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The passage of single air bubbles through the horizontal interface between viscoplastic
and Newtonian fluids, considering various combinations of densities and viscosities for
the fluid layers, is studied computationally. The primary focus is on the quantity of liquid
transferred from the lower layer (viscoplastic fluid) to the upper layer (Newtonian fluid)
as a result of the bubble’s ascent, a factor with significant implications for the turbidity of
methane-emitting lakes and water bodies. The entrainment characteristics are observed
to vary considerably with the bubble shape, within the lower layer and as the bubble
approaches the interface. The results show that at Bond number (Bo) > 1 and moderate
Archimedes (Ar), prolate-shaped bubbles crossing the interface undergo elongation in
the direction of their poles. This elongation is further accentuated when the viscosity
of upper layer is less than the plastic viscosity of the lower layer. The bubble is found
to break up when leaving the lower layer, of a critical capillary number, Cac ≈ 5. The
results show a significant reduction in the volume of entrainment compared with the
Newtonian counterpart. This suggests disturbances caused by the rising bubble at the
interface dissipate over a smaller region. Four distinct entrainment regimes are identified,
mainly indicating the height to which the entrained fluid can be transported away from
the interface. In contrast to Newtonian fluids, the volume of entrainment increases by
decreasing the viscosity of the upper layer. Interestingly, the heavy viscoplastic fluid that
has been dragged up into the light Newtonian fluid does not recede with time.

Key words: bubble dynamics

1. Introduction

This paper considers the entrainment of a viscoplastic fluid into a Newtonian fluid, due
to the passage of bubbles across the stratified interface between the two layers. The lower
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layer represents an industrial suspension within which bubbles are continually created via
methanogenesis, held in place by the fluid yield stress. On growing to a critical size the
bubbles are released, rise and further expand. Aside from the gas release, the entrainment
of suspended particles affects the turbidity of the upper layer. Turbidity, defined as the
cloudiness or opaqueness of water, serves as a critical indicator of the overall health and
dynamics of aquatic ecosystems. It provides insights into the presence and distribution
of suspended particles, the penetration of sunlight and the consequent absorption of solar
energy and the biological productivity of the aquatic ecosystem. In the industrial setting of
a tailings pond, excessive turbidity, entraining pollutants and sediments from below delay
land and water reclamation management.

As an example, Base Mine Lake (BML) is a constructed water body in Alberta, Canada.
The lake consists of water with an average depth of 9 m, covering a layer of fluid fine
tailings (FFT) of up to 45 m deep. FFT includes elements such as dissolved organic matter,
suspended organic and inorganic particles that can collectively contribute to turbidity.
Examination of suspended solids concentrations in the water cap above the FFT suggested
oscillating bottom currents beneath wind-waves as a potential contributor to FFT erosion
(Lawrence, Ward & MacKinnon 1991). However, the water cap’s substantial depth in BML
renders these currents, which attenuate exponentially with increasing depth, too weak to
erode the FFT. Echo soundings conducted beneath the ice at BML have revealed the ascent
of gas bubbles through the water column, as depicted in figure 4 of Lawrence, Tedford &
Pieters (2016). These observations, combined with water turbidity data measured during
winter, as reported in Tedford et al. (2019), give rise to the hypothesis that these bubbles
are likely facilitating the transportation of some solids from the FFT into the water cap,
while also potentially inducing circulation and mixing within the water cap. The primary
objective of the present study is to examine the entrainment of fluid from the lower layer
to the upper layer, by rising bubbles.

BML is one of many gas-emitting lakes in North Eastern Alberta, Canada, resulting
from the oil sands industry. As reviewed by Small et al. (2015), these lakes cover some
175 km2 and contain a wide range of residual solids, bitumen and diluents. The lower
layer in which bubbles are produced (FFT layer) has been characterised as viscoplastic
(Derakhshandeh 2016). In such fluids the material flows only if the imposed stress
surpasses the yield stress (Balmforth, Frigaard & Ovarlez 2014). In the context of bubbles
rising in a viscoplastic fluid, one might expect that stresses arise from both interfacial
tension and buoyancy effects, and are resisted by the yield stress of the material. Finding
the shape and position of the yield surfaces, i.e. the boundaries between the yielded
and unyielded regions, is non-trivial. This complicates understanding bubble migration
through viscoplastic fluids, and further the entrainment process when one layer features
yield stress.

During the last few decades, many theoretical and computational studies have been
performed focused at determining the yield surfaces around moving objects in viscoplastic
fluids (Tsamopoulos et al. 2008; Sikorski, Tabuteau & de Bruyn 2009; Dimakopoulos,
Pavlidis & Tsamopoulos 2013; Lopez, Naccache & de Souza Mendes 2018; Chaparian
& Frigaard 2021; Pourzahedi et al. 2022; Daneshi & Frigaard 2023; Kordalis et al. 2023).
Theoretical and computational studies amongst these are often based upon a model of ideal
(or simple) viscoplastic fluids, as defined in Frigaard (2019). Experimentally, deviation
from ideal viscoplastic behaviour is always present. Experimental observations find
fore-and-aft asymmetries in moving bubbles, even at low Reynolds numbers, characterised
by an inverted teardrop shape of the bubble as it rises and a negative wake at the rear
of the bubble (Sikorski et al. 2009; Mougin, Magnin & Piau 2012; Lopez et al. 2018;
Zare & Frigaard 2018; Pourzahedi, Zare & Frigaard 2021; Daneshi & Frigaard 2023).
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Viscoplastic flow with reaction

These features are attributed to viscoelastic behaviour of the fluid around the bubble
(Moschopoulos et al. 2021). These same viscoelastic stresses result in successive released
bubbles following the same pathway (Lopez et al. 2018). These damaged or weakened
pathways appear relevant to bubble migration in large reservoirs. Zare, Daneshi & Frigaard
(2021) showed that the shape and trajectory of bubbles are significantly influenced when
they move within a distance (not greater than their yielded zone) from a weaker region.
This influence arises from alterations in residual stress distributions.

In the context of entrainment, we are, in particular, interested in the flow around
bubbles near viscoplastic–Newtonian interfaces. We conducted a series of experiments to
investigate the behaviour of bubbles rising in a two-layer system consisting of viscoplastic
fluid below water, as detailed in Zhao et al. (2022). Our findings revealed that as the
bubble enters the water layer, it entrains viscoplastic fluids, which accumulate above the
interface in a conical shape. In addition, we observed the formation of water conduits
extending downward into the lower layer, when multiple bubbles passed through. As the
bubbles ascended through these conduits, they displaced water, and once they exited,
water returned to fill the conduits. This phenomenon holds significant environmental
significance, as it can facilitate the movement of contaminants to and from submerged
sediments. To the best of the authors’ knowledge, there is no other research that explores
the ascent of bubbles through a rheologically non-uniform viscoplastic medium.

