressure field, ∂ψpress

z /∂z. These aspects will
be further investigated in § 6.5 by means of a scale-by-scale analysis.
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5. Scale-energy paths

We now extend the analysis of the turbulent temporal planar jet to the augmented space of
turbulence (rx, ry, rz, zc, t) described by the generalized Kolmogorov equation (3.5). The
multi-dimensionality of the approach challenges for a rational study. For this reason, we
will limit the analysis to the hyper-planes (rz = 0, t = const) and (rx = 0, t = const) of
the five-dimensional space of locations, scales and times. The resulting equations retain
their conservative form,

∂φrx(rx, ry, zc)

∂rx
+ ∂φry(rx, ry, zc)

∂ry
+ ∂φzc(rx, ry, zc)

∂zc
= ζrz=0 (rz = 0, t = const), (5.1)

∂φry(ry, rz, zc)

∂ry
+ ∂φrz(ry, rz, zc)

∂rz
+ ∂φzc(ry, rz, zc)

∂zc
= ζrx=0 (rx = 0, t = const), (5.2)

thus showing that scale-energy fluxes in the hyper-planes are driven by extended source
terms,

ζrz=0 = ξ − ∂φrz

∂rz
− ∂〈δq2〉

∂t
, (5.3)

ζrx=0 = ξ − ∂φrx

∂rx
− ∂〈δq2〉

∂t
, (5.4)

which take into account the scale energy exchange with the local sink/source phenomena,
ξ , and with the dimensions perpendicular to the hyper-plane considered, i.e.

−∂φrz

∂rz
− ∂〈δq2〉

∂t
for (rz = 0, t = const), (5.5)

−∂φrx

∂rx
− ∂〈δq2〉

∂t
for (rx = 0, t = const). (5.6)

Hence, the divergence of fluxes in the hyper-planes can be understood as the intensity of
scale energy extracted/released by the flux vector field along its trajectories. In equilibrium
turbulence the divergence of fluxes in the hyper-planes always balances with the sum
of the local source term ξ (production minus dissipation) and with the scale energy
exchange to/from the scale space perpendicular to the hyper-plane itself, ∂φr⊥/∂r⊥, thus,
∂〈δq2〉/∂t = 0. In non-equilibrium turbulence such as in the temporal jet, the divergence
of fluxes in the hyper-plane can exceed/subceed the sum ξ − ∂φr⊥/∂r⊥, thus enabling a
scale-energy transfer in time ∂〈δq2〉/∂t /= 0.

5.1. The hyper-plane (rz = 0, t = 120)
We start the analysis by considering the hyper-plane (rz = 0, t = 120). In figure 7 the
trajectories of the flux vector field, (φrx, φry, φzc), coloured by the intensity of scale
energy extracted/released along their route, ∂φrx/∂rx + ∂φry/∂ry + ∂φzc/∂zc, are shown.
The plots show that all the fluxes emerge from a well-defined point of the augmented
space, (r∗

x , r∗
y , z∗

c) ≈ (90, 110, 60). As shown in figure 7(a) with an iso-surface of 〈δq2〉 =
0.98〈δq2〉max, this singularity point belongs to a range of scales and positions of the
augmented space characterized by the largest scale-energy content. This energy-containing
region takes a toroid shape that in physical space lies in the z∗

c ≈ 60 plane. A
well-defined band of energy-containing scales is also identified by the iso-surface of
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〈δq2〉 = 0.98〈δq2〉max that can be traced by considering the radius of revolution of this
toroid shape. We find that the radius is not constant and equals r∗

y ≈ 160 for r∗
x = 0 and

r∗
x ≈ 140 for r∗

y = 0, thus highlighting the anisotropy of the large energy-containing scales
of the flow. As it can be grasped from the iso-contours of figures 7(b) and 7(c), this range
of scales and positions is also the site of the local turbulence production mechanisms
being that the source term is maximum and positive, ξ > 0, i.e. turbulence production
exceeds dissipation in this region of the augmented space. By considering that the jet
half-width is h∗

Ω = 171 (evaluated as the location where enstrophy is 2 % of the jet
centreline enstrophy), we can assert that this toroidal source region of energy-containing
fluctuations occurs at length scales of the same order of the integral scale of the problem.

In accordance with the above analysis, we can assert that the field of fluxes stems from
the source and energy-containing region of the augmented space of scales and positions.
A more detailed analysis shows that from the singularity point (r∗

x , r∗
y , z∗

c) ≈ (90, 110, 60),
the fluxes bifurcate in three distinct branches approaching the zc-distributed small-scale
range, the inner region of the jet and outer regions of the jet; see figure 7(a). These three
regions are the sink regions of the augmented space of turbulence where scale energy
is eventually conveyed. Note the complex nature of the scale-energy paths towards these
three regions which deserves the following separate analysis.

5.1.1. Family of fluxes A
The first family of fluxes is that feeding the zc-distributed dissipative range of small scales.
This branch of fluxes while diverging from the singularity point systematically move
towards smaller streamwise and spanwise scales, φrx < 0 and φry < 0, respectively. As
better shown in figures 7(b) and 7(c), after an initial ascension towards outer positions,
φzc > 0, this family of fluxes bends, attaining a flow towards inner positions, φzc < 0.
This picture is maintained for the entire range of inertial and energy-containing scales,
r∗ > O(20), where r∗ ≡ (r∗2

x + r∗2
y )

1/2. In fact, an interesting aspect appears in the final
range of scales intercepted by the fluxes. As clearly shown in figure 7, by entering the
dissipative range of small scales, r∗ < O(20), the fluxes show a second reversal of the
spatial flux towards outer positions, φzc > 0. As a consequence, the entire zc-distributed
range of small scales is found to be intercepted by the branch of fluxes A. The effect
of spatial inhomogeneity vanishes only at very small separations where, the small-scale
asymptotic is (φrx, φry, φzc) ∼ (1, 1, 0)r∗ (Cimarelli et al. 2013) and, hence, the fluxes
become asymptotically orthogonal to the zc-axis.

As shown by the intensity of the flux divergence reported with colours in figure 7,
the field of fluxes extracts scale energy from the large energy-containing scales of the
turbulence production region I and releases it to the zc-distributed dissipative range of
small scales. The overall picture is that of a zc-distributed dissipative range of small scales
fed by an ascending direct energy cascade whose origin can be traced back to the inertial
scales of the inner region and, before that, to the energy-containing scales of the production
region. Hence, the behaviour of the family of fluxes A is entirely consistent with the
picture of a Richardson turbulent energy cascade superimposed to inhomogeneous spatial
redistribution processes.

