A NOTE ON SCHMIDT'S CONJECTURE

DIMITRIOS POULAKIS

(Received 19 December 2016; accepted 24 March 2017; first published online 9 June 2017)

Abstract

Schmidt ['Integer points on curves of genus 1', Compos. Math. 81 (1992), 33-59] conjectured that the number of integer points on the elliptic curve defined by the equation $y^{2}=x^{3}+a x^{2}+b x+c$, with $a, b, c \in \mathbb{Z}$, is $O_{\epsilon}\left(\max \{1,|a|,|b|,|c|\}^{\epsilon}\right)$ for any $\epsilon>0$. On the other hand, Duke ['Bounds for arithmetic multiplicities', Proc. Int. Congress Mathematicians, Vol. II (1998), 163-172] conjectured that the number of algebraic number fields of given degree and discriminant D is $O_{\epsilon}\left(|D|^{\epsilon}\right)$. In this note, we prove that Duke's conjecture for quartic number fields implies Schmidt's conjecture. We also give a short unconditional proof of Schmidt's conjecture for the elliptic curve $y^{2}=x^{3}+a x$.

2010 Mathematics subject classification: primary 11G05; secondary 11D25, 11D45.
Keywords and phrases: elliptic curve, discriminant, quartic number field.

1. Introduction

Let $f(X)=X^{3}+a X^{2}+b X+c$ be a cubic polynomial with integer coefficients and discriminant $\Delta \neq 0$. We denote by E the elliptic curve defined by the equation $y^{2}=f(x)$ and we set $H(f)=\max \{1,|a|,|b|,|c|\}$. In 1986, Evertse and Silverman [7] obtained an explicit upper bound for the number of integer points on E. In 1992, as a consequence of the result of Evertse and Silverman, Schmidt [14] proved that, for every $\epsilon>0$, the number of integer points on E is $O_{\epsilon}\left(H(f)^{2+\epsilon}\right)$. Furthermore, he stated the following conjecture.

Conjecture 1.1. For every $\epsilon>0$, the number of integer points on E is $O_{\epsilon}\left(H(f)^{\epsilon}\right)$.
In 2011, Draziotis [4] proved Schmidt's conjecture for the case of the elliptic curves $y^{2}=x^{3}+a x$, where a is a fourth-power-free integer. In 2006, Helfgott and Venkatesh [9, Corollary 3.12] proved that, for every $\epsilon>0$, the elliptic curve E has $O_{\epsilon}\left(|\Delta|^{\tau+\epsilon}\right)$ integer points, where $\tau=0.20070 \ldots$. Recently, Bhargava et al. [2] improved the result of Helfgott and Venkatesh, reducing the exponent to $\tau=0.1117 \ldots$. In the case of Mordell's equation $y^{2}=x^{3}+b$, Helfgott and Venkatesh obtained the estimate $O\left(|b|^{\rho+\epsilon}\right)$, where $\rho=0.22377 \ldots$. Denote by $P(b)$ the product of the prime divisors of b. The author [13, Theorem 1] showed that the equation $y^{2}=x^{3}+b$ has $O\left(P(b)^{1 / 2+\epsilon}\right)$ integer solutions which may be a better bound for certain b.

[^0]On the other hand, in 1998, Duke [5] stated the following conjecture.
Conjecture 1.2. The number of algebraic number fields of given degree n and discriminant D is $O_{\epsilon}\left(|D|^{\epsilon}\right)$.

The conjecture is still open for $n \geq 3$. The conjecture is valid for the cubic abelian and the quartic abelian and dihedral extensions of \mathbb{Q} (see Lemma 2.4).

In this note we prove the following result.

Theorem 1.3. Conjecture 1.2 for $n=4$ implies Conjecture 1.1.

For the proof of this theorem, we apply an idea that goes back to Chabauty [3]. As in [12], we use the multiplication-by-two map on the elliptic curve E to reduce the problem to the same problem for the solutions of a family of unit equations in a number field K of degree at most four with discriminant dividing a fixed integer. Then Conjecture 1.2 implies the result. Since Conjecture 1.2 is valid for the quartic abelian and dihedral extensions of \mathbb{Q}, we are able to give a short proof of Draziotis' result without any hypothesis on a.