The concept that a moving particle permanently displaces the surrounding fluid was
quantified by Darwin (1953). Early investigations have been based on this classical
concept, known as Darwin’s drift. In these studies, two fluid layers have the same
physical properties, coloured differently, and the entrainment of fluid by body translation
is predicted in Stokes regime (Eames & Duursma 1997; Bush & Eames 1998). Numerous
experimental and numerical investigations have been conducted to explore the process of
bubbles passing through a Newtonian liquid–liquid interface since then (Mercier et al.
1974; Greene, Chen & Conlin 1988, 1991; Reiter & Schwerdtfeger 1992b; Manga & Stone
1995; Kemiha et al. 2007; Dietrich et al. 2008; Uemura, Ueda & Iguchi 2010; Bonhomme
et al. 2012; Natsui et al. 2014; Emery, Raghupathi & Kandlikar 2018). Greene et al. (1988,
1991) established a crude criterion for bubble penetration of the liquid–liquid interface
by comparing buoyancy and interfacial tension between the liquid layers. Their work
identified the conditions under which a bubble can be trapped at the interface. They noted
that the entrainment volume can be eliminated by increasing the density ratio between
the two liquids. Interestingly, they observed that interfacial tension had a relatively modest
impact on the entrainment volume but played a role in initiating entrainment. Furthermore,
they found that a decrease in the viscosity of the lower liquid resulted in a significant
increase in the entrainment volume.

Reiter & Schwerdtfeger (1992a,b) conducted a study in which they recorded the duration
of the bubble’s presence at the interface (residence time), the vertical extent of the
column formed beneath the bubble and the properties of drops formed in the upper
phase. Shopov & Minev (1992) conducted transient numerical simulations at low and
intermediate Reynolds number, to study bubbles crossing the interface between immiscible
fluids. Specifically focusing on bubble and interface deformations as well as film drainage
dynamics, without considering the tail pinch-off phase. Their findings revealed that at
very low Weber and Reynolds numbers, bubbles could take on a prolate shape (elongated
in the direction of motion) when passing through the interface, particularly in cases that
the upper layer is less viscous, a result supported by Manga & Stone (1995). In contrast,
at higher Weber and Reynolds numbers, inertial forces and interaction with the interface
cause bubbles to adopt oblate shapes, often forming a concavity at the rear and spherical
cap shapes during the crossing.
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Dietrich et al. (2008) experimentally investigated interface crossing in inertial regimes,
establishing a relationship between the crossing time of the interface by a bubble and the
ratio of terminal velocities in the two continuous phases. They observed the coexistence
of fluid motion entrained in the bubble wake and an opposing flow driven by gravity
once the tail formed. Bonhomme et al. (2012) considered bubbles crossing the interface
between immiscible fluids at inertial conditions, examining a wide range of bubble shape
configurations from spherical to toroidal. They provided a comprehensive map of bubble
shapes and entrained column geometries based on Archimedes and Bond numbers. Their
findings indicated that smaller bubbles could be slowed down or even stopped at the
interface, whereas larger spherical cap bubbles, with larger cross-sectional areas, generally
crossed the interface more easily. Emery et al. (2018) explored the crossing of single
bubbles considering the tail pinch-off mode and found that the length of the entrained
liquid column was longer when the bubble’s velocity remained relatively constant during
the interface crossing. The tail often remained connected for an extended period before
rupturing, with the liquid shell covering the bubble breaking before the column. They also
studied the crossing of a stream of bubbles, providing insights into various flow regimes
and the potential formation of clusters.

The majority of previous work on bubble passage through liquid–liquid interface
reviewed has focused solely on Newtonian fluids. However, the passage of a single
bubble through a viscoplastic–Newtonian fluid has not been studied previously to the
best of the authors’ knowledge and very little is known about bubble’s motion in
rheologically non-uniform fluids. This paper embarks on a comprehensive exploration of
the relationship between the elementary physical mechanisms at play in the entrainment
of viscoplastic fluid by the rising of a single bubble, using computational methods. The
study does not focus specifically on any one aspect but instead intends to provide a
broad characterisation and overview of the possible flow regimes. The following sections
describe the computational methods, provide technical details and discuss the results in
depth, offering valuable insights into the dynamics of bubbles at fluid–fluid interfaces and
subsequent entrainment.

2. Problem formulation

The present study is centred on the flow around a single gas bubble crossing an interface
between two miscible liquid layers. Our primary focus revolves around entrainment, which
refers to an amount of liquid from the lower layer that is transported to the upper layer by
the rising bubble. Figure 1 illustrates the flow geometry examined herein.

Our simulations are computed in an axisymmetric domain ([0, 100R̂b] × [−15R̂b, 50R̂b])
in (r̂, ẑ) coordinates. Here R̂b denotes the radius of the initially spherical bubble. The
liquids are initially static separated with a horizontal interface at ẑ = 0. The bubble is
initially placed in the lower part of the flow domain at ẑ = −5.

The flow surrounding a rising bubble is governed by the usual momentum and mass
balances, and we make them dimensionless through the following approach. We scale all
lengths with the equivalent radius, R̂b, of a spherical bubble of the same volume. We scale
velocities with Û, obtained by balancing buoyancy and viscous forces, i.e. Û = ρ̂1ĝR̂2

b/μ̂1,
where ĝ is the gravitational acceleration and μ̂1 is the plastic viscosity of the surrounding
viscoplastic fluid. Pressure and other stresses are scaled with ρ̂1ĝR̂b. Index k varies for the
lower layer fluid, upper layer fluid and gas phase, respectively, k = 1, 2, 3.

Various dimensionless groups emerge. The Archimedes number (Ar = ρ̂2
1 R̂3

bĝ/μ̂2
1),

represents the ratio of gravitational stresses to the effects of plastic viscous stresses.
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Figure 1. Schematic of the flow geometry and coordinate system.

The density ratio (ρk), represents the ratio of the density of fluids to the density of
the lower layer, note that air density is negligible ρ3 � 1, and ρ1 = 1 so ρ ≡ ρ2. The
yield number is Y = τ̂YR̂b/ρ̂1ĝ, representing the competition between yield and buoyancy
stresses. The viscosity ratio is mk = μ̂k/μ̂1; note that m1 = 1 and since Ar is defined
using the viscosity of the lower layer fluid, the bubble viscosity ratiom3 varies with the
selected Ar. Nevertheless, for all m3 studied we have m3 � 0.002. Hence, m ≡ m2. The
Bond number represents the ratio of gravitational forces to interfacial tension effects. Here
we assume the same interfacial tension between both liquids and gas, i.e. σ̂13 = σ̂23, and
the liquids are miscible σ̂12 = 0. Following the methods of Tofighi & Yildiz (2013), the
Bond number is Bo = ρ̂1ĝR̂2

b/σ̂13, between any liquid and gas. This term vanishes between
the two liquids.

The scaled momentum and continuity equations are given by

ρAr[ut + u · ∇u] = −∇p + ∇ · τ + knδs

Bo
+ ρeg, (2.1)

∇ · u = 0, (2.2)

where u, p, τ denote the velocity, pressure and deviatoric stress, respectively.
A volumetric force formulation has been adopted for the interfacial tension, and this

term appears in the right-hand side of the Navier–Stokes equation (2.1), where k is the
mean curvature, n the normal unit vector and δs is a surface Dirac δ-function that is
non-zero only on the interface. Dimensionally this term is f̂ = σ̂sknδs, where nδs is
approximated from ∇C, which is the gradient of volume fraction. In the numerical scheme,
this term is evaluated using height functions (Popinet 2009).