We investigate here more in detail the origin of the observed inversion of the spatial flux
along the paths of the family of fluxes A. In particular, we observed that, in the inertial and
energy-containing scales r∗ > O(20), the spatial flux is negative and directed towards the
inner region of the jet while, in the dissipative scales r∗ < O(20), the spatial flux becomes
positive thus reversing towards the outer regions of the jet. The reason of the small-scale
ascending phenomenon is given by the concurrent role played by the turbulent and pressure
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Figure 7. Paths of scale energy in the hyper-plane rz = 0. Trajectories of the flux vector field, (φrx , φrx , φzc ),
coloured by the intensity of scale energy extracted/released along their route, ∂φrx/∂rx + ∂φry/∂ry + ∂φzc/∂zc.
The iso-surface in panel (a) reports the energy-containing region of the augmented space of scales and
positions, 〈δq2〉 = 0.98〈δq2〉max. In panels (b) and (c) two lateral views are reported together with the
iso-contours of the source term ξ evaluated in the planes ry = 0 and rx = 0, respectively.

spatial fluxes. In figure 8 the behaviours of the total spatial flux φzc , the turbulent spatial
flux φturb

zc
and the pressure spatial flux φpress

zc are shown in the (ry, rz) = (0, 0) plane.
In accordance with the single-point budgets shown in § 4, the pressure flux is negative,
φ

press
zc < 0, for the entire jet width, z∗

c < 170, and positive, φpress
zc > 0, only in the external

transitional region of the jet, z∗
c > 170; see the dashed line in figure 8(c). The maximum of

the inward pressure flux is reached at the energy-containing scales, r∗ = O(130). On the
other hand, the turbulent spatial flux spreads from the production region, thus showing
an inward flux φturb

zc
< 0 for z∗

c < 40 and an outward flux φturb
zc

> 0 for z∗
c > 40; see
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Figure 8. Iso-contours of (a) the total spatial flux φzc , (b) the spatial turbulent flux φturb
zc

and (c) the spatial
pressure flux φpress

zc in the plane (ry, rz) = (0, 0). In all the panels, the dashed line reports the null iso-level of
the corresponding spatial flux, i.e. φzc = 0 in (a), φturb

zc
= 0 in (b) and φpress

zc = 0 in (c).

figure 8(b). The spatial turbulent flux is active for a wide range of scales encompassing
both inertial and energy-containing scales, contrary to the pressure flux where a peak
activity is measured for the energy-containing scales r∗ = O(130). Hence, (i) the turbulent
flux is more active than the pressure flux at inertial and dissipative scales. Furthermore,
(ii) the turbulent flux is found to be positive at small dissipative scales, r∗ < O(20), for the
entire jet width, also in the inner region where, for larger scales, is directed towards the jet
centreline; see the dashed line in figure 8(b). The combined effect of these two aspect leads
to a total spatial flux φzc ≈ φturb

zc
+ φ

press
zc being φvisc

zc
≈ 0 almost everywhere, with three

peak activities; see figure 8(a). Two peaks of outward flux centred at z∗
c = 100 involving

separately small r∗ = O(30) and very large scales r∗ = O(280). One peak activity of
inward flux centred at z∗

c = 30 sustaining the large scales r∗ = O(200) of the inner region
of the jet. On the other hand, the small dissipative scales of the entire jet width r∗ < O(20)
are involved in an outward flux, thus explaining the observed ascending direct energy
cascade feeding the zc-distributed dissipative range of small scales in figure 7.

5.1.2. Family of fluxes B
The second family of fluxes is that feeding the inner region of the jet. This field of fluxes
diverges from the singularity point moving towards smaller spanwise scales, φry < 0, and
larger streamwise scales, φrx > 0, while slightly ascending towards the outer regions,
φzc > 0. After this initial part of the paths, the field of fluxes bends towards inner
locations, φzc < 0, and, while maintaining a flow towards smaller spanwise scales φry < 0,
show a spread towards both larger and smaller streamwise scales, φrx > 0 and φrx < 0,
respectively. As better shown in figure 7(b), this spreading occurs for streamwise scales of
the order of r∗

x = O(150). This scenario is maintained down to the jet centreline where
fluxes get progressively aligned with the plane of scales (rx, ry) since, for zc = 0, the
spatial flux is null for obvious statistical symmetry reasons, φzc = 0, and only cascade
mechanisms in the space of scales (φrx, φrx) survive. As shown by the intensity of the
flux divergence reported with colours in figure 7, the field of fluxes extracts scale energy
from the large energy-containing scales of the turbulence production region I and releases
it to narrower scales in the jet inner region II characterized by both larger and smaller
streamwise lengths. Hence, the field of fluxes while descending towards the inner region
conforms with the Richardson picture of turbulence cascade towards small (rx, ry)-scales
for r∗

x < O(150), thus feeding the dissipative range of small scales of the jet centreline in
conjunction with the branch of fluxes A. On the other hand, for r∗

x > O(150), the field of
fluxes is characterized by reverse cascade mechanisms towards longer scales.
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5.1.3. Family of fluxes C
We consider now the family of fluxes flowing from the large energy-containing scales
of the production region I towards the outer regions of the jet; see figure 7. The field of
fluxes diverge from the source region towards both longer and shorter streamwise scales,
φrx > 0 and φrx < 0, respectively, while intercepting smaller spanwise scales φry < 0. In
accordance with the behaviour of the spatial flux shown in figure 8, the branch of fluxes
diverging towards shorter streamwise scales φrx < 0 is first directed towards the inner
region φzc < 0 before eventually bending towards outer positions φzc > 0; see figure 7(b)
for a better view. On the contrary, the branch of fluxes spreading towards longer streamwise
scales φrx > 0 always maintains an outward direction φzc > 0. After this initial spreading,
both branches of fluxes while moving towards the outer regions perform reverse cascade
phenomena towards longer and wider fluctuations, φrx > 0 and φry > 0, respectively;
see both figures 7(b) and 7(c). This scenario is maintained up the jet border, since, for
z∗

c > 180, the fluxes become asymptotically aligned with the vertical direction, i.e. the
cascade mechanisms in the space of scales are no more relevant in the external region IV
of the jet, (φrx, φry) ≈ (0, 0).

