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Abstract

Schmidt [‘Integer points on curves of genus 1’, Compos. Math. 81 (1992), 33–59] conjectured that
the number of integer points on the elliptic curve defined by the equation y2 = x3 + ax2 + bx + c, with
a, b, c ∈ Z, is Oε (max{1, |a|, |b|, |c|}ε ) for any ε > 0. On the other hand, Duke [‘Bounds for arithmetic
multiplicities’, Proc. Int. Congress Mathematicians, Vol. II (1998), 163–172] conjectured that the
number of algebraic number fields of given degree and discriminant D is Oε (|D|ε ). In this note, we
prove that Duke’s conjecture for quartic number fields implies Schmidt’s conjecture. We also give a short
unconditional proof of Schmidt’s conjecture for the elliptic curve y2 = x3 + ax.
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1. Introduction

Let f (X) = X3 + aX2 + bX + c be a cubic polynomial with integer coefficients and
discriminant ∆ , 0. We denote by E the elliptic curve defined by the equation y2 = f (x)
and we set H( f ) = max{1, |a|, |b|, |c|}. In 1986, Evertse and Silverman [7] obtained an
explicit upper bound for the number of integer points on E. In 1992, as a consequence
of the result of Evertse and Silverman, Schmidt [14] proved that, for every ε > 0, the
number of integer points on E is Oε(H( f )2+ε). Furthermore, he stated the following
conjecture.

Conjecture 1.1. For every ε > 0, the number of integer points on E is Oε(H( f )ε).

In 2011, Draziotis [4] proved Schmidt’s conjecture for the case of the elliptic curves
y2 = x3 + ax, where a is a fourth-power-free integer. In 2006, Helfgott and Venkatesh
[9, Corollary 3.12] proved that, for every ε > 0, the elliptic curve E has Oε(|∆|τ+ε)
integer points, where τ = 0.20070 . . . . Recently, Bhargava et al. [2] improved the
result of Helfgott and Venkatesh, reducing the exponent to τ = 0.1117 . . . . In the
case of Mordell’s equation y2 = x3 + b, Helfgott and Venkatesh obtained the estimate
O(|b|ρ+ε), where ρ = 0.22377 . . . . Denote by P(b) the product of the prime divisors of
b. The author [13, Theorem 1] showed that the equation y2 = x3 + b has O(P(b)1/2+ε)
integer solutions which may be a better bound for certain b.
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On the other hand, in 1998, Duke [5] stated the following conjecture.

Conjecture 1.2. The number of algebraic number fields of given degree n and
discriminant D is Oε(|D|ε).

The conjecture is still open for n ≥ 3. The conjecture is valid for the cubic abelian
and the quartic abelian and dihedral extensions of Q (see Lemma 2.4).

In this note we prove the following result.

Theorem 1.3. Conjecture 1.2 for n = 4 implies Conjecture 1.1.

For the proof of this theorem, we apply an idea that goes back to Chabauty [3].
As in [12], we use the multiplication-by-two map on the elliptic curve E to reduce
the problem to the same problem for the solutions of a family of unit equations in a
number field K of degree at most four with discriminant dividing a fixed integer. Then
Conjecture 1.2 implies the result. Since Conjecture 1.2 is valid for the quartic abelian
and dihedral extensions of Q, we are able to give a short proof of Draziotis’ result
without any hypothesis on a.

Theorem 1.4. The elliptic curves of the form y2 = x3 + ax satisfy Conjecture 1.1.

2. Auxiliary results
Let K be a number field of degree d. We denote by OK the ring of algebraic integers

of K, by O∗K the group of units of OK and by NK the norm map from K to Q. Two
elements x, y ∈ OK are called associates if there is u ∈ O∗K such that x = uy. If I is a
nonzero integer, we denote by ω(I) the number of distinct prime divisors p of I, and
we denote by ordp(I) the exponent of p in the prime factorisation of I.

Lemma 2.1 [1, Lemma 4]. Let I be a nonzero integer. The number of nonassociated
elements x ∈ OK such that NK(x)|I is at most

dω(I)
∏
p|I

(ordp(I) + d − 1) · · · (ordp(I) + 1)
(d − 1)!

,

where the product is taken over all the distinct primes dividing I.

Lemma 2.2 [6, Theorem 1]. Let a, b ∈ K \ {0}. The number of solutions (u, v) in
O∗K × O∗K of the unit equation au + bv = 1 is at most 3 × 73d.

Lemma 2.3 [10, Theorem 3]. Let h(X) = X4 + aX2 + b be an irreducible polynomial of
Q[X]. Then the Galois group of the splitting field of h(X) is either the Klein 4-group,
V, the cyclic group of order four, C4, or the dihedral group of order eight, D4.

Lemma 2.4. The number of quartic abelian and dihedral extensions of Q of
discriminant D is Oε(|D|ε).