The upper layer fluid is treated as a Newtonian fluid, whereas the lower layer fluid is
considered to be either a Newtonian or a viscoplastic fluid. Where we have Newtonian
liquid in our flows, this is modelled by

τ (u) = mγ̇ (u), (2.3)

where γ̇ (u) is the strain rate tensor:

γ̇ (u) = ∇u + (∇u)T . (2.4)
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For the viscoplastic lower fluid layer the Bingham model has been used, which has been
solved computationally using a commonly used smooth regularisation method proposed
by Papanastasiou (1987):

τ (u) =
[
1 + Y

1 − e−N|γ̇ (u)|

|γ̇ (u)|
]
γ̇ (u). (2.5)

Here τ̂Y denotes the yield stress of the Bingham fluid. The regularisation parameter
N � 1 controls the closeness of approximation to the exact Bingham fluid model: 1/N
represents a small (scaled) strain rate below which the fluid becomes very viscous, i.e. for
N|γ̇ (u)| � 1, we find at leading order (2.5) becomes

τ (u) ∼ NY γ̇ (u). (2.6)

In dimensional terms the strain rate and 1/N have been scaled with Û/R̂b = ρ̂1ĝR̂b/μ̂1.
Both fluids are considered miscible with density ratios of (ρ = 1) and (ρ = 0.7). Thus,

there is no additional interfacial term required in (2.1). The experimental timescale and
length-scales are such that the Péclet number between liquids is extremely large and
molecular diffusive effects can be neglected, i.e. the miscibility is physically appropriate.

In steady state, the drag force on the bubble is balanced by the buoyancy. The drag
coefficient Cd compares the drag force with the inertial force on the bubble:

Cd = 32R̂3
bĝ

3Û2
bŴ2

, (2.7)

where Ŵ denotes the width of the steadily rising bubble.

3. Computational method

The computation has been performed using a volume-of-fluid (VoF) method. For
three-phase flows we introduce the volume fraction Ci for each phase and the density
and viscosity of the mixture are related to the volume fraction of each phase through the
linear laws as

ρ =
3∑
1

Ciρi, μ =
3∑
1

Ciμi. (3.1a,b)

Each phase is advected
∂tCi + ∇ · (Ciu) = 0. (3.2)

The advection equation (3.2) is solved using a piecewise-linear geometrical VoF scheme
that is generalised for the quad/octree spatial discretisation; for further detail, please refer
to Scardovelli & Zaleski (1999).

The quadtree adaptive mesh refinement technique has been used to accurately track
the interfaces between the two and three phases. The local mesh refinement densifies
the grid in regions of strong spatial variations of the velocity, fluid concentrations and
the strain rate |γ̇ (u)|. The algorithm is implemented in the open-source multiphase flow
solver Basilisk (based on the algorithms of the former Gerris), which is specifically
suited to such applications (Popinet 2003, 2009; Fuster & Popinet 2018). The system
of equations is resolved using a time-splitting projection method described in Popinet
(2009). A physically motivated maximum timestep is imposed and further controlled via
a CFL constraint. The velocity advection term is estimated using the Bell–Colella–Glaz
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Viscoplastic flow with reaction

second-order upwind scheme at the intermediate timestep. The values of viscosity, density
and pressure at the intermediate timestep are also used.

Boundary conditions for the simulations are no-slip on the walls at the side and top of
the domain. The pressure as well as the z-derivative of the normal velocity is set to zero at
the top of the domain (z = 10). Within the range of our dimensionless parameters, the size
of yield surfaces developing around the bubbles is expected not to exceed five times the
size of the bubble; see Zare et al. (2021). The width of the domain is significantly larger
than the width of yielded zone and the height of the domain is tall enough to allow for
transients of interest to be captured.

Basilisk employs the interpolation error between a field value at a grid point on grid
level n and its interpolated value from a coarser grid level n − 1 as a criterion to decide
whether to adjust the grid locally. This adjustment involves either merging four squares into
a parent square or dividing a square into four subsquares in two dimensions, as appropriate.
The grid is refined or coarsened depending on whether this interpolation error is higher or
lower than 10−3, 10−3 and 10−9 for velocity, concentrations and strain rate, respectively.
The domain is initially divided into 128 × 128 cells. Each of these may subdivided
according to the refinement, to a maximum of 9 quadtree levels. Spurious currents are also
minimised by using a height function method to estimate the interface curvature. Basilisk
has been widely validated against analytical, numerical and experimental interfacial flows
and has been frequently used for Newtonian bubble flow calculations (Balla et al. 2019;
Berny et al. 2020; Zhang et al. 2020).

3.1. Validation
We have validated the code by benchmarking our results with the experimental results
obtained by Bonhomme et al. (2012). The experiments were based on a single gas bubble
crossing an interface between a lower phase made of water or water plus glycerin and an
upper, slightly lighter, phase made of silicon oil.

Here we adopt the procedure suggested by Tofighi & Yildiz (2013) for modelling a
three-phase system within the VoF framework. The interfacial tension between phases i,
and j are denoted by σij. These are transformed to phase specific surface tensions using the
following relations:

σ1 = 0.5(σ12 + σ13 − σ23), (3.3)

σ2 = 0.5(σ12 + σ23 − σ13), (3.4)

σ3 = 0.5(σ13 + σ23 − σ12), (3.5)

and the σi are used within the VoF method as explained in Tofighi & Yildiz
(2013). For this validation example, we have used the values of σij from the
experiments of Bonhomme et al. (2012). Dimensionless numbers from Bonhomme
et al. (2012) (ArB, BoB, Λ, R) are translated to those used in this study as follows:
(Ar = Ar2

B/8, Bok = Bok,B/4, m = Λ, ρ = 1 − R).
The results are plotted in figure 2(b) against those obtained by Bonhomme et al. (2012)

in figure 2(a). The bubble crosses the interface and tows a column of heavy fluid behind
it. The shape of bubble before and after interface, and the column of heavy fluid have been
found to compare well with the experimental results.
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(b)

(a)

Figure 2. Evolution of shape of a bubble and interface between two fluids as the bubble crosses the interface.
Parameters: Ar = 226.8, Bo = 7.375, Y = 0, ρ = 0.794 and m = 1.11. Here σ23/σ12 is 0.425 and σ13/σ12
is 0.615. Figures show (a) the experimental observation (Bonhomme et al. 2012) and (b) our computational
results. As the bubble crosses the fluid–fluid interface, it entrains a column of heavy fluid into the upper layer.

f2

f1

z

r

Figure 3. As the bubble crosses the liquid–liquid interface (between f1 and f2), it displaces the initially
horizontal interface and tows a column of f1. The mesh has been adapted and refined at the interfaces and inside
the bubble. The entrainment volume is essentially the cumulative volume of cells z > 0, encompassing f1.