As shown by the intensity of the flux divergence reported with colours in figure 7, the
family of fluxes C along their path extracts scale energy in the production region I and
through reverse cascade mechanisms releases it to sustain longer and wider fluctuations
of the outer region III. The question now is, how is scale energy dissipated in the outer
and external regions of the jets? Indeed, after the reverse cascade mechanisms of the
outer region, the fluxes align to the vertical direction in the external region. Hence, no
bending towards the dissipative range of small scales is observed. Clearly, the mechanisms
of dissipation of the scale energy carried by this field of fluxes are not those associated
with the Kolmogorov picture of turbulence. An answer to this issue is given in § 5.3 based
on some features of the hyper-plane (rx = 0, t = 120) which is addressed in the following
section.

5.2. The hyper-plane (rx = 0, t = 120)
The trajectories of the flux vector field, (φry, φrz, φzc), coloured by the intensity of scale
energy extracted/released along their route, ∂φry/∂ry + ∂φrz/∂rz + ∂φzc/∂zc are shown in
figure 9. The plots show that the origin of the field of fluxes is a line of the augmented
space of scales and positions spanning different spanwise scales ry and located at z∗

c = 60
for rz = 0. As shown by the iso-surface of 〈δq2〉 = 0.98〈δq2〉max in figure 9(a) and by
the iso-contours of the source term ξ in figure 9(b), this source line is located within the
energy-containing and turbulence production region of the augmented space. Hence, the
field of fluxes takes origin from the source region of the hyper-plane rx = 0 and diverge
exhibiting a well-defined scale-energy path which can be divided into three different
groups whose distinguishing feature is that of the sink regions eventually sustained.

5.2.1. Family of fluxes A
The first family of fluxes is that feeding the zc-distributed dissipative range of small scales.
This family of fluxes departs from the source line for spanwise scales r∗

y < 100 and divides
into two branches: one moving towards the outer regions φzc > 0 and the other towards the
inner part of the jet φzc < 0. For both branches, the departure from the source line is given
by a reverse scale-energy flux towards larger cross-flow scales while maintaining a forward
flux towards smaller spanwise scales, φrz > 0 and φry < 0, respectively; see figure 9(c) for
a better view. The fluxes then bend towards smaller cross-flow scales, thus forming a direct
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Figure 9. Paths of scale energy in the hyper-plane rx = 0. Trajectories of the flux vector field, (φry , φrz , φzc ),
coloured by the intensity of scale energy extracted/released along their route, ∂φry/∂ry + ∂φrz/∂rz + ∂φzc/∂zc.
The iso-surface in panel (a) reports the energy-containing region of the augmented space of scales and
positions, 〈δq2〉 = 0.98〈δq2〉max. In panels (b,c) two lateral views are reported together with the iso-contours
of the source term ξ evaluated in the planes rz = 0 and ry = 0, respectively.

forward cascade, φrz < 0 and φry < 0, while maintaining an ascending/descending spatial
flux, respectively, for the two branches. The paths are finally closed in the dissipative range
of small scales where the spatial flux becomes negligible, thus satisfying the small-scale
asymptotic, (φry, φrz, φzc) ∼ (1, 1, 0)r∗ (Cimarelli et al. 2013). As shown with colours in
figure 9, the fluxes are found to extract scale energy in the first part of the path and to
release it in the final part. The scenario is that of scale energy extracted from a variety
of spanwise and cross-flow scales in the range r∗

y ∈ (40, 100) and r∗
z ∈ (0, 40) of the

production region I and released to the zc-distributed dissipative range of small scales by
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means of forward cascade processes. Hence, the present view is entirely consistent with
the picture of the turbulence cascade.

5.2.2. Family of fluxes B
The second family of fluxes is that feeding the inner region of the jet. The fluxes depart
from the source line for very large spanwise scales r∗

y > 100 by performing a reverse
flux towards taller fluctuations, φrz > 0, while descending towards the inner regions of
the jet φzc < 0; see figure 9(c) for a better view. By reaching the jet centreline distance
z∗

c ≈ 30, the fluxes eventually bend towards smaller cross-flow scales, φrz < 0, and, while
maintaining a negative spatial flux φzc < 0, reach the jet centreline region. In this last
part of the path, fluxes get progressively aligned with the plane of scales (ry, rz) since,
for zc = 0, the spatial flux is null for obvious statistical symmetry reasons, φzc = 0, and
only cascade mechanisms in the space of scales (φry, φrz) survive. Note that along the
entire path, the flux in the spanwise scales φry is almost negligible with respect to that
occurring in the cross-flow scales and in physical space, φrz and φzc , respectively. The
only exception is the very inner part of the jet for z∗

c < 10 where cascade mechanisms also
become active in the spanwise scales, thus contributing to the forward cascade sustaining
the dissipative range of small scales of the jet centreline. As shown with colours in figure 9,
the fluxes are found to extract scale energy in the first part of the path and to release it
in the final part. The scenario is that of scale energy extracted from relatively tall and
wide fluctuations, r∗

z ∈ (0, 40) and r∗
y > 100, in the production region I and released to

small-scale fluctuations in the inner region II by means of forward cascade processes up
to the dissipative range.

5.2.3. Family of fluxes C
Finally, let us consider the third family of fluxes whose distinguishing feature is that it
feeds the outer region of the jet. The fluxes take origin from the source line for very large
spanwise scales r∗

y > 100. In the first part of the path, the flux performs a reverse transfer
towards larger cross-flow scales, φrz > 0, while ascending towards the outer regions of
the jet φzc > 0; see figure 9(c) for a better view. After reaching the jet centreline distance
z∗

c ≈ 90, the fluxes, while ascending, bend towards smaller cross-flow scales φrz < 0. This
scenario of forward cascade in the cross-over scales is maintained up to the external region
IV of the jet where only spatial fluxes survive since the cascade processes in the space of
scales become negligible, (φry, φrz) ≈ (0, 0), and, hence, the fluxes become asymptotically
aligned to the vertical direction. The cascade mechanisms in the spanwise scales are in
general weak with respect to those in the cross-flow scales. But a forward cascade towards
smaller spanwise scales, φry < 0, can be recognized in the first part of the path where
a reverse cascade in the cross-over scales occurs. On the other hand, a reverse cascade
towards wider fluctuations, φry > 0, is observed in the outer region III of the jet where
the flux in the cross-flow scales is, on the contrary, in the forward direction, φrz < 0.
As shown with colours in figure 9, the overall picture is that fluxes extract scale energy
from fluctuations of the production region I whose widths and heights are r∗

y > 100 and
r∗

z ∈ (0, 40) and release it mostly in the outer region III to wider fluctuations whose height
is in the range r∗

z ∈ (10, 30).

