
28
Excitation of nucleon resonances

One of the primary goals of electron scattering experiments is to
understand the internal structure of the nucleon, both its static and
dynamic properties. Ultimately, electron scattering data will provide
benchmarks against which the theoretical predictions of QCD can be
compared.

Elastic scattering from the nucleon has been discussed in chapter 22.
There are no discrete bound states of the nucleon as there are in nuclei,
and thus excited states of the nucleon show up as resonances in particle
production processes. This is analogous to the situation with giant res-
onances in nuclei which lie above particle emission threshold. Nucleon
resonances are characterized by strong interaction widths, a typical value
for which is given by the time it takes a light signal to travel a pion
Compton wavelength, or Γ ≈ h̄c/(h̄/mπc) ≈ mπc

2 ≈ 135 MeV.

The first inelastic process on the nucleon occurs with the production of
the lightest hadron, the pion. The coincidence cross section for the reaction
N(e, e′ π)N follows immediately from the general analysis in chapter 13.
The angular distribution in the C-M system for arbitrary nucleon helicities
is given by Eq. (13.68). If the nucleon target is unpolarized and its final
polarization unobserved, the angular distribution reduces to that given in
Eqs. (13.71) and (F.9). The analysis of pion electroproduction starting from
the covariant, gauge invariant S-matrix and reducing it to the contribution
of multipoles leading to states of definite Jπ in the final π–N system is
presented in detail in appendix H. Such a decomposition forms the basis
for current phenomenological analyses of coincident electron scattering
experiments aimed at extracting properties of nucleon resonances. Exist-
ing pion electroproduction data is presented in [Br82, Br83, Fo83] and
discussed further in [Bu94]. The reader is referred to these references for
previous applications.

To get some idea of the quality of the data that is now becoming
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Fig. 28.1. Preliminary angular distribution data dσ/dΩq in μb/sr for process
p(e, e′ π+)n on the first nucleon resonance from Hall B collaboration at TJNAF
[Eg01]. Here k2 = 0.40 (GeV/c)2,W = 1.230 GeV/c2,Δk2 = 0.100 (GeV/c)2, and
ΔW = 0.020 GeV/c2. The plots are vs. φ� = π/2 − φq for various θq . The author
is grateful to H. Egiyan for preparing this figure.

available on the coincident electropion production process, we show in
Fig. 28.1 some of the very first results for the process p(e, e′ π+)n from the
Hall B collaboration at TJNAF [Eg01].

QCD-inspired models of the internal structure of the nucleon give rise
to a rich structure of dynamic excitations. One now has a quark-based
picture of the underlying structure similar to that of the periodic table
of the elements in atomic physics, or the shell model in nuclear physics
[Bh88, Wa95]. The M.I.T. bag models confinement and asymptotic freedom
with three massless quarks moving in a vacuum bubble [Ch74, Ch74a,
De75, Ja76]. The constituent quark model has three non-relativistic quarks
with masses mq ≈ M/3 moving in a confining potential, for example, a
harmonic oscillator [Is77, Is80, Is81, Is85]. Electron scattering coincidence
studies of reactions proceeding through these resonances N(e, e′)N� →
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Fig. 28.2. (left) Existing world’s data on Re (E∗
1+M1+)/|M1+|2 at the Δ(1232) as

of CEBAF PR89-037 [Bu89, Wa93]. Here k ≡ Q.

Fig. 28.3. (right) Projected range and error bars on Re (E∗
1+M1+)/|M1+|2 at the

Δ(1232) in CEBAF PR89-037 [Bu89, Wa93]. Here k ≡ Q.

N(e, e′ X)N promise to teach us much about the internal dynamics of the
nucleon [Bu94].1

The quark model prediction for electron excitation of the first excited
state of the nucleon, the Δ(1232), has been examined in chapter 24. It is
clear from Fig. 12.8 that this first excited state is seen experimentally as a
nice, isolated resonance.

The electric quadrupole transition amplitude E1+ to the Δ(1232) with

(Jπ, T ) = (3
2

+
, 3

2 ) is particularly interesting. Quark bag models of the nu-
cleon, with a one-gluon exchange interaction, indicate that the bag may
deform — similar to the deformation of the deuteron arising from the
tensor force. As with even–even deformed nuclei, the nucleon can have no
quadrupole moment in its ground state, so the most direct evidence for
such an intrinsic deformation would show up in this transition amplitude.
In the quark model, the transition amplitude to the P33(1232) is predom-
inantly a spin-flip magnetic dipole M1+. The E1+ is, in fact, observed to
be small, and it is currently only very poorly known. This is illustrated in
Fig. 28.2, which shows the existing world’s data on Re (E∗

1+M1+)/|M1+|2
at the Δ(1232) as of the proposal CEBAF PR 89-037 [Bu89]. Figure 28.3
shows the projected range and error bars in that proposal [Bu89]. Note, in
particular, the expansion of the vertical scale in this second figure. At TJ-
NAF (CEBAF), the internal dynamics of the nucleon will be studied with
unrivaled precision. These measurements will provide deep insight into the
dynamical consequences of QCD. The accurate new data will continue to

1 See this review article [Bu94] for an extensive list of further references on electron

excitation of the nucleon and the quark model.
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Fig. 28.4. Preliminary results obtained for E1+ by the Hall B collaboration at
TJNAF from the reaction p(e, e′π0)p [HB01]. The author is grateful to V. Burkert
and C. Smith for the preparation of this figure.

provide benchmark tests for theoretical quark-model and QCD descriptions
of the nucleon — the basic building block of matter.