3.2. Scope of study
Our study is based on 167 simulations covering a wide range of governing parameters.
The values of governing parameters are selected from a wide range: (Y, Bo, ρ, m) =
([0, 0.1, 0.15], [0.1, 1, 5, 10, 50], [0.7, 1], [0.1, 1, 10]) and various Ar = 1, 5, 10, 50, 500.

To quantify the entrainment, the volume of liquid from the lower layer ( f1) that has
been transported to the upper layer ( f2) is calculated, see figure 3. As the bubble crosses
the liquid–liquid interface, it displaces the initially horizontal interface between the liquid
layers and it carries liquid from the lower layer to the upper layer either as a towed column
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Figure 4. Interface between the lower and upper liquid layers at different MLR for Ar = 5, Bo = 5, Y = 0.1,
ρ = 1 and m = 1: MLR = 6, 7, 8, 9 with red, green, blue and black colours, respectively. The inset graph
displays the relative error in the volume of entrainment (Ve) calculated at the time bubble reaches (zb � 5)
for varying numbers of cells (NC) relative to the solution at MLR = 9 and NC = 126289. The NC values
corresponding to MLR = 6, 7, 8 and 10 are 6745, 11 425, 21 295 and 294 001, respectively.

or trapped in the recirculating wake. In this context, we have estimated the entrainment
volume by

Ve =
2πΣz>0r̂ijΔ̂

2
ijCij

4/3πR̂3
b

, (3.6)

where Cij is the volume fraction of f1, Δ̂ represents the size of cells encompassing f1
located at ri, zj and z > 0, and rij represents the radial distance of cells located at ri, zj to
the axis of symmetry. This value has been normalised with the volume of rising bubble.

In our code benchmarking, we computed Ar = 5, Bo = 5, Y = 0.1, ρ = 1, m = 1 using
various values of maximum level of refinement (MLR), and calculated the volume of
entrainment Ve. The results are presented in figure 4. Due to the automated quadtree
mesh refinement, the number of cells (NC) varies at each time step, hence the NC
here shows the numbers of cells when the bubble centroid reaches zb ∼ 5. Notably, the
liquid–liquid interface shows good alignment for computations with MLR ≥ 7. To assess
convergence concerning MLR, we consider the solution at MLR = 9 as the converged value
and calculate the relative error of Ve. Beyond MLR ≥ 8, the relative error of Ve remains
relatively stable, approximately at 10−2. For the subsequent computations in this paper, we
adhere to MLR = 9.
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4. Parametric effects

In this section we present our results of examining the impact of the governing
dimensionless parameters on the entrainment process.

4.1. Effect of bubble’s shape
It is of interest to examine how the change in the bubble shape influences the entrainment.
We consider two scenarios, (a) both upper and lower liquid layers are Newtonian and (b)
the lower layer is a viscoplastic (Bingham) fluid. We begin with a relatively low inertia
regime (Ar = 5), where the liquid layers are isodense and isoviscous i.e. ρ = 1, m = 1,
and we study the effect of changing (Bo), figure 5.

When the liquid layers are Newtonian, given values of ρ and m, the bubble does indeed
rise within a single liquid. The bubble reaches its steady-state shape before reaching the
interface between the two liquids and maintains this shape after crossing the interface. By
increasing Bo from 0.1 to 10, the shape of the bubble undergoes a transformation from a
spherical shape to a ellipsoidal cap, with wider profile. Tips also develop at the sides of the
bubble and the rear side becomes indented. At Bo = 50, a bubble with a smooth and steady
skirt forms. Often, the formation of skirted bubbles is a prelude to the onset of instabilities
for a rising bubble. Here we have not considered instabilities directly, but simply advise
caution for such shapes. Even when not visibly unstable, there is no guarantee that our
assumption of axisymmetry is not preventing asymmetric instabilities.

As depicted in figure 5(a), the entrainment behaviour varies accordingly. At the
beginning, the spherical bubble pulls a portion of the lower layer along with it. After
travelling a distance of zb ≈ 15, it eventually separates from the interface. Therefore the
main contributing factor to entrainment (at Bo = 0.1) is the displacement of the interface.
When the bubble adopts a cap-shaped configuration, its broader profile leads to a more
significant displacement of the fluid at the interface compared with when it is spherical.
Consequently, a column of liquid from the lower layer accumulates behind the rising
bubble. In the case of the indented cap-shaped bubble (Bo = 10), this liquid column
extends beyond z = 35. The detachment of the bubble from this towed liquid column
occurs later, and no entrained liquid remains attached to the bubble. When Bo increases
to 50, apart from the interface displacement, the bubble entrains liquid from the lower
layer within the primary wake, constituting approximately 20 % of the bubble’s volume,
forming a new compound. This compound then separates from the column and continues
its ascent. At high Bo, similar to low Bo values, no liquid column forms.

The results indicate that all bubbles rising in a Newtonian liquid cause displacement of
the interface. Cap-shaped bubbles, in particular, not only induce interface displacement
but also tow behind a liquid column. The thickness of the liquid column is influenced by
the width of the bubbles and, eventually, the bubble detaches from the column. On the
other hand, skirted bubbles rise as a separate entity, carrying along a portion of the liquid
from the lower layer. As part of the detachment, for Newtonian fluids, we often see a break
up of the entrained liquid column into small droplets. This phenomenon is marked with a
D in figure 5(a), and subsequent figures.

We now turn our attention to the entrainment process when the lower layer is a Bingham
fluid. At Y = 0.1, corresponding to Bo value, the bubble develops different steady-state
shapes before reaching the interface between two fluid layers. The steady-state bubble
shapes varies from a spherical shape to a prolate shape, as Bo increases. For small
values of Bo � 1, the bubble maintains an almost spherical shape, primarily due to the
significant influence of interfacial tension. However, at medium values of Bo, the bubble
forms a prolate shape. In this case, gravitational forces surpass interfacial tension effects,
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Figure 5. Effect of variation of bubble’s initial shape on the entrainment at Ar = 5, ρ = 1, m = 1, for
(a) Y = 0 and (b) Y = 0.1; from left to right Bo = 0.1, 10 and 50. The bubble and the evolution of the
liquid–liquid interface as bubble centroid reaches five specified heights, z = −1, 5, 15, 25, 35 with black, red,
green, blue and brown colours, respectively, is shown in each panel. Due to break up of the entrained liquid
column small droplets form and in cases that the bubbles breaks up at the interface small satellite bubbles form.
The former is indicated with D and the latter is indicated with BD.
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Figure 6. (a) Contours of strain rate on the computational cells as a bubble reaches the interface at Ar = 5,
Bo = 10, Y = 0.1, ρ = 1 and m = 1. (b) The profile of a bubble for Ar = 5, ρ = 1 and m = 1 at different
values of Bo, including 0.1, 5, 10 and 50, as well as for Y = 0, 0.1 and 0.15.

resulting in an decreased rate of strain, subsequently increased effective viscosity, around
the equatorial plane of the bubble compared to the poles. Consequently, the bubble begins
to deform preferentially in the direction of its poles, taking a prolate shape. As Bo
increases and the influence of interfacial tension decreases, the prolate bubble becomes
more elongated. For large Bo = 50, the bubble retains an indentation. These bubble shapes
are in agreement with those predicted earlier by Tsamopoulos et al. (2008). At lower Bo
we see a detachment of the entrained liquid column and breakup into small droplets, as
before for the Newtonian fluids.