Theorem 1.4. The elliptic curves of the form $y^{2}=x^{3}+$ ax satisfy Conjecture 1.1.

2. Auxiliary results

Let K be a number field of degree d. We denote by O_{K} the ring of algebraic integers of K, by O_{K}^{*} the group of units of O_{K} and by N_{K} the norm map from K to \mathbb{Q}. Two elements $x, y \in O_{K}$ are called associates if there is $u \in O_{K}^{*}$ such that $x=u y$. If I is a nonzero integer, we denote by $\omega(I)$ the number of distinct prime divisors p of I, and we denote by $\operatorname{ord}_{p}(I)$ the exponent of p in the prime factorisation of I.

Lemma 2.1 [1, Lemma 4]. Let I be a nonzero integer. The number of nonassociated elements $x \in O_{K}$ such that $N_{K}(x) \mid I$ is at most

$$
d^{\omega(I)} \prod_{p \mid I} \frac{\left(\operatorname{ord}_{p}(I)+d-1\right) \cdots\left(\operatorname{ord}_{\mathrm{p}}(I)+1\right)}{(d-1)!},
$$

where the product is taken over all the distinct primes dividing I.
Lemma 2.2 [6, Theorem 1]. Let $a, b \in K \backslash\{0\}$. The number of solutions (u, v) in $O_{K}^{*} \times O_{K}^{*}$ of the unit equation $a u+b v=1$ is at most $3 \times 7^{3 d}$.

Lemma 2.3 [10, Theorem 3]. Let $h(X)=X^{4}+a X^{2}+b$ be an irreducible polynomial of $\mathbb{Q}[X]$. Then the Galois group of the splitting field of $h(X)$ is either the Klein 4-group, V, the cyclic group of order four, C_{4}, or the dihedral group of order eight, D_{4}.

Lemma 2.4. The number of quartic abelian and dihedral extensions of \mathbb{Q} of discriminant D is $O_{\epsilon}\left(|D|^{\epsilon}\right)$.
Proof. By [16, Théorème 2], there are $O\left(4^{\omega(|D|)}\right)$ abelian extensions. From [8, page 355], $\omega(|D|)=O(\log |D| / \log \log |D|)$, so the number of abelian quartic extensions of \mathbb{Q} of discriminant D is $O_{\epsilon}\left(|D|^{\epsilon}\right)$. Further, in the proof of [11, Theorem 3], it is noted that there are at most $O_{\epsilon}\left(|D|^{\epsilon}\right)$ dihedral quartic fields of discriminant D.

3. Proof of Theorem 1.3

It is sufficient to consider the case where E is an elliptic curve defined by the equation $y^{2}=x^{3}+a x+b$. Let $(x, y) \in \mathbb{Z}^{2}$ be an integer point of E. Then there is $(s, t) \in E(\overline{\mathbb{Q}})$ such that $[2](s, t)=(x, y)$. On the other hand, $[2](s, t)=(\phi(s, t), \psi(s, t))$, where

$$
\phi(s, t)=-2 s+\left(\frac{3 s^{2}+a}{2 t}\right)^{2}, \quad \psi(s, t)=-t+\left(\frac{3 s^{2}+a}{2 t}\right)(s-\phi(s, t)) .
$$

Putting $\eta=\left(3 s^{2}+a\right) / 2 t$,

$$
\begin{equation*}
x=-2 s+\eta^{2}, \quad y=-\frac{3 s^{2}+a}{2 \eta}+\eta\left(3 s-\eta^{2}\right) . \tag{3.1}
\end{equation*}
$$

Eliminate s between these two equations. We deduce that η satisfies the equation

$$
\begin{equation*}
h(U)=U^{4}-6 x U^{2}-8 y U-3 x^{2}-4 a=0 . \tag{3.2}
\end{equation*}
$$

Next, substituting the values of x and y given by (3.1) in (3.2) and replacing η^{2} by $2 s+x$, we see that s is a root of the equation

$$
s^{4}-4 x s^{3}-2 a s^{2}-4 a x s-8 b s-4 b x+a^{2}=0
$$

Thus

$$
4 x=\frac{s^{4}-2 a s^{2}+a^{2}-8 b s}{s^{3}+a s+b} .
$$

Let $K=\mathbb{Q}(s)$ so that $[K: \mathbb{Q}] \leq 4$. By [15, Ch. VIII, Sublemma 4.3],

$$
\left(3 s^{2}+4 a\right)\left(s^{4}-2 a s^{2}-8 b s+a^{2}\right)-\left(3 s^{3}-5 a s-27 s\right)\left(s^{3}+a s+b\right)=-\Delta .
$$