Figure 28.4 shows actual data on this ratio obtained from an analysis
of the process p(e, e′ π0)p by the Hall B collaboration at TJNAF [HB01].
Note the quality of these results.

It is evident from Fig. 12.8 and the Particle Data Book that the higher
nucleon resonances are many, broad, and overlapping. It will be a challenge
to isolate the individual resonance contributions, particularly when there
is a substantial background contribution as is evident from Fig. 12.8. A
second challenge is to have a completely relativistic description of the
quark bound-state structure of the nucleon; this is essential when one
goes to momentum transfers k2 � m2

q .
2

As first shown in a non-relativistic static model by Chew and Low
[Ch56a], and subsequently generalized to the relativistic case [Ch57, Fr60],
the Δ(1232) can be alternatively obtained as a dynamic resonance in
a pion–nucleon field theory (QHD). Here, instead of starting at short

2 Relativistic corrections to the constituent quark model are examined in [Ca86, Ca87].
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Fig. 28.5. Electroexcitation of the first nucleon resonance.

Fig. 28.6. Generalized Feynman amplitude used as the excitation mechanism in
the |πN〉 channel for the Δ(1232) [Pr69, Wa72]. It is assumed that Fπ ≈ FV

1 . [For
the last graph, which plays a minor role for the Δ(1232), gωπγ is obtained from
ω → π + γ, and gωπγgωNN from an overall fit to the inelastic resonance spectra;
it is assumed that Fωπγ ≈ FV

2 /FV
2 (0).]

distances with an asymptotically free quark model, one starts at large
distances with a pion–nucleon description of the structure of the nucleon.
Electron excitation of this resonance can then be viewed as an excitation
process into the proper π–N channel followed by a dynamic final-state
enhancement that builds up the resonance, as illustrated in Fig. 28.5.

As a model for N(e, e′)Δ consider the following [Wa68, Pr69, Wa72]

a(W, k2) =
alhs(W, k2)

D(W )

D(W ) = exp

{
− 1

π

∫ ∞

W0

δ(W ′) dW ′

W ′ − W − iε

}
(28.1)

Here alhs(W, k2) is the appropriate multipole projection of a set of Feyn-
man graphs thought to play an important role in the excitation of the
resonance and D(W ) is a final-state enhancement factor. The sum of
excitation graphs is treated as a generalized Feynman amplitude in that
renormalized coupling constants and electromagnetic form factors F(k2)
are used at the vertices; the justification for this procedure is that this am-
plitude has the correct left-hand singularity structure arising from the pole
terms in a dispersion treatment of this process [Fu58]. The graphs used
in the present calculation [Wa68, Pr69, Wa72] are shown in Fig. 28.6. The
multipole projections are obtained through the analysis in appendix H.
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The excitation amplitude arising from the first three graphs is constructed
below.

Division of numerator and denominator in Eq. (28.1) by D(Ms) changes
nothing and

D(W )

D(Ms)
= exp

{
− (W − Ms)

π

∫ ∞

W0

δ(W ′) dW ′

(W ′ − Ms)(W ′ − W − iε)

}
(28.2)

This relation provides additional convergence. If one assumes that a(W, k2)
≡ alhs(W, k2) at a given point, as in [Ch56a] where in the static limit one
has a simple pole at W = M, then the quantity Ms is determined.3

This is a very simple model; but, it has several features to recommend
it:

1. It has the correct analytic properties since alhs(W, k2) has the correct
left-hand singularities and D(W ) has the right-hand unitarity cut;

2. It has the correct threshold behavior in both |k∗| and |q| [Bj66];

3. It satisfies Watson’s theorem a = |a|eiδ on the physical cut [Wa52];
here δ is the strong interaction π–N phase shift (see appendix H);

4. It is an approximate solution to the integral equation of Omnès
[Om59];

5. The electroproduction amplitude resonates at the same WR as elastic
scattering;

6. The calculation is completely relativistic;

7. The current is conserved;

8. The k2 dependence is explicit.

Let us elaborate on some of these points. The problem of constructing
an analytic function a(W, k2) with a specified set of left-hand singularities
in W given by alhs(W, k2), where alhs(W, k2) is real on the physical real
axis and where the overall amplitude obeys Watson’s theorem there, was
formulated by Omnès as an integral equation [Om59]

a(W, k2) = alhs(W, k2) +
1

π

∫ ∞

W0

e−iδ(W ′) sin δ(W ′) a(W ′, k2)

W ′ − W − iε
dW ′ (28.3)

3 The calculation shown uses Ms = 0.95M and Re δ(W ) everywhere in the integral.
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The solution to this integral equation for W0 ≤ W ≤ ∞ was also given
by Omnès [Om59]

a(W, k2) = eiδ(W )