Remarkably, as the bubble approaches the interface, it undergoes increased elongation,
as depicted in figure 6(a). This elongation is primarily driven by an elevated rate of strain
occurring near the north pole where the bubble intersects the interface. This elevated strain
rate leads to a reduction in the effective viscosity near the pole, and decreased rate of strain
around the equatorial plane, subsequently causing further elongation of the bubble. This
elongation becomes even more pronounced with higher values of Bo and Y , as illustrated
in figure 6(b).

We observe two different types of bubble breakup at Bo = 10 and Bo = 50. At a
moderate value of Bo, the bubble experiences breakup as it enters the upper Newtonian
fluid, whereas at a high Bo, the bubble undergoes breakup within the viscoplastic fluid
layer, with a small portion of it remaining confined within this layer. Both breakup
phenomena occur when viscous shear forces surpass the capillary forces, indicating the
presence of a critical capillary number (Ca = Bo/Ar). The initial breakup of rising
bubbles in the viscoplastic fluid happens at Cac ≈ 5 (over the set of our computational
parameters). Breakup of drops has been seen at the tip when mb = μ̂b/μ̂p � 1 and
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Figure 7. Evolution of (a) the volume of entrainment Ve, and (b) the rise speed (Ub) of bubble as a function
of the dimensionless bubble position for the cases considered in figure 5.

for cases with capillary number above a Cac (Chu et al. 2019). We also see a
breakup/detachment process later in the flow as the bubble rises. However, unlike the
small Bo results the droplets of entrained fluid often contain smaller residual bubbles of
the gas, so that the droplets encapsulate bubbles on breakup, particularly at larger Bo. We
mark figures where this phenomenon occurs with BD.

The contribution of entrainment through the displacement of the interface diminishes
when there is a viscoplastic fluid in the lower layer. It is mainly due to the fact that as
the bubble approaches the interface, buoyancy yields only a partial region of the lower
fluid while the rest remains unyielded. It can be seen as the passage of bubble from a
narrow yielded column to the upper Newtonian layer. Therefore, a limited radial length of
approximately 5 of the interface becomes displaced and distances from z = 0. For Bo = 10
and 50, some Bingham fluid becomes trapped behind the rising bubble. At Bo = 10,
an inverted cone of viscoplastic fluid remains attached to the bubble and forms a new
configuration. The rising bubble and attached cone break off from the towed liquid column
around z = 15, while the bubble remains connected to the corresponding Newtonian
towed column. In general, the rising bubble transports less fluid to the upper layer and
entrainment decreases significantly.

The variation of the volume of entrainment as the bubble rises, as well as the rise
speed of the bubble for both scenarios (i.e. Newtonian and Bingham lower layers) are
shown in figure 7. The entrainment volume (Ve) vs the bubble’s position, as shown in
figure 7(a), demonstrates that in the case of Newtonian lower layers, spherical-shaped
bubbles transport a smaller amount of liquid to the upper layer when compared with
cap-shaped or skirted bubbles. This can be attributed to two factors: (i) the displacement
at the interface increases proportionally with the area of the bubble; (ii) the towed column
becomes thicker for the same reason. As a result, cap-shaped or skirted bubbles are more
efficient in bringing liquid to the upper layer. In contrast, for Bingham lower layers,
spherical-shaped bubbles transport a larger quantity of liquid to the upper layer compared
with cap-shaped or skirted bubbles. This is because, as Bo increases, the width of the
bubble’s profile decreases in the lower viscoplastic fluid, leading to a thin entrained
column and a reduction in entrainment.

Surprisingly, we do not see a noticeable difference in the entrainment for Bo = 5, 10
or 50. By comparing the shape of bubbles and their rising velocity, one might notice that
despite the variety in the shapes, the width of bubbles and their rising velocity are quite
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Figure 8. Effect of increasing Ar on the entrainment at moderate Bo: Bo = 5 and ρ = 1, m = 1 for (a) Y = 0
and (b) Y = 0.1; from left to right Ar = 5, 10, 50 and 500. For colours refer to the caption of figure 5.

similar, see figure 7(b). It implies that the effect of entrainment on drag forces imposed
on the bubble is minimal. Despite that, the rising velocity of the spherical bubble at
Y = 0.1 increases gradually and then reaches a steady-state value similar to the Newtonian
counterpart figure 7(b). However, the rising velocity at Bo = 10 and 50 undergoes an
acceleration followed by a deceleration. The speed of rising bubble accelerates as it enters
the Newtonian upper layer, but due to attached Bingham fluid it undergoes a deceleration.

4.2. Effect of inertia
We investigated the effect of inertia on the transport of both Newtonian and viscoplastic
fluids at moderate and high values of Bond numbers, Bo = 5 and 50.

The Newtonian results for Bo = 5 are presented in figure 8(a). As we discussed in
§ 4.1, as the bubble approaches the initially horizontal Newtonian–Newtonian interface,
the interface becomes displaced. This displacement occurs within a specific radial domain
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and dissipates at a critical radius denoted λ, see figure 5. By increasing Ar, λ decreases
∼10, 9.7, 8 and 4. Here Ar can be interpreted as a Reynolds number, with characteristic
velocity Û from the balance of buoyant and viscous stresses. As Ar (i.e. Û) increases the
ratio of advective to viscous timescales decreases and disturbance of the interface behind
the bubble (i.e. λ) decreases.

The bubble develops different shapes before reaching the interface. It undergoes a
transition from a spherical cap to an ellipsoidal cap with a wider profile as Ar increases.
This alteration in shape leads to a wider towed column. Subsequently, the length of the
towed column extends as Ar increases. For Ar = 5 and 10, no liquid remains attached
to the bubble and the bubble leaves off the towed column before reaching top of
the computational domain (z = 50). At Ar = 50, some liquid remains initially attached
to the bubble; however, it gradually lags behind and ultimately separates from the bubble.
In the highly inertial regime, specifically at Ar = 500, the entrained liquid divides into
two parts: a towed column and a recirculating torus behind the bubble. The towed column
becomes progressively thinner, and the recirculating bodies gradually move further away
from the bubble.

The results for Y = 0.1 are depicted in figure 8(b). In this scenario, there is no significant
change in λ with the increase in Ar, and only a small portion of the interface moves away
from z = 0. The interface remains nearly flat as the bubble crosses it and ascends further
away. The shape of bubble before reaching the interface varies by Ar. As Ar increases, the
aspect ratio decreases, causing the profile to shift from a prolate shape to one more akin
to an oblate shape with a flat rear side. The main contribution to the entrainment comes
from the Bingham fluid attached to the rising bubble at Ar = 50 and 500. In contrast
with the Newtonian counterpart, the inverted cone of viscoplastic fluid remains attached
to the bubble and does not decay with time/distance. The fluid in the inverted cone is
partly unyielded. At Ar = 500, the rate of strain within the Newtonian fluid surrounding
the towed column is higher than that of Bingham fluid inside the column. Consequently,
the interface becomes concave, leading to a significantly different flow pattern around the
bubble and entrainment, compared to the Newtonian counterpart.