5.3. On the sink regions of the augmented space of turbulence
Three families of fluxes have been recognized in the previous analysis of the hyper-planes
rz = 0 and rx = 0. The distinguishing feature is given by the sink regions eventually
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sustained being the zc-distributed dissipative range of small scales for family A, the inner
region of the jet for family B and the outer regions of the jet for family C. Between these
three groups, only the sink region of family I is in equilibrium with the fluxes sustaining
it since ∂〈δq2〉/∂t asymptotically vanishes in the small-scale limit being δq2 = 0 at any
time for r = 0. In other words, the scale energy released by fluxes in the zc-distributed
dissipative range of small scales is balanced by the local source term ξ that in this range
of small scales simply reduces to the turbulent dissipation, ξ = −4ε̃. On the contrary, this
equilibrium condition is not satisfied for the sink regions of the family of fluxes B and C.
In particular, the scale energy released by family B in the inertial and energy-containing
scales of the inner region is not enough to balance the local source term which is negative
ξ < 0, thus leading to a temporal decay of the scale-energy content ∂〈δq2〉/∂t < 0. On
the contrary, the scale energy released by family C in the outer regions of the jet exceeds
the local source term which is again negative ξ < 0, thus leading to a temporal growth
of the scale-energy content ∂〈δq2〉/∂t > 0. This last sink region involves the outer and
external loci of the jet (regions III and IV), thus including the interface layer, and deserves
further considerations.

The previous analysis of the field of fluxes C in the hyper-planes rz = 0 and rx = 0
revealed that long and wide fluctuations are sustained in the outer region III through
spatially ascending reverse cascade mechanisms taking origin from the production
region I. Hence, large-scale inertial phenomena are found at the basis of the temporal
growth of scale energy ∂〈δq2〉/∂t > 0, thus enabling the first stage of cross-flow spreading
of the turbulent jet. By entering the external region IV, the cascade mechanisms in
the space of horizontal scales asymptotically vanish, φrx = φry = 0, and only a forward
cascade in the cross-flow scales survives φrz < 0 while maintaining a positive spatial
flux. Hence, in the external region of the jet the overall picture is that of a cross-flow
shrinking of the scales intercepted by the ascending large-horizontal-scale fluxes. This
very anisotropic shrinkage of the scales constrains turbulence to two dimensions, thus
suppressing the cascade picture towards small horizontal scales that is indeed absent
in this region of the flow, φrx = φry = 0. Turbulence is then dissipated ξ < 0 by
shearing friction phenomena occurring in a very thin layer of these large-horizontal-scale
structures whose thickness of the order of a few Kolmogorov scales decreases during the
outward propagation. Since the scale-energy contribution of the fluxes sustaining this
thin layer of large-scale motions exceed the local source term, a temporal growth of
the scale-energy content ∂〈δq2〉/∂t > 0 is performed, thus enabling the second stage of
cross-flow spreading of the turbulent jet.

6. Scale-by-scale budgets

The unexpected paths taken by the scale-energy flux in the combined physical/scale space,
which are a substantial novelty with respect to known descriptions of turbulent jets, may
have major repercussions on our theoretical understanding with practical consequences
for modelling. Let us try to grasp the essential aspects by means of a more quantitative
scale-by-scale analysis. To this aim, we fix the streamwise and cross-flow scales, rx =
rz = 0, and we consider separately the scale-by-scale features of the four relevant flow
regions identified so far by also fixing the distance from the jet centreline. This type of
study, while enabling a more quantitative view of the flow, lacks for the description of its
multi-dimensionality and of its scale-space anisotropy that, however, have been addressed
in the previous § 5 and, when relevant, will be explicitly retrieved. The symbolic form of
the generalized Kolmogorov equation reported in (3.12) will be considered, here reported
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for clarity,
∂〈δq2〉
∂t

= Tr + Dr + Tz + ξ, (6.1)

where Tr = Trx + Try + Trz = −∂(φturb
ri

+ φmean
ri

)/∂ri is the inertial scale-space transport
term, Dr = Drx + Dry + Drz = −∂φvisc

ri
/∂ri is the viscous scale-space transport term,

Tz = Tturb
z + Tvisc

z + Tpress
z is the spatial transport term with its turbulent, viscous and

pressure contributions and, finally, ξ = Π − 4ε̃ is the source term, balance of production
and dissipation.

6.1. Viscous and inertial subrange scaling in the turbulent jet
Before starting the scale-by-scale analysis, it is worth addressing the inertial and viscous
scaling when non-equilibrium effects are present such as that given by the non-steady
state of the temporal jet. By considering statistical isotropy, the generalized Kolmogorov
equation written in spherical coordinates reads as

∂〈δq2〉
∂t

+ 1
r2
∂

∂r

(
r2φr||

)
= −4ε̃, (6.2)

where r is the scale-space radial coordinate and

φr|| = 〈δq2δu||〉 − 2ν
∂〈δq2〉
∂r

= φturb
r|| + φvisc

r|| (6.3)

is the radial scale-energy flux with δu|| the longitudinal velocity increment. By integrating
(6.2), we finally obtain an equation for the scale-energy flux:

φr|| = −4
3
ε̃r − 1

r2

∫
r2 ∂〈δq2〉

∂t
dr. (6.4)

The first term in (6.4) is the classical inertial and viscous subrange scaling while the second
term is the non-equilibrium correction. Indeed, in the case of statistical steady conditions,
(6.4) leads to the following relations:

φr|| ≈ −2ν
∂〈δq2〉
∂r

= −4
3
ε̃r 〈δq2〉 = 1

3
ε̃

ν
r2 for r = O(η), (6.5)

φr|| ≈ 〈δq2δu||〉 = −4
3
ε̃r 〈δq2〉 =

(
4
3
ε̃

)2/3

r2/3 for r > O(η). (6.6)

Let us quantify the role of non-equilibrium in (6.4) in order to predict the induced deviation
from the classical scaling. By assuming a complete flow self-preservation, we can write
the second-order moment of the velocity increment as

〈δq2〉 = 〈δq2〉(r, t) = U2(t)f (r̂), r̂ = r
H(t) , (6.7a,b)

where U(t) and H(t) are jet characteristic velocity and length scales. This self-similarity
assumption allows us to decompose the time derivative term as

∂〈δq2〉
∂t

= 2U f
dU
dt

+ U2 ∂f
∂ r̂
∂ r̂
∂t
. (6.8)