Proof. By [16, Théorème 2], there are O(4ω(|D|)) abelian extensions. From [8, page
355], ω(|D|) = O(log |D|/ log log |D|), so the number of abelian quartic extensions of Q
of discriminant D is Oε(|D|ε). Further, in the proof of [11, Theorem 3], it is noted that
there are at most Oε(|D|ε) dihedral quartic fields of discriminant D. �
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3. Proof of Theorem 1.3

It is sufficient to consider the case where E is an elliptic curve defined by the
equation y2 = x3 + ax + b. Let (x, y) ∈ Z2 be an integer point of E. Then there is
(s, t) ∈ E(Q̄) such that [2](s, t) = (x, y). On the other hand, [2](s, t) = (φ(s, t), ψ(s, t)),
where

φ(s, t) = −2s +

(3s2 + a
2t

)2
, ψ(s, t) = −t +

(3s2 + a
2t

)
(s − φ(s, t)).

Putting η = (3s2 + a)/2t,

x = −2s + η2, y = −
3s2 + a

2η
+ η(3s − η2). (3.1)

Eliminate s between these two equations. We deduce that η satisfies the equation

h(U) = U4 − 6xU2 − 8yU − 3x2 − 4a = 0. (3.2)

Next, substituting the values of x and y given by (3.1) in (3.2) and replacing η2 by
2s + x, we see that s is a root of the equation

s4 − 4xs3 − 2as2 − 4axs − 8bs − 4bx + a2 = 0.

Thus

4x =
s4 − 2as2 + a2 − 8bs

s3 + as + b
.

Let K = Q(s) so that [K : Q] ≤ 4. By [15, Ch. VIII, Sublemma 4.3],

(3s2 + 4a)(s4 − 2as2 − 8bs + a2) − (3s3 − 5as − 27s)(s3 + as + b) = −∆.

It follows that

NK(s3 + as + b) divides |∆|[K:Q]. (3.3)

Suppose that K = Q. Since the number of divisors of ∆ is Oε(∆ε), there are at most
Oε(∆ε) equations of the form s3 + as + b = δ, where δ is a divisor of |∆|. Every such
equation has at most three distinct solutions and so there are at most Oε(∆ε) values for
s and hence for x.

Suppose now that K , Q. Denote by ρ1, ρ2, ρ3 the roots of the polynomial
T 3 + aT + b and put M = K(ρ1, ρ2, ρ3). Let Ω denote a maximal set of pairwise
nonassociated elements of OM with norm dividing |∆|[M:Q]. By (3.3), there are
k1, k2 ∈ Ω and units of M, say u1 and u2, such that

s − ρi = kiui (i = 1, 2).

It follows that (u1, u2) is a solution of the unit equation

k1

ρ2 − ρ1
U1 −

k2

ρ2 − ρ1
U2 = 1.
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The number of these equations is |Ω|2. By Lemma 2.1, this number is bounded above
by

242ω(∆)
∏
p|∆

(log log|∆|24)46ω(∆) = Oε(∆ε).

By Lemma 2.2, each such equation yields O(1) solutions over M. Thus, for every K,
there are Oε(|∆|ε) values for s, and hence also for x.

Denote the discriminant of K by DK . Since s = (η2 − x)/2, we see that s ∈ Q(η) and
K ⊆ Q(η). The discriminant of h(U) is equal to 212∆, so DK divides 212∆.

Suppose that [K : Q] = 2. The number of quadratic fields with discriminant dividing
212∆ is bounded by the number of integer divisors of 212∆ which is Oε(|∆|ε). Thus, we
have Oε(∆ε) choices for K.

Finally, let [K : Q] = 4. Then K = Q(η) = Q(s). Conjecture 1.2 for n = 4 implies
that there are at most Oε(|∆|ε) choices for K. Since ∆ = O(H( f )4), the result follows.

Remark 3.1. Suppose that a = 0. From [17], we deduce that K has signature (2, 1).

4. Proof of Theorem 1.4

Suppose that E is the elliptic curve defined by the equation y2 = x3 + ax. From the
general case considered in Section 3, for every number field K, there are Oε(∆ε) values
for s and hence for x. We shall give an upper bound for the number of the fields K. It
suffices to consider the case [K : Q] = 4. Then f (T ) is irreducible. Now

0 =
f (s)
s2 =

(
s +

a
s

)2
− 4x

(
s +

a
s

)
− 4a,

and hence
s +

a
s

= 2(x ±
√

x2 + a).

It follows that
s2 − 2(x ±

√
x2 + a)s + a,

and hence

s = x ±
√

x2 + a ±
√

2x2 ± 2x
√

x2 + a.

Therefore K = Q(
√

2x2 ± 2x
√

x2 + a) and x2 + a is not a square. The irreducible

polynomial of
√

2x2 ± 2x
√

x2 + a is

h(T ) = T 4 − 4x2T 2 − 4x2a.

By Lemma 2.3, the Galois group of the splitting field of h(T ) over Q is one of V , C4

and D4. Thus, Lemma 2.4 implies that there are Oε(aε) choices for K. Therefore the
number of integer solutions of y2 = x3 + ax is Oε(aε).
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