The results for Bo = 50 and Ar = 1, 5, 10 and 50 are shown in figure 9. When the
lower layer is a Newtonian fluid, by increasing Ar, the profile of bubble becomes wider
and unstable skirts form. As a result, more liquid becomes trapped behind the bubble and
larger ascending compounds form. At Ar = 50 and Bo = 50, the bubble becomes highly
unstable and splits into two parts at z ∼ 25.

The impact of inertia on the displacement of a viscoplastic fluid (Y = 0.1) is depicted in
figure 9(b). As Ar increases, the bubble becomes wider and consequently, the thickness of
the entrained column increases. At low and medium values of Ar, where Ca � 5, bubble
breaks up before entering the upper layer and some air becomes entrapped within the
viscoplastic fluid. The increase in Ar, causes a greater amount of liquid to trap behind the
ascending bubble within the upper Newtonian layer.

4.3. Upper and lower layers with similar properties
So far our results show how a rising bubble induces flow and transports liquid at specific
values of Ar and Bo. As discussed in §§ 4.1 and 4.2, the lower layer liquid could be
transported by either the displacement of the interface (in the case of spherical shaped
bubbles), or the towed column (in the case of cap-shaped bubbles) or the wake behind
a rising (skirted-shaped) bubble. When buoyancy forces are dominant, high-Bo regime,
the liquid attached to the cap-shaped bubbles break off from the column and rises up

987 A28-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

33
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.331


M. Zare, I.A. Frigaard and G.A. Lawrence

35

30

25

20

15
z

z

10

5

0

35

30

25

20

15

10

5

0

–5

35

30

25

20

15

10

5

0

35

30

25

20

15

10

5

0

–5

35

30

25

20

15

10

5

0

35

30

25

20

15

10

5

0

–5

35

30

25

20

15

10

5

0

35

30

25

20

15

10

5

0

–5
–8 –4 0 4 8

r
–8 –4 0 4 8

r
–8 –4 0 4 8

r
–8 –4 0 4 8

–8 –4 0 4 8 –8 –4 0 4 8 –8 –4 0 4 8 –8 –4 0 4 8

r

D

BD BD BD D

D D D

(b)

(a)

Figure 9. Effect of increasing Ar on the entrainment at large Bo: Bo = 50 and ρ = 1, m = 1, for (a) Y = 0
and (b) Y = 0.1; from left to right Ar = 1, 5, 10 and 50. For colours refer to the caption of figure 5.

with the bubble. Increasing inertia in each regime amplifies the process and increases the
retention time at low and moderate Bo values.

4.4. Effect of viscosity
When liquid layers have different viscosities but similar densities, the viscosity ratio (m)
plays a significant role in altering the Archimedes number in the upper layer. An increase
in m results in a decrease of Ar by 1/m2 while the Bond number remains unaffected. We
investigated the effect of varying m on the rise of bubble and entrainment in moderate Ar
and Bo regime, where bubbles form an indented cap shape. The passage of the bubbles
and subsequent entrainment at m = 0.1, 1 and 10 are shown in figure 10.

The results for the case in which the upper and lower layers are Newtonian are shown
in figure 10(a). By increasing m, λ increases ∼8, 14 and 46, which is counterintuitive.
By increasing m, the bubble experiences deceleration and consequently the advective to
viscous time scale increases and the disturbance of the interface behind the bubble (i.e. λ)
increases.
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figure 5.

When the bubble enters the upper layer at m = 0.1, the Archimedes in the upper layer
increases to 1000, so we expect that the bubble becomes wider and the entrained column
becomes thicker. However, in contrast to these expectations, the increase in Archimedes
(to 1000) does not lead to a proportional increase in the entrainment, and the width of the
liquid column does not become significantly thicker with respect to Ar = 10 and m = 1.
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This could be attributed to the high shear stresses that are generated in the upper layer,
which cause the towed liquid column to have a thickness comparable to the width of the
bubble. On the other hand, when the viscosity ratio is m = 10, as the bubble enters the
upper layer, the Archimedes number decreases to 0.1. In this situation, the bubble’s inertia
becomes less significant than the viscous stresses. Consequently, the bubble deforms
and takes on a spherical shape, as expected. The entrainment in this case is caused by
a significant displacement of the interface. Due to the initial shape of the bubble and
lower viscosity of the lower layer, which results in generation of higher strain rates, the
bubble displaces a larger area of the interface and creates an initially thick towed column.
However, as the flow regime transitions and the shape of the bubble changes, it separates
from the Newtonian–Newtonian interface and the liquid column is not extended to z > 15.

When the lower layer is a Bingham fluid, as illustrated in figure 10(b), as the bubble
approaches the interface, its aspect ratio increases. This elongation becomes more
pronounced when the Newtonian viscosity is less than the plastic viscosity (m = 0.1). In
this case, the bubble breaks up when it has nearly completely emerged from the interface.
Formation of break-up bubbles is caused by the acceleration upon entering the upper layer
as it has a higher Archimedes number. These break-up bubbles become trapped between
the two liquid layers. In the case of (m = 10), the bubble assumes a more spherical shape
upon entering the upper layer. The bubble initially tows a liquid column, and therefore
the trailing part of the bubble becomes slightly unstable, giving rise to the formation of
small drops. The entrainment of viscoplastic fluids manifests as the towed liquid column
for m � 1. When m > 1, the towed column is short and truncated around z = 5. In contrast
to Newtonian fluids, there is no significant change in λ with m .

4.5. Effect of density variation
By keeping liquid layers isoviscous and reducing the density of the upper layer to 70 %
of the lower layer, the Archimedes decreases by a factor of 0.49 and the Bond number
decreases by a factor of 0.7. To study these effects, we considered Bo = 50, at Ar = 10,
for Y = 0 and 0.1 the results are shown in figure 11.

The reduction in Archimedes and Bond numbers, both suggest the bubble deformation
to a more indented spherical cap shape upon entering the upper layer. When the lower layer
is Newtonian, this transformation causes the bubble to fragment into smaller bubbles as
it departs from the interface, see figure 11(c). Interestingly, the small bubbles generated
above the interface are encapsulated within the towed heavy Newtonian liquid and
transport some of the surrounding liquid and prevent the towed column from descending.

The results for the case where both upper and lower layers are Newtonian are displayed
in figure 11(a). As the bubble enters the lighter fluid, the displacement at the interface and
the subsequent entrainment noticeably decreases. The column of the entrained liquid thins
and nearly diminishes as the bubble reaches z = 5. In contrast to the isodense liquid layers
in which the interface rises until the bubble detaches, here the interface gradually settles
back.