Self-similarity also allows us to write the standard entrainment parametrisation dH/dt =
αU , where α is the entrainment coefficient. Furthermore, note that the volume flux is
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conserved in the temporal jet implying that H dU/dt = −U dH/dt. Hence, after some
manipulations, the self-similar decomposition of the temporal decay becomes

∂〈δq2〉
∂t

= −αU
3

H
(

f + ∂f r̂
∂ r̂

)
(6.9)

and the non-equilbrium correction term of (6.4) can be rewritten as

1
r2

∫
r

r2 ∂〈δq2〉
∂t

dr = −U3

H
α

r2

∫
r

r2
(

f + ∂f r̂
∂ r̂

)
dr. (6.10)

Assuming now a scale-space scaling in the form of a power law,

f (r̂) = Ar̂β, (6.11)

we can finally quantify the non-equilibrium term as

1
r2

∫
r

r2 ∂〈δq2〉
∂t

dr = −AU3α(2 + β)

3 + β

( r
H

)1+β
. (6.12)

By inserting (6.12) into (6.4) and by using again self-similarity also for dissipation,
ε̃ = BU3/H, we can finally estimate the balance for the scale-energy flux as

φr|| = U3
[
−4

3
B

( r
H

)
+ A

α(2 + β)

3 + β

( r
H

)1+β]
, (6.13)

thus highlighting that, for any β > 0, the effect on the scaling of the scale-energy flux
of the second term due to non-equilibrium can be neglected only for very small scales,
r = O(η).

6.2. Production region I
We start the scale-by-scale analysis by considering the production region I. In figure 10(a)
the generalized Kolmogorov equation evaluated in the (0, ry, 0, 60)-space using a semi-log
plot is shown. The range of large scales is sustained by local turbulence production
mechanisms Π . Scale energy available at large scales is then drained by the inertial
scale-space transport Tr < 0 to initiate cascade mechanisms towards small scales and
by the spatial transport Tz < 0 to feed the outer and inner regions of the jet. The scale
energy extracted by Tr and Tz together with the local dissipation mechanisms is larger than
that produced, thus leading to a temporal decay of the scale-energy content of the large
scales, ∂〈δq2〉/∂t < 0. At intermediate scales, the turbulence production and the spatial
transport decrease their intensity while the inertial scale-space transport becomes positive,
Tr > 0, thus leaving space to an inertial subrange of scales sustained by turbulent cascade
mechanisms. Also in this case, the scale energy provided by the cascade is not enough to
balance that extracted by the spatial transport and by the local dissipation, thus leading to
a temporal decay, ∂〈δq2〉/∂t < 0. This scenario is closed at small scales where anisotropic
and inhomogeneous processes are negligible, Π ≈ Tz ≈ 0, and the viscous scale-space
transport Dr > 0 becomes dominant, thus releasing the scale energy provided by the
inertial scale-space transport Tr to the smallest scales of the flow. In this case the scale
energy provided by Dr balances with dissipation,thus reaching a small-scale equilibrium,
∂〈δq2〉/∂t = 0. Overall, a classical picture of turbulence where scale energy is introduced
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Figure 10. Scale-by-scale processes in the production region I, z∗ = 60. (a) Generalized Kolmogorov equation
evaluated in the (0, ry, 0, 60)-space using a semi-log plot. Turbulence production Π (dashed–dotted–dotted
line), turbulent dissipation −4ε̃ (dotted line), inertial scale transport Tr (dashed–dotted line), viscous scale
transport Dr (dashed line), spatial transport Tz (solid line) and time variation of scale energy ∂〈δq2〉/∂t (circle).
(b) Scale-space fluxes in the (0, ry, 0, 60)-space using a log-log plot: −φturb

ry
(dashed–dotted line), −φvisc

ry

(dashed line) and −φry = −φturb
ry

− φvisc
ry

(solid line). The reference law, 4/3ε̃ry (dotted line), is also reported.
Inset panel: scale energy 〈δq2〉 (solid line), r2 (dashed line) and r2/3 (dashed–dotted line).

at large scales and then transferred to small scales where it is eventually dissipated by
viscosity is observed in the production region.

A more detailed analysis of the budget reveals the following reduced descriptions of the
flow:

∂〈δq2〉/∂t ≈ Π + Trz + Tturb
z + Tpress

z − 4ε̃ < 0 for r∗ > 60, (6.14)

∂〈δq2〉/∂t ≈ Π + Tr + Tturb
z − 4ε̃ < 0 for 6 < r∗ < 60, (6.15)

0 ≈ Dr − 4ε̃ for r∗ < 6, (6.16)

thus highlighting that, at large scales r∗ > 60, (6.14), the scale energy draining is
predominantly performed by the turbulent spatial transport, Tturb

z < 0, and by the
cross-flow component of the divergence of the scale-space transport, Trz < 0. On the
contrary, the pressure spatial transport together with turbulence production are responsible
for sustaining the large-scale motion, Tpress

z > 0 andΠ > 0. At intermediate scales, (6.15),
only the spatial turbulent transport Tturb

z survives since Tpress
z ≈ 0 and all the components

of the scale-space transport become active, Tr = Trx + Try + Trz . Finally, at the smallest
scales of the flow r∗ < 6, (6.16), a balance between scale-space viscous transport and
dissipation is observed, thus leading to a small-scale equilibrium range, ∂〈δq2〉/∂t = 0,
in accordance with the reasoning reported in § 6.1. As shown in figure 10(b), this aspect
leads to a recover of the classical viscous scaling of turbulence, φvisc

ry
∼ ry and 〈δq2〉 ∼ r2

y
for r∗ < 6 while, at intermediate scales 6 < r∗ < 60, the inertial scaling of turbulence,
φturb

ry
∼ ry and 〈δq2〉 ∼ r2/3

y , is affected by deviations induced by the non-negligible effects
of anisotropic production, inhomogeneous spatial fluxes and non-equilibrium; see the
reduced budget (6.15). Overall, the total scale-space flux roughly follows the linear law,
φry = φturb

ry
+ φvisc

ry
∼ ry for r∗ < 20.
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Figure 11. Scale-by-scale processes in the inner region II, z∗ = 0. See the caption to figure 10.

6.3. Inner region II
The scale-by-scale analysis of the inner region is reported in figure 11(a) where the
generalized Kolmogorov equation evaluated in the (0, ry, 0, 0)-space using a semi-log
plot is shown. The overall scenario is similar to that reported for the production region,
i.e. scale energy is provided at large scales and then transferred to small scales where
it is eventually dissipated by viscosity. The main difference comes from the mechanisms
sustaining the large-scale motion. Indeed, contrary to the production region, in the inner
region turbulence production is negligible Π ≈ 0 and the large scales are sustained by
the spatial transport that turns out to be positive with both its turbulent and pressure
components, Tturb

z > 0 and Tpress
z > 0.