It follows that

$$
\begin{equation*}
N_{K}\left(s^{3}+a s+b\right) \quad \text { divides }|\Delta|^{[K: \mathbb{Q}]} \tag{3.3}
\end{equation*}
$$

Suppose that $K=\mathbb{Q}$. Since the number of divisors of Δ is $O_{\epsilon}\left(\Delta^{\epsilon}\right)$, there are at most $O_{\epsilon}\left(\Delta^{\epsilon}\right)$ equations of the form $s^{3}+a s+b=\delta$, where δ is a divisor of $|\Delta|$. Every such equation has at most three distinct solutions and so there are at most $O_{\epsilon}\left(\Delta^{\epsilon}\right)$ values for s and hence for x.

Suppose now that $K \neq \mathbb{Q}$. Denote by $\rho_{1}, \rho_{2}, \rho_{3}$ the roots of the polynomial $T^{3}+a T+b$ and put $M=K\left(\rho_{1}, \rho_{2}, \rho_{3}\right)$. Let Ω denote a maximal set of pairwise nonassociated elements of O_{M} with norm dividing $|\Delta|^{[M: Q]}$. By (3.3), there are $k_{1}, k_{2} \in \Omega$ and units of M, say u_{1} and u_{2}, such that

$$
s-\rho_{i}=k_{i} u_{i} \quad(i=1,2) .
$$

It follows that $\left(u_{1}, u_{2}\right)$ is a solution of the unit equation

$$
\frac{k_{1}}{\rho_{2}-\rho_{1}} U_{1}-\frac{k_{2}}{\rho_{2}-\rho_{1}} U_{2}=1
$$

The number of these equations is $|\Omega|^{2}$. By Lemma 2.1, this number is bounded above by

$$
24^{2 \omega(\Delta)} \prod_{p \mid \Delta}\left(\log \log |\Delta|^{24}\right)^{46 \omega(\Delta)}=O_{\epsilon}\left(\Delta^{\epsilon}\right) .
$$

By Lemma 2.2, each such equation yields $O(1)$ solutions over M. Thus, for every K, there are $O_{\epsilon}\left(|\Delta|^{\epsilon}\right)$ values for s, and hence also for x.

Denote the discriminant of K by D_{K}. Since $s=\left(\eta^{2}-x\right) / 2$, we see that $s \in \mathbb{Q}(\eta)$ and $K \subseteq \mathbb{Q}(\eta)$. The discriminant of $h(U)$ is equal to $2^{12} \Delta$, so D_{K} divides $2^{12} \Delta$.

Suppose that $[K: \mathbb{Q}]=2$. The number of quadratic fields with discriminant dividing $2^{12} \Delta$ is bounded by the number of integer divisors of $2^{12} \Delta$ which is $O_{\epsilon}\left(|\Delta|^{\epsilon}\right)$. Thus, we have $O_{\epsilon}\left(\Delta^{\epsilon}\right)$ choices for K.

Finally, let $[K: \mathbb{Q}]=4$. Then $K=\mathbb{Q}(\eta)=\mathbb{Q}(s)$. Conjecture 1.2 for $n=4$ implies that there are at most $O_{\epsilon}\left(|\Delta|^{\epsilon}\right)$ choices for K. Since $\Delta=O\left(H(f)^{4}\right)$, the result follows.

Remark 3.1. Suppose that $a=0$. From [17], we deduce that K has signature (2,1).

