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Abstract

Schmidt [‘Integer points on curves of genus 1°, Compos. Math. 81 (1992), 33-59] conjectured that
the number of integer points on the elliptic curve defined by the equation y> = x> + ax? + bx + ¢, with
a,b,c € Z, is Oc(max{l,l|al, |b|, |c|}¥) for any € > 0. On the other hand, Duke [‘Bounds for arithmetic
multiplicities’, Proc. Int. Congress Mathematicians, Vol. 11 (1998), 163—172] conjectured that the
number of algebraic number fields of given degree and discriminant D is O.(|D|¢). In this note, we
prove that Duke’s conjecture for quartic number fields implies Schmidt’s conjecture. We also give a short
unconditional proof of Schmidt’s conjecture for the elliptic curve y> = x* + ax.

2010 Mathematics subject classification: primary 11GO05; secondary 11D25, 11D45.

Keywords and phrases: elliptic curve, discriminant, quartic number field.

1. Introduction

Let f(X) = X> + aX? + bX + ¢ be a cubic polynomial with integer coefficients and
discriminant A # 0. We denote by E the elliptic curve defined by the equation y> = f(x)
and we set H(f) = max{l, |al, |b|, |c|}. In 1986, Evertse and Silverman [7] obtained an
explicit upper bound for the number of integer points on E. In 1992, as a consequence
of the result of Evertse and Silverman, Schmidt [14] proved that, for every € > 0, the
number of integer points on E is O (H(f)**€). Furthermore, he stated the following
conjecture.

Consecturek 1.1. For every € > 0, the number of integer points on E is O(H(f)¢).

In 2011, Draziotis [4] proved Schmidt’s conjecture for the case of the elliptic curves
y? = x> + ax, where a is a fourth-power-free integer. In 2006, Helfgott and Venkatesh
[9, Corollary 3.12] proved that, for every € > 0, the elliptic curve E has O(|A["*€)
integer points, where 7 = 0.20070.... Recently, Bhargava et al. [2] improved the
result of Helfgott and Venkatesh, reducing the exponent to 7 = 0.1117.... In the
case of Mordell’s equation y*> = x> + b, Helfgott and Venkatesh obtained the estimate
O(|blF*€), where p = 0.22377 .... Denote by P(b) the product of the prime divisors of
b. The author [13, Theorem 1] showed that the equation y> = x> + b has O(P(b)'/**€)

integer solutions which may be a better bound for certain b.
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On the other hand, in 1998, Duke [5] stated the following conjecture.

Consecture 1.2. The number of algebraic number fields of given degree n and
discriminant D is O.(|D|°).
The conjecture is still open for n > 3. The conjecture is valid for the cubic abelian

and the quartic abelian and dihedral extensions of Q (see Lemma 2.4).
In this note we prove the following result.

TueoreM 1.3. Conjecture 1.2 for n = 4 implies Conjecture 1.1.

For the proof of this theorem, we apply an idea that goes back to Chabauty [3].
As in [12], we use the multiplication-by-two map on the elliptic curve E to reduce
the problem to the same problem for the solutions of a family of unit equations in a
number field K of degree at most four with discriminant dividing a fixed integer. Then
Conjecture 1.2 implies the result. Since Conjecture 1.2 is valid for the quartic abelian
and dihedral extensions of Q, we are able to give a short proof of Draziotis’ result
without any hypothesis on a.

Tueorem 1.4. The elliptic curves of the form y* = x> + ax satisfy Conjecture 1.1.

2. Auxiliary results

Let K be a number field of degree d. We denote by O the ring of algebraic integers
of K, by O} the group of units of Ok and by Nk the norm map from K to Q. Two
elements x,y € Ok are called associates if there is u € O} such that x =uy. If I is a
nonzero integer, we denote by w(/) the number of distinct prime divisors p of /, and
we denote by ord, (/) the exponent of p in the prime factorisation of /.

Lemma 2.1 [1, Lemma 4]. Let I be a nonzero integer. The number of nonassociated
elements x € Ok such that Nx(x)|I is at most
4o l_[ (ord,(I) +d —1)---(ord,(I) + 1)
d-1)! ’

pi
where the product is taken over all the distinct primes dividing 1.

Lemma 2.2 [6, Theorem 1]. Let a,b € K\ {0}. The number of solutions (u,v) in
O X Oy of the unit equation au + bv = 1 is at most 3 X 73,

LemMa 2.3 [10, Theorem 3]. Let h(X) = X* + aX? + b be an irreducible polynomial of
QIX]. Then the Galois group of the splitting field of h(X) is either the Klein 4-group,
V, the cyclic group of order four, C4, or the dihedral group of order eight, Dy.