A more detailed analysis of the budget allows us to write the following reduced
descriptions:

∂〈δq2〉/∂t ≈ Trz + Tturb
z + Tpress

z − 4ε̃ < 0 for r∗ > 40, (6.17)

∂〈δq2〉/∂t ≈ Tr − 4ε̃ < 0 for 4 < r∗ < 40, (6.18)

0 ≈ Dr − 4ε̃ for r∗ < 4. (6.19)

Hence, the intermediate range of scales, (6.18), also slightly differs from that of the
production region being that both the turbulence production and the spatial transport
are negligible. As a consequence, the intermediate range of scales closely resemble
the classical scaling of turbulence being affected only by non-equilibrium effects.
Accordingly, in figure 11(b) the inertial scaling of turbulence, φturb

ry
∼ ry and 〈δq2〉 ∼

r2/3
y , is found to be better captured being affected by deviations solely induced by

non-equilibrium. On the other hand, as expected from the arguments reported in § 6.1,
a balance between dissipation and viscous scale-space transport, (6.19), is observed in the
range of small scales. Hence, a recovery of the classical viscous scaling of turbulence,
φvisc

ry
∼ ry and 〈δq2〉 ∼ r2

y for r∗ < 4 is measured; see figure 11(b). Overall, we observe
that the total scale-space flux roughly follows the linear law, φry = φturb

ry
+ φvisc

ry
∼ ry, for

a larger range of scales with respect to the production region for r∗ < 30.

6.4. Outer region III
In figure 12(a) the generalized Kolmogorov equation evaluated in the (0, ry, 0, 140)-space
is shown. The scale-by-scale budget in the outer region shows a significantly different
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Figure 12. Scale-by-scale processes in the outer region III, z∗ = 140. See the caption to figure 10. The only
difference with respect to figure 10 is the use of a semi-log plot in panel (b) due to the presence of reverse
cascade phenomena in this region of the flow.

scenario with respect to the production and inner regions. Scale energy is provided by
the spatial transport Tz > 0 with a peak of activity at intermediate scales. At larger scales,
scale energy provided by the spatial transport is overcome by the activity of the scale-space
transport Tr > 0. Overall, the scale energy provided at intermediate and large scales by the
spatial and scale-space transports exceeds the local dissipation, thus leading to a temporal
growth of the scale-energy content, ∂〈δq2〉/∂t > 0. On the other hand, an equilibrium is
recovered in the small-scale range being that the scale energy provided by the viscous
scale-space transport is in balance with the local turbulent dissipation.

As shown in § 5, this scale energy provided by the scale-space transport term is released
at the large scales by reverse cascade phenomena. This mechanism is confirmed by the
scale-space flux φry reported in figure 12(b) that shows an inversion of sign for r∗ ≈ 20,
thus performing a reverse transfer towards larger scales for r∗ > 20 and a very weak
forward transfer towards smaller scales for r∗ < 20. In the same panel, both the turbulent
and viscous contributions to the scale-space flux are shown, thus highlighting that the
reverse transfer is performed by the turbulent flux −φturb

ry
< 0 being that the viscous flux

is smaller and always directed towards small scales −φvisc
ry

> 0.
A more detailed study of the budget allows us to write the following reduced

descriptions of the outer region:

∂〈δq2〉/∂t ≈ Trz + Tturb
z + Tpress

z − 4ε̃ > 0 for r∗ > 100, (6.20)

∂〈δq2〉/∂t ≈ Tr + Tturb
z − 4ε̃ > 0 for 10 < r∗ < 100, (6.21)

0 ≈ Dr − 4ε̃ for r∗ < 10. (6.22)

The first important aspect to highlight concerns the large-scale behaviour for r∗ > 100,
(6.20). Indeed, the scale energy provided by the spatial flux Tz ≈ Tturb

z + Tpress
z is entirely

due to the turbulent component Tturb
z > 0 being that the pressure contribution is negative

Tpress
z < 0. In accordance with the analysis of the turbulent kinetic budget and of the

scale-energy paths, §§ 4 and 5, the pressure flux extracts energy in the outer region to
feed the production and inner regions from one side and the external region from the
other. As unequivocally shown here in quantitative terms, the pressure transport activity
is concentrated at scales larger than those of the turbulent transport; see (6.20) and (6.21).
The second important aspect concerns the intermediate scales for 10 < r∗ < 100, (6.21).
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Figure 13. Scale-by-scale processes in the interface region, z∗ = 200. See the caption to figure 10. The only
difference with respect to figure 10 is the use of a semi-log plot in panel (b) due to the presence of reverse
cascade phenomena in this region of the flow.

In this range of scales, the scale energy provided by the scale-space transport, Tr =
Trx + Try + Trz > 0 is entirely due to the cross-flow component, Trz > 0, being that the
other two components are negative, Trx < 0 and Try < 0. Indeed, in accordance with the
scale-energy paths analysis reported in § 5, within this range of scales, the horizontal
components of the scale-space transport extract scale energy to feed the reverse cascade
towards larger horizontal scales while a forward transfer towards smaller cross-flow scales
is observed at every scale.

The overall picture of the jet growth in the outer region is that turbulent fluctuations
at intermediate and large scales are sustained by complex phenomena such as
inhomogeneous spatial fluxes and reverse cascade mechanisms. This phenomenology is
in contrast with the classical notion of turbulence and may have repercussions on both
theoretical and modelling approaches. In accordance with (6.22), classical phenomena are
recovered only at very small scales where, as shown in figure 12(b), the viscous scaling,
φvisc

ry
∼ ry and 〈δq2〉 ∼ r2

y for r∗ < 10 are measured.

6.5. External region IV
We now consider the scale-by-scale features of the external flow region. We recall that
the external region has been defined as the region of the flow involving distances from
the centreline z∗

c > 180, and, hence, it is located outside the jet interface evaluated at
z∗

c = h∗
Ω = 171 by using the rule of 2 % of the jet centreline enstrophy. The generalized

Kolmogorov equation evaluated in the (0, ry, 0, 200)-space is shown in figure 13(a). Scale
energy is found to be provided at intermediate and large scales by the spatial transport
Tz > 0 and by the turbulent scale-space transport Tr > 0. This feeding largely exceeds the
local dissipation phenomena, thus leading to a temporal growth of the scale-energy content
in this region, ∂〈δq2〉/∂t > 0. On the contrary, a balance between viscous scale-space
transport and dissipation occurs at small scales.