[
alhs(W, k2) cos δ(W )

+eρ(W ) P
π

∫ ∞

W0

alhs(ξ, k2) sin δ(ξ)e−ρ(ξ)

ξ − W
dξ

]
(28.4)

In this expression P is the Cauchy principal value and

ρ(W ) =
P
π

∫ ∞

W0

δ(ζ) dζ

ζ − W
(28.5)

Assume now that alhs(W, k2) varies only slowly over the region where
sin δ(W ) �= 0 on the physical cut, and factor it out of the integral. It then
follows that

a(W, k2) ≈ alhs(W, k2) χ(W )

χ(W ) = ψ(W ) exp

{
1

π

∫ ∞

W0

δ(W ′) dW ′ 1

W ′ − W − iε

}

ψ(W ) = exp

[
− 1

π

∫ ∞

W0

δ(W ′) dW ′

W ′ − W − iε

]

+
1

π

∫ ∞

W0

sin δ(ξ) dξ

ξ − W − iε
exp

[
−P

π

∫ ∞

W0

δ(ζ) dζ

ζ − ξ

]
(28.6)

The evident analytic properties of ψ(W ), and the observation that ψ → 1
as |W | → ∞, allow one to write an unsubtracted dispersion relation for
ψ(W ) − 1. A simple calculation shows that on the right-hand physical
cut the discontinuity of this function vanishes, hence one concludes that
ψ(W ) ≡ 1!

It follows that

a(W, k2) =
alhs(W, k2)

D(W )

D(W ) = exp

[
− 1

π

∫ ∞

W0

δ(W ′) dW ′

W ′ − W − iε

]
(28.7)

This is just Eq. 28.1. Here D(W ) serves as a final-state enhancement factor,
and this final-state enhancement factor satisfies Watson’s theorem

D(W ) = |D(W )|e−iδ(W ) ; W ≥ W0 (28.8)

D(W ) is purely imaginary at a resonance in elastic scattering where
δ(WR) = π/2. A Taylor series around the resonance then gives

D(W ) ≈ (W − WR)

[
dReD(W )

dW

]
W=WR

+ i ImD(WR) (28.9)
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The electroproduction amplitude in this channel then resonates at the
same WR and has a Breit–Wigner form.

Finally, consider the Feynman diagrams in Fig. 28.6 as the excitation
mechanism for the production of the low-lying nucleon resonances in Fig.
12.8. Treat these as generalized Feynman amplitudes using renormalized
coupling constants and physical electromagnetic form factors F(k2) at
the vertices; again, the justification for this procedure is that these terms
give the correct pole contributions in the dispersion relations for the
electroproduction amplitudes [Fu58]. The contribution of the nucleon and
pion pole terms takes the form [Wa95](

4πW

M

)
Jpole

λ ελ = −gπū(p2)

{
ταM

(0)
λ + δα3M

(+)
λ +

1

2
[τα, τ3]M

(−)
λ

}
u(p1)ελ

M
(i)
λ = γ5

1

i(p/ 1 + k/ ) + M
[F

(i)
1 γλ − F

(i)
2 σλρkρ]

+si[F
(i)
1 γλ − F

(i)
2 σλρkρ]

1

i(p/ 2 − k/ ) + M
γ5

−ifiγ5
(2q − k)λ

(q − k)2 + μ2
Fπ (28.10)

Here the spinor normalization is ūu = 1, the Feynman notation a/ = aμγμ
is employed, and the form factors are given by

2F (0) = FS ; s0 = +1 ; f0 = 0
2F (+) = FV ; s+ = +1 ; f+ = 0
2F (−) = FV ; s− = −1 ; f− = 1

(28.11)

If one assumes that Fπ(k
2) ≈ FV

1 (k2) in the region of interest, then the
replacement ελ → kλ gives zero; hence one concludes that this current
is explicitly conserved. Multipoles can be projected from this amplitude
through the procedures in appendix H.

The model presented here [Wa68, Pr69, Wa72] is a simple synthesis and
summary of a great deal of theoretical work on N(e, e′)Δ(1232) within
a hadronic framework [Fu58, De61, Vi67, Za66, Ad68]. The result is
shown as the theoretical curve in Fig. 12.9. Note that this QHD picture
of the cross section to the first excited state of the nucleon holds out
to k2 ≈ 4 GeV2 = 100 fm−2. The individual helicity amplitudes, which
provide a much more detailed test of the picture, are compared with early
experiments in [Pr70]. A coupled channel extension of this model exists
that describes the inelastic form factors in the higher resonance regions in
Fig. 12.8 [Pr69, Wa72].

Precise coincidence studies and measurement of all the amplitudes for
all the excited states of the nucleon out to high k2 will further challenge
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our understanding of the internal dynamics of the nucleon. Of major
importance is the synthesis of a relativistic quark description of the
internal dynamics of the nucleon with a meson field theory description
of the dynamics of its external structure.4 Ultimately, electron excitation
of the nucleon will provide benchmark tests of ab initio calculations of
QCD, perhaps through lattice gauge theory [Wi74].

4 Various hybrid bag models are examined in [Bh88, Wa95].
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