Lemva 2.4. The number of quartic abelian and dihedral extensions of Q of
discriminant D is O.(|D|°).

Proor. By [16, Théoréme 2], there are O(4“0PD) abelian extensions. From [8, page
355], w(|D|) = O(log |D|/ loglog|D|), so the number of abelian quartic extensions of Q
of discriminant D is O¢(|D|¢). Further, in the proof of [11, Theorem 3], it is noted that
there are at most O(|D|¢) dihedral quartic fields of discriminant D. O
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3. Proof of Theorem 1.3

It is sufficient to consider the case where E is an elliptic curve defined by the
equation y* = x* + ax + b. Let (x,y) € Z* be an integer point of E. Then there is
(s, 1) € E(Q) such that [2](s, ) = (x,y). On the other hand, [2](s, ) = (§(s, 1), ¥ (s, 1)),

where
352 + a\? 3s2+a
(s, 1) = 25 +( = ) W)=t +( - )(s — (s, 1)).
Putting n = (35> + a)/2t,
2
x=-2s+1m, y=- 2+a+n(3s—n2). 3.1
n

Eliminate s between these two equations. We deduce that 5 satisfies the equation
hU) = U* = 6xU? — 8yU — 3x* —4a = 0. (3.2)

Next, substituting the values of x and y given by (3.1) in (3.2) and replacing 1> by
2s + x, we see that s is a root of the equation

s* —4xs® = 2as® — daxs — 8bs — 4bx + a* = 0.

Thus
s* —2as® + a* - 8bs
S +as+b
Let K = Q(s) so that [K : Q] < 4. By [15, Ch. VIII, Sublemma 4.3],

dx =

(3s% + 4a)(s* = 2as* — 8bs + a*) — (3s> — 5as — 27s)(s> + as + b) = —A.
It follows that
Ni(s® +as+b) divides |A[KQ, (3.3)

Suppose that K = Q. Since the number of divisors of A is O.(A€), there are at most
O(A%) equations of the form s* + as + b = §, where 6 is a divisor of |A|. Every such
equation has at most three distinct solutions and so there are at most O(A€) values for
s and hence for x.

Suppose now that K # Q. Denote by p;, p2, p3 the roots of the polynomial
T3 +aT + b and put M = K(p1, p2, p3). Let Q denote a maximal set of pairwise
nonassociated elements of Oy with norm dividing |A["M@ . By (3.3), there are
ki, ky € Q and units of M, say u; and u,, such that

s—pi:kiu,- (lZ 1,2)
It follows that (uq, uy) is a solution of the unit equation

k k
L v,-—=2U,=1.
P2 — pP1 P2 — pP1
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The number of these equations is |]>. By Lemma 2.1, this number is bounded above
by
2420(8) n(log 10g|A|24)46w(A) = 0.(A9).
plA
By Lemma 2.2, each such equation yields O(1) solutions over M. Thus, for every K,
there are O.(|A|€) values for s, and hence also for x.

Denote the discriminant of K by Dx. Since s = (5° — x)/2, we see that s € Q() and
K € Q(n). The discriminant of A(U) is equal to 2'2A, so Dg divides 2'?A.

Suppose that [K : Q] = 2. The number of quadratic fields with discriminant dividing
2!2A is bounded by the number of integer divisors of 2!?A which is O.(|A[€). Thus, we
have O.(A€) choices for K.

Finally, let [K : Q] = 4. Then K = Q(n7) = Q(s). Conjecture 1.2 for n = 4 implies
that there are at most O(JA|€) choices for K. Since A = O(H(f)*), the result follows.

Remark 3.1. Suppose that a = 0. From [17], we deduce that K has signature (2, 1).

4. Proof of Theorem 1.4

Suppose that E is the elliptic curve defined by the equation y*> = x* + ax. From the
general case considered in Section 3, for every number field K, there are O.(A€) values
for s and hence for x. We shall give an upper bound for the number of the fields K. It
suffices to consider the case [K : Q] = 4. Then f(7T) is irreducible. Now

O=%=(s+%)2—4x(s+%)—4a,

and hence
a
s+ —=2(x+ Va2 + a).
S
It follows that

s =2(x+ Va2 +a)s +a,

s=xx Vx2+a+ Y2x2 £2x VX2 +a.

Therefore K = Q(+/2x% +2x Vx2 + a) and x* + a is not a square. The irreducible

polynomial of 4/2x2 + 2x Vx2 + a is

WT) =T* - 4X°T? - 44%a.

and hence

By Lemma 2.3, the Galois group of the splitting field of #(T) over Q is one of V, C4
and D4. Thus, Lemma 2.4 implies that there are O.(a®) choices for K. Therefore the
number of integer solutions of y*> = x> + ax is O(a®).
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