A more detailed study of the budget reveals interesting phenomena as highlighted by the
following reduced descriptions:

∂〈δq2〉/∂t ≈ Trz + Tturb
z + Tpress

z > 0 for r∗ > 100, (6.23)

∂〈δq2〉/∂t ≈ Trz + Tturb
z > 0 for 6 < r∗ < 100, (6.24)

0 ≈ Dr − 4ε̃ for r∗ < 6. (6.25)
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As shown by the reduced budgets (6.23) and (6.24), for almost the entire range of scales
with exception to the smallest ones (r∗ < 6), turbulent dissipation ε̃ is not anymore a
fundamental quantity. This aspect highlights that this region of the flow is actually a
non-turbulent region. Accordingly, the intensity of the velocity fluctuations is weak and
cascade mechanisms in the space of horizontal scales are absent. Indeed, only a forward
transfer in the space of cross-over scales survives, Tr ≈ Trz ; see again the reduced budgets
(6.23) and (6.24). Hence, scale energy is sustained at very large horizontal scales and
small cross-flow scales. In accordance with the scale-energy paths reported in § 5, the
final stage of propagation of the turbulent jet, ∂〈δq2〉/∂t > 0, occurs in a very thin layer
of large-horizontal-scale structures moving outward from the jet itself. As shown by the
reduced budget (6.23), at very large scales this outward transfer is sustained by both
pressure and turbulent spatial transports, Tz ≈ Tturb

z + Tpress
z > 0, while at intermediate

scales the strength of the pressure term decreases and only the contribution of the turbulent
transport survives, Tz ≈ Tturb

z > 0; see the reduced budget (6.24).
In accordance with the turbulent kinetic energy budget analysed in § 4, the combined

role played by the turbulent and pressure spatial transport changes by increasing the
distance from the jet centreline. Even if not shown for the sake of brevity, the reduced
budgets (6.23), (6.24) and (6.25) are found to asymptotically reduce to the following
behaviour:

∂〈δq2〉/∂t = Tpress
z ∀r∗ (6.26)

by increasing the jet centreline distance zc. By recalling that the pressure transport is
active at very large scales and that the external region is populated by non-turbulent
fluctuations, we argue that the correlation of pressure and vertical velocity fluctuations
〈δp′δw′〉 = 2〈p′w′〉 − 〈p′(x′′)w′(x′)〉 − 〈w′(x′′)p′(x′)〉 at the basis of the pressure transport
term is a result of a non-turbulent large-scale phenomenon. In particular, we conjecture
that the vertical displacement of almost quiescent fluid in the external region is given
by pressure-mediated non-local interactions induced by the streamwise advection inside
the jet of a large-scale spanwise vortex pattern reminiscent of the Kelvin–Helmholtz
instability. This large-scale and non-local pressure energy transfer feed fluctuations in the
external region that are non-turbulent in nature but represent the triggering mechanisms of
transitional phenomena that in time would lead to turbulent fluctuations and, hence, to the
growth of the jet width.

7. Conclusions

The processes of entrainment and mixing in free-shear flows are known to be characterized
by a variety of scales ranging from the large-scale fluctuations of the turbulent core to
the small-scale motions acting on its convoluted surface boundary. The understanding of
the interaction mechanisms between this variety of scales and positions is a challenge
for theories and turbulence closures. To address this issue, the theoretical framework
of the generalized Kolmogorov equation is here developed and applied to the statistical
symmetries of a turbulent planar temporal jet. The formalism is based on the second-order
moment of the two-point velocity increment. The structure of the equation, in the form of
a divergence of a scale-energy flux, allows us for the first time to reconcile the large- and
small-scale features of the turbulent flow and of the turbulent entrainment by tracing the
scale-energy paths in the augmented space of scales and positions. The emerging picture
is the following.

The field of fluxes arises from the large energy-containing scales of the production
region (z∗ ≈ 60). Scale energy in this region of the augmented space of scales and

910 A19-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
02

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1002


Spatially evolving cascades in temporal planar jets

positions is also made available by local turbulence production mechanisms that exceed
the local turbulent dissipation, ξ > 0. The field of fluxes while radiating from this source
region are also energized along their path. The amount of scale energy extracted exceeds
the local source mechanisms, thus leading to a scale-energy decay, ∂〈δq2〉/∂t < 0. The
fluxes emerging from the source region diverge exhibiting a well-defined scale-energy
path which can be divided into three groups whose distinguishing feature is that of the
attractor, the sink of the augmented space, where the fluxes release scale energy and are
eventually absorbed.

(i) The first family of fluxes A, while emanating from the source region, bends towards
smaller scales performing an energy cascade sustaining the zc-distributed dissipative range
of small scales. Scale energy released by fluxes in this sink region is balanced by the
local dissipation processes, thus recovering a statistical equilibrium, ∂〈δq2〉/∂t = 0. The
concurrent role of pressure and turbulent spatial fluxes is such that this family of fluxes
along their paths firstly descends towards the inner region and subsequently bend at small
scales attaining an ascending behaviour.

(ii) The second family of fluxes B releases scale energy extracted in the source region to
sustain the turbulent fluctuations of the inner region. The scale energy released by fluxes in
this region of the flow does not balance the local negative source mechanisms, ξ < 0, thus
leading to a scale-energy decay, ∂〈δq2〉/∂t < 0. A detailed analysis of this family reveals
the presence of a cross-over scale of the order of the jet half-width r∗ = O(150) = O(hΩ).
For smaller scales, the fluxes perform a forward cascade, thus sustaining smaller scales in
the inner region. On the other hand, for larger scales, a reverse cascade is observed in the
streamwise scales, thus sustaining longer fluctuations in the inner region.

The overall picture of both the production and inner regions of the jet conforms with
the classical description of turbulence as far as we consider scales smaller than the jet
half-width r∗ < O(150) = O(hΩ). Scale energy is introduced at large scales by source
mechanisms in the production region and spatial fluxes in the inner region and transferred
to smaller scales before being dissipated by viscous mechanisms. From a theoretical point
of view, this scenario satisfies the reduced descriptions

∂〈δq2〉/∂t ≈ Tr − 4ε̃ < 0 for 4 < r∗ < 40, (7.1)

0 ≈ Dr − 4ε̃ for r∗ < 4, (7.2)

thus highlighting that the classical viscous scaling, φr|| ∼ r and 〈δq2〉 ∼ r2 for r = O(η),
is recovered while the classical inertial scaling, φr|| ∼ r and 〈δq2〉 ∼ r2/3 for r > O(η), is
actually influenced by non-equilibrium effects.

