
The Journal of Navigation (2023), 76:4–5 487–505
doi:10.1017/S037346332300019X

RESEARCH ARTICLE

Radar-based path planning of autonomous surface vehicle
with static and dynamic obstacles in a Frenet Frame
Zhihuan Hu, Ziheng Yang, Xiaocheng Liu, and Weidong Zhang

Department of Automation, Shanghai Jiao Tong University, Shanghai, China.
Corresponding author: Weidong Zhang; Email: wdzhang@sjtu.edu.cn

Received: 21 August 2022; Accepted: 28 May 2023

Keywords: path planning; autonomous surface vehicle; collision avoidance; millimetre wave radar

Abstract
Navigation safety at sea is vital for each autonomous surface vehicle (ASV), which involves the problem of motion
planning in dynamic environments and their robust tracking through feedback control. We present a practical path-
planning method that generates smooth trajectories for a marine vehicle traveling in an unknown environment, where
obstacles are detected in real time by millimetre wave (mmWave) radar. Our approach introduces a polynomial curve
to describe the lateral and longitudinal trajectories in the Frenet frame, known as the ‘motion primitives’, whose
combination ensures that the planning area is properly covered. In addition, we can select a feasible, optimal and
collision-free trajectory from such a set of motion primitives that is generated by considering the vehicle dynamics
and comfort. The capabilities of proposed algorithm are demonstrated in the experiment with static and dynamic
obstacles.

1. Introduction

ASVs are vehicles capable of operating safely with little or no human input. The autonomous technology
reveals a potential to enhance the safety, efficiency and convenience of maritime transport. The motion
planning system is essential for ASVs, which ensures that a vehicle navigates through the water with
safety. Clearly, there is a lot of research work being done on this motion-planning algorithm.

Generally, the motion-planning problem can be partitioned into a hierarchical structure (González
et al., 2015): at the top level, the route and mission for a vehicle are computed on a scale of continent; the
behavioural layer decides on a local navigational scenario while following the International Regulations
for Preventing Collisions at Sea (COLREGS) (Cockcroft and Lameĳer, 2003). As shown in Figure 1, a
path-planning module then generates a continuous trajectory to accomplish the short-term objectives,
such as collision avoidance, speed maintenance and stopping, and so on. Here, much attention has been
paid to the path-planning algorithm, and thus the COLREGS is not considered in our approach.

A number of techniques have been developed to address the challenges of traffic-adapted trajectory.
The resulting trajectory is expressed as a time-varying function 𝜋(𝑡) : [0,Δ𝑇] → 𝛤, where 𝛤 is the
configuration space of a robot, and Δ𝑇 is the planning horizon. The problem of determining such a
trajectory could be easily stated as a non-convex optimisation problem. However, because the practical
methods for finding any exact solution are unavailable (Reif and Wang, 1998), one must resort to the
heuristic algorithms as a reasonable approximation for the optimal solution.

The geometric method represents the obstacles and vehicles as convex bodies. Accounting for the
robot constraints, these methods are useful for computing the lower and upper bounds on the feasible
area or trajectory. Especially for the planar motions (Γ ⊆ R2), there are several efficient algorithms with
polygonal representation of obstacles, such as generalised Voronoi diagrams (Takahashi and Schilling,

© The Author(s), 2024. Published by Cambridge University Press on behalf of The Royal Institute of Navigation

https://doi.org/10.1017/S037346332300019X Published online by Cambridge University Press

mailto:wdzhang@sjtu.edu.cn
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S037346332300019X&domain=pdf
https://doi.org/10.1017/S037346332300019X

488 Zhihuan Hu et al.

Figure 1. Motion planning architecture for ASVs. It consists of global planning, behavioural layers and
local path planning (Paden et al., 2016).

1989) and the velocity obstacles method (Kuwata et al., 2013). The COLREGS could also be encoded
in the velocity space of ASVs and obstacles using the velocity obstacles method.