The results for Y = 0.1 are shown in figure 11(b). When the lower layer is a viscoplastic
fluid, the bubble tows a column of this fluid, but the towed liquid does not change with
time; it remains stationary above the interface. The density difference is not sufficient to
cause the entrained liquid to settle back after the bubble breaks off. However, this density
difference becomes apparent in the thinned towed column. Interestingly, there is some
heavy Bingham fluid trapped in the wake of the rising bubble as well as a small bubble
(figure 11e). The small bubble has been formed during shape transformation above the
liquid–liquid interface,
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Figure 11. Effect of density variation on the entrainment for Ar = 10, Bo = 50 and m = 1: (a) Y = 0;
(b) Y = 0.1. The left figures show the entrainment for ρ = 1 and the right figures show the entrainment when
ρ = 0.7. For colours refer to the caption of figure 5. (c) Fragmentation of bubble into smaller bubbles as it
enters the upper layer. (d) The volume of entrainment (Ve) as a function of bubble position. (e) Entrapment of
heavy Bingham fluid as well as a small bubble in the wake of rising bubble.

In both cases, i.e. Newtonian and Bingham lower layer, bubbles tow some liquid as
a column, which settles down shortly after the bubbles travels a distance of z ∼ 5, and
also entrap some in their wake. Initially, a greater amount of liquid is transported from
a Newtonian layer compared with a viscoplastic fluid layer. However, a portion of the
Newtonian entrained liquid settles down due to the density difference. Consequently, the
entrained heavy Newtonian liquid is less than the entrained heavy viscoplastic liquid; see
figure 11(d).

The results of high-inertia regime with Ar = 500 are shown in figure 12. When the
bubble rises from a heavy Newtonian layer to a light Newtonian layer, it assumes a wide
shape both below and above the interface. As a result, the bubble does not undergo
fragmentation as it enters the lighter fluid, and the heavier towed column splashes onto the
liquid–liquid interface; see figure 12(a). Interestingly, the interface connecting the bubble
to the towed column changes from convex to concave. The negative buoyancy force causes
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Figure 12. Effect of density variation on the entrainment for Ar = 500, Bo = 5 and m = 1: (a) Y = 0;
(b) Y = 0.1. The left figures show the entrainment for ρ = 1 and the right figures show the entrainment when
ρ = 0.7. For colours refer to the caption of figure 5.

the strain rates in the towed column near the equatorial plane around the bubble to become
lower than those in the surrounding fluid. This results in a change in the concavity of the
interface and absence of the recirculating regions behind the rising bubble. The entrained
heavy liquid, visible as the towed column and wake behind the bubble, gradually settle
down.

The results for the case with a Bingham fluid in the lower layer are shown in figure 12(b).
The main difference between the entrainment at ρ = 0.7 and at ρ = 1 is in the entrapment
of liquid behind the rising bubble in the upper layer. At ρ = 1, an inverted cone of
Bingham fluid forms behind the rising bubble, while at ρ = 0.7, the liquid behind
separates from the rising bubble and falls down.

4.6. Effect of density and viscosity variation
It is of interest to explore the entrainment in the case that Archimedes number increases
as the bubble crosses the interface, but the Bond number decreases. The results obtained
for Ar = 10, Bo = 50, ρ = 0.7 at m = 1 and m = 0.1 are shown in figure 13.

In both cases of the Newtonian and Bingham lower layers, as the bubble rises and
encounters the upper layer, it adopts a wider profile and develops an unstable skirted
shape. The bubble’s profile accommodates transportation of more liquid to the upper
layer. However, notably, the entrained liquid does not remain within the wake of the skirted
bubble and instead descends. This presents an interesting contrast with the case of ρ = 0.7
and m = 1. Furthermore, the bubble breaks up in the lower Bingham fluid before reaching
the interface, Ca = 5, and a small portion of bubble remains within the lower layer.

5. Regimes

As the bubble crosses the interface, the interface changes its shape and a portion of lower
layer fluid is entrained into the upper layer fluid. During the ascent of the bubble in the
upper layer, the entrainment volume changes by time. We have identified the following four
different characteristic behaviours. (i) Plateau regime. The rising bubble breaks off from
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Figure 13. Effect of density and viscosity variation on the entrainment for Ar = 10, Bo = 50 and ρ = 0.7:
(a) Y = 0; (b) Y = 0.1. The left figures show the entrainment for m = 1 and the right figures show the
entrainment when m = 0.1. For colours refer to the caption of figure 5.

the liquid–liquid interface, either with or without carrying a portion of entrained fluid in
its trailing wake. Upon the separation of the bubble from the entrained fluid, it does not
return to the lower layer. Consequently the entrained volume reaches a plateau and remains
relatively unchanged over time. (ii) Descending–steady-state regime. Initially, the bubble
transports some fluid, but the fluid separates from the liquid–liquid interface. It may do
so either with or without carrying some fluid in its trailing wake. In either case, a portion
of the entrained fluid settles down. Eventually, the entrained volume reaches a plateau and
does not change over time. (iii) Descending regime. If the reduction in Ve, explained in
(ii), continues, it is called descending. (iv) Ascending regime. The rising bubble remains
connected to the liquid–liquid interface as it rises up, so the entrained volume is ascending,
i.e. Ve keeps increasing.

The variation of entrainment with bubble position for these four distinct entrainment
regimes are shown in figure 14(a) and representative examples of the evolution of the
interfaces are shown in figure 14(b), for each case.

It is of interest to identify key parameters controlling the entrainment regimes. The
entrainment regimes for Y = 0 and 0.1 and ρ = 1 and 0.7 are investigated. The results are
presented within the Ar–Bo domain, with the size of the symbol indicating the value of m.

The entrainment regimes for ρ = 1 and Y = 0 are shown in figure 15(a). For ρ = 1,
there is no driving force for entrained fluid to settle. In this case, plateau and ascending
regimes occur. At low Bo, the dominant regime is the plateau regime. The bubble assumes
a spherical shape, and the entrainment happens only in the form of displacement of the
interface. At moderate Bo and m = 0.1 and 1, the gravitational forces are stronger than
interfacial tension, and the bubble remains connected to the liquid–liquid interface and a
towed column forms. There are no significant forces leading to break off of bubble with
the column. Thus, we may observe the ascending regime in this case. This is the only case
where the ascending regime occurs.

The entrainment regimes for ρ = 1 and Y = 0.1 are shown in figure 15(b). In this case
plateau and descending–steady-state regimes occur. At low Bo, the dominant regime is the
plateau regime. The bubble assumes a spherical shape, and the entrainment is limited to
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Figure 14. (a) The variation of entrainment with bubble position for four distinct entrainment regimes.
(b) Representative examples of four entrainment regimes. For colours refer to the caption of figure 5.

formation of low towed columns above the interface. These transported viscoplastic fluids
remain in the upper layer. At moderate to large Bo, two behaviours are observed depending
on the value of m: descending–steady-state or plateau regimes. If any liquid becomes
trapped in the wake behind the rising bubble, the entrainment regime is identified as
descending–steady-state (m ≤ 1); otherwise, it is denoted as the plateau regime (m > 1).