(iii) The third family of fluxes C characterizes the outer and external regions of the
jet. The scale energy extracted from the source region is released mostly in the outer
region of the jet through spatially ascending reverse cascade processes. The picture is
that of long and wide fluctuations generated by inertial reverse cascade mechanisms
originating from the smaller energy-containing scales of the production region. Scale
energy provided by fluxes exceeds the local negative source mechanisms, ξ < 0, and
leads to a growth of the scale-energy content, ∂〈δq2〉/∂t > 0, thus establishing the first
stage of cross-flow spreading of the jet. Note that this scenario is entirely consistent
with the spectral enstrophy balance analysis conducted in Cimarelli et al. (2015a). By
entering the external region of the jet, the reverse cascade mechanisms in the space of
horizontal scales asymptotically vanish and only a spatially ascending forward transfer
towards smaller cross-flow scales survives. The overall scenario is that of ascending
large-horizontal-scale motions transferring their energy to smaller and smaller cross-flow
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scales. Scale energy also does not cascade down in the horizontal scales, thus supporting
the idea that turbulence is constrained to two dimensions and that viscous dissipation
is given by shearing friction phenomena involving a thin layer of large-horizontal-scale
motions. Scale energy provided by fluxes in this thin layer exceeds that extracted by
friction phenomena, thus enabling the last stage of propagation of the turbulent jet,
∂〈δq2〉/∂t > 0.

The complex nature of the flux and source phenomena described in the outer and
external regions of the jet are challenges for theories and turbulence closures. In the
outer region where most of the scale energy is released to sustain the temporal growth,
reverse cascade mechanisms should be taken into account to represent the enlargement of
flow structures. From a theoretical point of view, the reverse cascade scenario satisfies the
reduced descriptions

∂〈δq2〉/∂t ≈ Trz + Tturb
z + Tpress

z − 4ε̃ > 0 for r∗ > 100, (7.3)

∂〈δq2〉/∂t ≈ Tr + Tturb
z − 4ε̃ > 0 for 10 < r∗ < 100, (7.4)

and no inertial scaling is observed. On the other hand, in the external region turbulent
dissipation cannot be used anymore as a fundamental quantity and very anisotropic transfer
processes should be considered. A reduced description of this region is

∂〈δq2〉/∂t ≈ Trz + Tturb
z + Tpress

z > 0 for r∗ > 100, (7.5)

that by increasing the jet centreline distance asymptotically reduces to

∂〈δq2〉/∂t = Tpress
z > 0 ∀r∗. (7.6)

We argue that this final asymptotic behaviour is given by a non-turbulent large-scale
phenomenon of vertical displacement of almost quiescent fluid due to the streamwise
advection of the large-scale spanwise vortex pattern of the jet reminiscent of
the Kelvin–Helmholtz instability. This pressure-mediated phenomenon represents the
triggering mechanism of transitional phenomena that in time would contribute to the
growth of turbulent fluctuations in the very external region of the jet.

Acknowledgements. The authors acknowledge the financial support of the Engineering and Physical
Sciences Research Council (EPSRC) through the project ‘Multi-scale dynamics at the turbulent/non-turbulent
interface of jets and plumes’ – grant EP/R042640/1. Computing time has been provided by the UK National
Supercomputing Service ARCHER and by the Supercomputing Wales facility. The authors also acknowledge
Dr A. Fregni for assistance in the revision of the article. We finally would like to acknowledge Professor
C. M. Casciola for the interesting discussions we had on our work.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
A. Cimarelli http://orcid.org/0000-0001-5165-9639;
J.-P. Mollicone http://orcid.org/0000-0002-8989-4762;
M. van Reeuwijk http://orcid.org/0000-0003-4840-5050;
E. De Angelis http://orcid.org/0000-0002-9183-2413.

Appendix A. Scaling in the self-similar regime

By following van Reeuwijk & Holzner (2014), the self-similar regime of a temporal
planar jet is characterized by a temporal behaviour of the characteristic velocities which is
proportional to t−1/2 and of the characteristic lengths which is proportional to t1/2, where
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Figure 14. (a) Mean and fluctuating velocity profiles scaled in Kolmogorov units and reported for two
different times within the self-similar regime, t = 120 (solid line) and t = 160 (dashed line); U∗(z∗) (black),√〈u′u′〉∗(z∗) (red),

√〈v′v′〉∗(z∗) (green) and
√〈w′w′〉∗(z∗) (blue). (b) Turbulent kinetic energy budget scaled

in Kolmogorov units and reported for two different times within the self-similar regime, t = 120 (dashed line)
and t = 160 (solid line); turbulence production (black), dissipation (red), turbulent transport (green), pressure
transport (orange) and viscous diffusion (blue).

t is time. As shown in figure 2, such scaling is confirmed by the present direct numerical
simulation data. Particularly relevant is the scaling of the centreline turbulent dissipation,
εcl ∼ 1/t2, which can be inferred by considering dissipation as the cube of a velocity scale
over a length scale. It is possible now to build a self-similar velocity and length scale that
solely depend on the self-similar scaling of dissipation. These characteristic scales are the
Kolmogorov scales

η(Re, t) =
(
ν3

εcl

)1/4

= A(Re)t1/2, (A1)

uη(Re, t) = (νεcl)
1/4 = B(Re)t−1/2, (A2)

where A and B are Reynolds dependent constants and the time dependence of η and uη
is entirely absorbed by dissipation. To verify the accuracy of the scaling of flow variables
with the Kolmogorov scales, in figure 14 the mean and fluctuating velocity profiles (a)
and the turbulent kinetic energy budget (b) scaled in Kolmogorov units denoted with
the superscript ∗ is shown for two different stages of evolution of the flow within the
self-similar regime t = 120 and t = 160. The agreement is remarkable thus showing the
degree of self-preservation of the flow considered. The quality of the scaling is so high
that, in principle, can also be used to improve the statistical convergence of the data by
also averaging between different times once the data are made dimensionless with the
Kolmogorov scales.

It is finally worth mentioning that the Reynolds number remains constant during the
decay of the temporal jet and, as a consequence, the ratio between macro- and micro-scales
also remains constant. This peculiar aspect of the flow considered here suggests that the
time behaviour of the Kolmogorov scales proportionally follows that of the macro-scale
such as the volume flux and the characteristic jet half-width.
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