The graph search methods, including the Dĳkstra algorithm, A* algorithm and D* algorithm and
their modified version, have been implemented in a wheeled mobile robot (Howard and Kelly, 2007), a
self-driving car (Dolgov et al., 2008) and ASVs (Blaich et al., 2012a), and so on. For the graph-based
search, the state space of a robot is discretised as a graph, where a vertex can be seen as a vehicle state
and the edges represent state transitions. The goal is to find a path with the smallest cost in the graph.
For instance, in Blaich et al. (2012b) and Schuster et al. (2014), the modified A* algorithm is presented
with a T-shaped neighbourhood, which is used to take the physical limits of a vehicle into account.
Moreover, the hybrid A* method, along with the Voronoi potential field, could be implemented in the
auto-docking system and shuttle ferry, which require a complicated manoeuvre at slow speeds.

Curve-interpolating methods are commonly used to construct a new path with a set of waypoints
given by the high-level planner. The implementation of curves such as polynomials, splines, lines
and circles are simple and computationally efficient. In Wilthil et al. (2018), the authors present a
dynamic window algorithm, using the linear combination of forward speed and rate of turn to construct
a desired path. And an extended dynamic window method (Eriksen et al., 2019) is developed using
the linear piecewise functions of acceleration. A path-tracking algorithm then ensures that the desired
path is achieved by the line-of-sight method and model predictive control. However, the line and circle
interpolating method may be not continuous, reducing passenger comfort. In addition, the line and
circle interpolating methods are less robust to the noisy tracking of obstacles, causing the unsteady
planning manoeuvre. These issues motivate us to develop a new path-planning algorithm with more
robust capability and less computational complexity. The paper consists of two main contributions: first,
it introduces a cost function to penalising the jerk of a vehicle, which could generate a smooth trajectory
considering the passenger comfort. This also allows for the modelling of acceleration constraints and the
reactive obstacle avoidance in unexpected situations. Second, the proposed algorithm is computationally
efficient and will ensure real-time performance. The polynomial curves are implemented to construct
a feasible path, allowing for the replanning frequency of 100 Hz. Along with the radar-based target
tracking and situational awareness of obstacles in real time, the experiments have been performed with
static and dynamic obstacles.

https://doi.org/10.1017/S037346332300019X Published online by Cambridge University Press

https://doi.org/10.1017/S037346332300019X

The Journal of Navigation 489

2. Theoretical background

2.1. Vessel model

Let 𝜼(𝑡) = [𝑥, 𝑦, 𝜑] be the state of vessel, which contains the 𝑥, 𝑦 coordinates and heading (𝜑) in the
global reference frame. Let 𝒗(𝑡) = [𝑢, 𝑣, 𝑟] be the velocity state, which contains the linear speed (𝑢, 𝑣)
and rate of turning (𝑟) in the body-fixed reference frame. The 3-degree of freedom (DoF) marine craft
equations of motion can be introduced as follows:

�𝜼(𝑡) = 𝑻 (𝜼(𝑡)) · 𝒗(𝑡) (1)
𝑴 · �𝒗(𝑡) + 𝑫 · 𝒗(𝑡) = 𝝉(𝑡) + 𝝉e (2)

𝑻 (𝜼(𝑡)) =

⎡⎢⎢⎢⎢⎣
cos 𝜑 − sin 𝜑 0
sin 𝜑 cos 𝜑 0

0 0 1

⎤⎥⎥⎥⎥⎦ (3)

Here, 𝑴 and 𝑫 denote the time-invariant mass and damping matrix. The element of matrix 𝑴
contain the mass, the moment of inertia and added mass. The linear drag coefficients and nonlinear drag
coefficients are considered in the damping matrix 𝑫. More detailed description of the elements of these
matrices can be found in Fossen (2011). 𝝉(𝑡) and 𝝉e indicate the propulsive force and environmental
load on the marine craft. Let 𝒙(𝑡) = [𝜼(𝑡), 𝒗(𝑡)] be the state vector, the state dynamics are given by,