4. Proof of Theorem 1.4

Suppose that E is the elliptic curve defined by the equation $y^{2}=x^{3}+a x$. From the general case considered in Section 3, for every number field K, there are $O_{\epsilon}\left(\Delta^{\epsilon}\right)$ values for s and hence for x. We shall give an upper bound for the number of the fields K. It suffices to consider the case $[K: \mathbb{Q}]=4$. Then $f(T)$ is irreducible. Now

$$
0=\frac{f(s)}{s^{2}}=\left(s+\frac{a}{s}\right)^{2}-4 x\left(s+\frac{a}{s}\right)-4 a
$$

and hence

$$
s+\frac{a}{s}=2\left(x \pm \sqrt{x^{2}+a}\right)
$$

It follows that

$$
s^{2}-2\left(x \pm \sqrt{x^{2}+a}\right) s+a
$$

and hence

$$
s=x \pm \sqrt{x^{2}+a} \pm \sqrt{2 x^{2} \pm 2 x \sqrt{x^{2}+a}}
$$

Therefore $K=\mathbb{Q}\left(\sqrt{2 x^{2} \pm 2 x \sqrt{x^{2}+a}}\right)$ and $x^{2}+a$ is not a square. The irreducible polynomial of $\sqrt{2 x^{2} \pm 2 x \sqrt{x^{2}+a}}$ is

$$
h(T)=T^{4}-4 x^{2} T^{2}-4 x^{2} a
$$

By Lemma 2.3, the Galois group of the splitting field of $h(T)$ over \mathbb{Q} is one of V, C_{4} and D_{4}. Thus, Lemma 2.4 implies that there are $O_{\epsilon}\left(a^{\epsilon}\right)$ choices for K. Therefore the number of integer solutions of $y^{2}=x^{3}+a x$ is $O_{\epsilon}\left(a^{\epsilon}\right)$.

References

[1] A. Berczes, 'On the number of solutions of norm form equations', Period. Math. Hungar. 43(1-2) (2001), 165-176.
[2] M. Bhargava, A. Shankar, T. Taniguchi, F. Thorne, J. Tsimerman and Y Zhao, 'Bounds on 2torsion in class groups of number fields and integral points on elliptic curves’, Preprint 2017, arXiv:1701.02458v1.
[3] C. Chabauty, 'Démonstration de quelques lemmes de rehaussement', C. R. Acad. Sci. Paris 217 (1943), 413-415.
[4] K. Draziotis, 'On the number of integer points on the elliptic curve $y^{2}=x^{3}+A x$ ', Int. J. Number Theory 7(3) (2011), 611-621.
[5] W. Duke, 'Bounds for arithmetic multiplicities', in: Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), 163-172 (electronic supplement).
[6] J.-H. Evertse, 'On equations in S-units and the Thue-Mahler equation', Invent. Math. 75 (1984), 561-584.
[7] J.-H. Evertse and J.-H. Silverman, 'Uniform bounds for the number of solutions to $Y^{n}=f(X)$ ', Math. Proc. Cambridge Philos. Soc. 100 (1986), 237-248.
[8] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th edn (Oxford University Press, Oxford, 1979).
[9] H. A. Helfgott and A. Venkatesh, 'Integral points on elliptic curves and 3-torsion in class groups', J. Amer. Math. Soc. 19(3) (2006), 527-550.
[10] L.-C. Kappe and B. Warren, 'An elementary test for the Galois group of a quartic polynomial', Amer. Math. Monthly 96(2) (1989), 133-137.
[11] J. Klüner, 'The number of S_{4}-fields with given discriminant', Acta Arith. 122(2) (2006), 185-194.
[12] D. Poulakis, 'Integer points on algebraic curves with exceptional units', J. Aust. Math. Soc. 63 (1997), 145-164.
[13] D. Poulakis, 'The number of solutions of the Mordell equation', Acta Arith. 88(2) (1999), 173-179; Corrigendum, Acta Arith. 92(4) (2000), 387-388.
[14] W. Schmidt, 'Integer points on curves of genus 1', Compos. Math. 81(1) (1992), 33-59.
[15] J. H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, 106 (Springer, New York, 1986).
[16] A. Travesa, 'Nombre d'extensions abéliennes sur \mathbb{Q} ', Sémin. Théor. Nombres Bordeaux 2 (1990), 413-423.
[17] L. Yang, X. R Hou and Z. B. Zeng, 'A complete discrimination system for polynomials', Sci. China E 39 (1996), 628-646.

DIMITRIOS POULAKIS, Department of Mathematics,
Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
e-mail: poulakis@math.auth.gr

[^0]: (C) 2017 Australian Mathematical Publishing Association Inc. 0004-9727/2017 \$16.00