The entrainment regimes for ρ = 0.7 and Y = 0 are shown in figure 16(a). In this case
descending and descending–steady-state regimes occur. Due to buoyancy, the entrained
liquid is driven to settle downward. When m ≤ 1, the settlement is faster. At low m, the
entrained liquid experiences less viscous shear stresses, also due to break up of the bubble
upon entering the upper layer and the formation of small bubbles, it takes longer to reach a
steady state Ve. We observe the descending regime herein. At large m, the entrained liquid
experiences larger shear stresses in the upper layer. Combined with the negative buoyancy
force Ve reduces but reaches a plateau, i.e. descending–steady-state.
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Figure 15. Classification of entrainment regimes over the Ar–Bo domain for (a) ρ = 1 and Y = 0 and
(b) ρ = 1 and Y = 0.1. The size of symbols represents the value of m at each point, i.e. m = 0.1, 1, 10 with
magenta, black and cyan colours, respectively. Regimes are represented by symbols as follows: � plateau;

 descending–steady-state; � descending; and � ascending.

The entrainment regimes for ρ = 0.7, Y = 0.1 are shown in figure 16(b). In
this case plateau and descending–steady-state regimes occur. The entrained liquid
descends and settles down due to negative buoyancy forces that it experiences. The
descending–steady-state regime occurs when Bingham liquid has been trapped within the
wake behind the rising bubble. The plateau regime occurs when there is no liquid trapped
in the wake of the bubble.

The plateau regime is of particular interest since the Bingham liquid that has been
pulled up into the lighter Newtonian liquid does not settle. This suggests that the buoyancy
stresses are not strong enough to surpass the yield stress of the material, hence it remains
in the upper layer.
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Figure 16. Classification of entrainment regimes over the Ar–Bo domain for (a) ρ = 0.7 and Y = 0 and
(b) ρ = 0.7 and Y = 0.1. The size of symbols represents the value of m at each point, i.e. m = 0.1, 1, 10 with
magenta, black and cyan colours, respectively. Regimes are represented by symbols as follows: � plateau;

 descending–steady-state; � descending; and � ascending.

6. Maximum volume of entrainment Ve

These four regimes above primarily emphasise how far up from the liquid–liquid interface
the bubbles can transport the lower layer fluid. In all regimes except for the ascending
regime, the maximum volume of entrained liquid has been transported cumulatively.
However, there is no direct link between the entrainment regimes and the maximum
volume of entrainment.

It is of interest to identify the set of flow parameters for which most liquid is transported.
We have estimated the entrainment volume by integrating over the domain above z = 0,
including entrained fluid. This value has been normalised with the volume of the rising
bubble. Variation of the volume of entrained fluid as it rises, for ρ = 1 and ρ = 0.7, is
shown in figures 17 and 18, respectively. When the upper layer and the lower layer have
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Figure 17. The volume of entrained fluid (Ve) against the position of the bubble, where the fluid layers have
similar densities (ρ = 1).
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Figure 18. The volume of entrained fluid (Ve) against the position of the bubble, where the upper fluid layer
has lower density than the lower fluid layer (ρ = 0.7).

the same density (ρ = 1), the maximum Ve occurs when both liquid layers are Newtonian.
When the lower layer is a Bingham fluid, Ve decreases significantly, such that a bubble
transports at most its own volume.
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In the Newtonian case, the amount of liquid that has been transported decreases mainly
by reducing m, i.e. the maximum entrainment observed occurs when m = 10 and it reduces
by reducing m. By increasing m from 0.1 to 10, the viscosity of the fluid in the upper layer
increases. The higher viscosity causes the column of entrained liquid to break off earlier.
However, a larger area of the liquid–liquid interface has been displaced from the horizontal
line (z = 0). In addition, for m < 1 and by increasing Ar and Bo, a wake forms behind the
rising bubble and some liquid becomes trapped there. The results show that the displaced
fluid at the interface constitutes the more significant part of the entrained volume. At each
m, intermediate Bo values result in more entrainment and increasing Ar decreases the
entrainment.

In the Bingham case, when m < 1 the bubble transports more fluid from the lower layer
in comparison with m > 1. The maximum value is quickly attained and generally remains
constant (plateau regime). At each m, decreasing Bo values and increasing Ar results in
higher Ve. For ρ = 0.7, similar to ρ = 1, the maximum Ve happens for the Newtonian
case with m = 10. Although the density difference causes an appreciable reduction in the
displacement of the interface, it is still comparable to other values of m. Lastly, Ve does
not diminish by having a Bingham fluid in the lower layer and a light Newtonian fluid in
the upper layer.

7. Summary

The dynamics of single bubbles rising from a viscoplastic fluid layer into a Newtonian
fluid layer, and the displacement of fluid from the lower layer to the upper layer, have
been studied computationally. The effect of density and (effective) viscosity differences
between the fluid layers on the entrainment process has been investigated, and the results
have been compared with the Newtonian counterpart. The bubble is initially positioned in
a viscoplastic fluid below a Newtonian fluid. As the bubble rises up it can undergo breakup
within the viscoplastic fluid layer, with a small portion of it remaining confined within this
layer. This phenomenon is found to occur for Ca � 5. Our results show that bubbles take
on a prolate shape when passing through the viscoplastic–Newtonian interface at Bo > 1,
and it is more pronounced at m � 1.

Bubbles transport material from the lower layer to the upper layer through various
mechanisms: displacing the liquid–liquid interface, forming a towed column of the lower
layer liquid and/or entrapping it within its wake. In cases where the lower layer is a
Bingham fluid, the yield stress has been found to be sufficiently high to prevent the
horizontal interface from being significantly displaced from its initial position as the
bubble crosses it. This reduces the entrained volume. In general, the maximum Ve is found
when the lower layer is Newtonian.

As the bubble ascends through the upper layer, the entrainment volume
undergoes changes over time, resulting in four distinct entrainment regimes: plateau,
descending–steady-state, descending and ascending regimes. On a larger scale, these
regimes may imply that rising bubbles could create mixing regions (of fluids from two
layers) at different depths. In the plateau regime, the mixing region is situated directly
above the liquid–liquid interface and has a thickness of around 5 radii. A small fraction of
the entrained liquid is likely to remain attached to the bubble and travels to the free surface.
In the ascending regimes, bubbles have the capacity to transport the entrained material
over greater distances and form thicker mixing layers above the liquid–liquid interface. In
the case of the Bingham lower layer, the practical implication on a large scale is that the
entrained fluid could either remain above the interface, forming localised mixing regions
in the plateau regime, or be transported higher and even reach the free surface.
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It is found that the density difference of 70 % is not enough to prevent the entrainment
of a viscoplastic fluid, Y = 0.1. Although the entrainment decreases in comparison with
ρ = 1, there is still a possibility for formation of localised mixing regions of upper and
lower fluids due to entrainment. Moreover, the entrained heavy viscoplastic fluid does not
recede over time, i.e. Ve for the case of ρ = 0.7 and Y = 0.1 does not change after the
bubble tail pinches off. It is because the denser viscoplastic fluid can support itself while
static.
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