�𝒙(𝑡) = 𝐴𝑐 · 𝒙(𝑡) + 𝐵𝑐 · 𝒖(𝑡) + 𝝎(𝑡) (4)

For a vessel,

𝒖(𝑡) = 𝝉(𝑡), 𝝎(𝑡) = 𝝉e

𝐴𝑐 =

[
0 𝑻 (𝜼(𝑡))
0 −𝑴−1𝑫

]
, 𝐵𝑐 =

[
0

𝑴−1

]
Let 𝝉(𝑘) = 𝝉(𝑡𝑘), 𝒙(𝑘) = 𝒙(𝑡𝑘), 𝒙(𝑘 + 1) = 𝒙(𝑡𝑘+1), where 𝑡𝑘 denotes the discrete time. Then the

discrete-time state space model can be described as follows:

𝒙(𝑘 + 1) = 𝑨 · 𝒙(𝑘) + 𝑩 · 𝝉(𝑘)

𝑨 = 𝑰 + Δ𝑡 · 𝐴𝑐 , 𝑩 = Δ𝑡 · 𝐵𝑐 (5)

where the time duration Δ𝑡 = 𝑡𝑘+1 − 𝑡𝑘 . Such a discrete–time state space model enables us to perform
the real-time Kalman filtering (Bishop and Welch, 2001).

2.2. Collision risk assessment

In this study, collision risk is assessed using the closest point of approach (CPA) and time to closest
point of approach (TCPA). The 𝑑CPA (see Figure 2) is used to describe the closest distance if the own
ship and target ship maintain course and speed. A small 𝑑CPA means the two ships will collide. Let
[𝑥0, 𝑦0] be the initial position of the own ship, [𝑣𝑥 , 𝑣𝑦] denote the velocity vector of the own ship, and
the position of the own ship can be given by:

𝑥(𝑡) = 𝑣𝑥𝑡 + 𝑥0

𝑦(𝑡) = 𝑣𝑦𝑡 + 𝑦0

Let [𝑥0, �̂�0] and [�̂�𝑥 , �̂�𝑦] be the initial position and velocity of target ship:

𝑥(𝑡) = �̂�𝑥𝑡 + 𝑥0

https://doi.org/10.1017/S037346332300019X Published online by Cambridge University Press

https://doi.org/10.1017/S037346332300019X

490 Zhihuan Hu et al.

Figure 2. CPA and TCPA.

�̂�(𝑡) = �̂�𝑦𝑡 + �̂�0

The distance between the own ship and target ship can be computed:

𝐷2 = (𝑥(𝑡) − 𝑥(𝑡))2 + (𝑦(𝑡) − �̂�(𝑡))2

The time derivative of 𝐷2:

𝑑𝐷2

𝑑𝑡
= ((𝑣𝑥 − �̂�𝑥)𝑡 + (𝑥0 − 𝑥0))(𝑣𝑥 − �̂�𝑥) + ((𝑣𝑦 − �̂�𝑦)𝑡 + (𝑦0 − �̂�0))(𝑣𝑦 − �̂�𝑦) = 0

With such information, we can compute the position [𝑥CPA, 𝑦CPA] of target ship at 𝑡CPA(TCPA):

𝑡CPA = max

(
0,

(𝑥0 − 𝑥0)(𝑣𝑥 − �̂�𝑥) + (𝑦0 − �̂�0)(𝑣𝑦 − �̂�𝑦)

(𝑣𝑥 − �̂�𝑥)
2 + (𝑣𝑦 − �̂�𝑦)

2

)
(6)

𝑥CPA = �̂�𝑥𝑡CPA + 𝑥0, 𝑦CPA = �̂�𝑦𝑡CPA + �̂�0 (7)

The collision risk can be evaluated based on these formulas, as well as the relative distance, velocity
and azimuth of target ship measured by the mmWave radar.

2.3. Frenet frame

The trajectory tracking and planning of ASVs forces a vehicle to reach and follow a time-parameterised
geometric path (i.e. orientation, curvature), namely the reference line. Such a reference line can be
represented in different forms (e.g. spline, Euler spiral, etc.). However, the vehicle will adjust the motion
behaviour for obstacle avoidance. Instead, such behaviours cannot follow through the reference line
exactly and thus result in the trajectory replanning.

The Frenet frame (Frenet, 1852) introduces a novel way to plan trajectories to manoeuvre a robot. It is
more intuitive for Frenet frame to represent a vehicle’s motion than the traditional Cartesian coordinate.

https://doi.org/10.1017/S037346332300019X Published online by Cambridge University Press

https://doi.org/10.1017/S037346332300019X

The Journal of Navigation 491

Figure 3. Trajectory generation based on the reference line in the Frenet frame.

With the Frenet coordinate (see Figure 3), we use the variables 𝑠(𝑡) to represent the arclength along
which the vehicle has moved on the reference line in time t, and 𝑑 (𝑡) to describe the perpendicular offset
with respect to the reference line. These variables 𝑠(𝑡) and 𝑑 (𝑡) are also known as longitudinal and
lateral displacement, respectively. And the Cartesian coordinate of the resulting trajectory 𝒙(𝑠(𝑡), 𝑑 (𝑡))
can be given by the normal and tangential vector 𝒏𝒓 , 𝒕𝒓 at a certain point on the reference line:

𝒙(𝑠(𝑡), 𝑑 (𝑡)) = 𝒓 (𝑠(𝑡)) + 𝑑 (𝑡) · 𝒏𝒓 (𝑠(𝑡)) (8)

where the vectors 𝒏𝒓 , 𝒕𝒓 are defined at the projection of the vehicle onto the reference line, and 𝒓 (𝑠(𝑡))
denotes the Cartesian coordinate of such a projection. 𝒏𝒙 , 𝒕𝒙 are normal and tangential vectors of the
resulting trajectory. Since the resulting trajectory and reference line provide the tracking reference for the
vehicle’s controller, higher-order parameters must be given: the speed v, the orientation 𝜃, the curvature
𝜅 and the acceleration a.

2.4. Coordinate transformation

The coordinate transformation between the Frenet and Cartesian frames makes it possible to perform
online path planning for a vehicle. Given the motion [𝑠, �𝑠, �𝑠; 𝑑, �𝑑, �𝑑] or [𝑠, �𝑠, �𝑠; 𝑑, 𝑑 ′, 𝑑 ′′] in the Frenet

frame, and [𝒙, 𝜃𝑥 , 𝜅𝑥 , 𝑣𝑥 , 𝑎𝑥] in the Cartesian frame, we let
�

(·) := 𝜕
𝜕𝑡 (·) be the partial derivative with

respect to time and (·)′ := 𝜕
𝜕𝑠 (·) denote the partial derivative with respect to arclength. In this paper,

the vehicle is assumed to travel along the reference line, excluding extreme situations. In this case, we
have 1 − 𝜅𝑟𝑑 > 0 and |Δ𝜃 | < 𝜋/2 with Δ𝜃 := 𝜃𝑥 − 𝜃𝑟 .

https://doi.org/10.1017/S037346332300019X Published online by Cambridge University Press

https://doi.org/10.1017/S037346332300019X

492 Zhihuan Hu et al.

Applying the Frenet-Serret formulas (Kühnel, 2015):

d𝒏𝑟
d𝑠

= −𝜅𝑟 𝒕𝑟 ,
d𝒏𝑟
d𝑡

= −�𝑠𝜅𝑟 𝒕𝑟 (9)

d𝒕𝑟
d𝑠

= 𝜅𝑟 𝒏𝑟 ,
d𝒕𝑟
d𝑡

= �𝑠𝜅𝑟 𝒏𝑟 (10)

Where 𝜅𝑟 denotes the curvature of reference line:

𝒕𝑟 (𝑠) = [cos 𝜃𝑟 (𝑠) sin 𝜃𝑟 (𝑠)]T 𝒏𝑟 (𝑠) = [− sin 𝜃𝑟 (𝑠) cos 𝜃𝑟 (𝑠)]T

With Equation (8) and Frenet-Serret formulas, we have:

𝑑 = [𝒙 − 𝒓 (𝑠)]T · 𝒏𝑟 (11)
�𝑑 = [�𝒙 − �𝒓 (𝑠)]T · 𝒏𝑟 + [𝒙 − 𝒓 (𝑠)]T · �𝒏𝑟 = 𝑣𝑥 sinΔ𝜃 (12)

For the vehicle’s speed 𝑣𝑥 on the resulting trajectory, the time derivative of 𝒙 yields:

𝑣𝑥 = | | �𝒙 | |2 =
√
(1 − 𝜅𝑟𝑑)

2 �𝑠2 + �𝑑2

With 𝑣𝑥 , we calculate:

𝑑 ′ =
�𝑑

�𝑠
=
𝑣𝑥 sinΔ𝜃

�𝑠
= sinΔ𝜃 ·

√
(1 − 𝜅𝑟𝑑)

2 + 𝑑 ′2 ⇒ 𝑑 ′ = (1 − 𝜅𝑟𝑑) tanΔ𝜃 (13)

Where | | · | |2 is the Euclidean norm. Taking the time derivative for (𝒙 − 𝒓 (𝑠))T 𝒕𝒓 = 0, we also have:

�𝑠 =
𝑣𝑥 cosΔ𝜃
1 − 𝜅𝑟𝑑

(14)

Let 𝑠𝑥 represent the arclength of the resulting trajectory 𝒙, and the curvatures 𝜅𝑥 = d𝜃𝑥/d𝑠𝑥 , yields:

Δ𝜃 ′ =
d(𝜃𝑥 − 𝜃𝑟)

d𝑠
=

1 − 𝜅𝑟𝑑

cosΔ𝜃
𝜅𝑥 − 𝜅𝑟

Taking derivative of Equation (13) with respect to s yields:

𝑑 ′′ = −(𝜅𝑟𝑑)
′ tanΔ𝜃 +

1 − 𝜅𝑟𝑑

cos2(Δ𝜃)
Δ𝜃 ′ (15)

The acceleration of resulting trajectory is given by:

𝑎𝑥 := �𝑣𝑥 = �𝑠
1 − 𝜅𝑟𝑑

cosΔ𝜃
+

�𝑠2

cosΔ𝜃
[𝑑 ′Δ𝜃 ′ − (𝜅𝑟𝑑)

′]

With 𝑎𝑥 , we can calculate the second order derivative of arclength:

�𝑠 =
𝑎𝑥 cosΔ𝜃 − �𝑠2 [𝑑 ′Δ𝜃 ′ − (𝜅𝑟𝑑)

′]

1 − 𝜅𝑟𝑑
(16)

The time derivative of d is given by:

�𝑑 =
d𝑠
d𝑡

d
d𝑠

𝑑 = �𝑠𝑑 ′ (17)

�𝑑 = 𝑑 ′′ �𝑠2 + 𝑑 ′ �𝑠 (18)

https://doi.org/10.1017/S037346332300019X Published online by Cambridge University Press

https://doi.org/10.1017/S037346332300019X

The Journal of Navigation 493

2.4.1. Transform Cartesian frame to Frenet frame
Given the vehicle’s motion [𝒙, 𝜃𝑥 , 𝜅𝑥 , 𝑣𝑥 , 𝑎𝑥] (𝑡0), we need to project it onto the reference line and
derive the corresponding states [𝑠0, �𝑠0, �𝑠0; 𝑑0, �𝑑0, �𝑑0] or [𝑠0, �𝑠0, �𝑠0; 𝑑0, 𝑑

′
0, 𝑑

′′
0]. For instance, when the

vehicle is located at the starting point of the reference line, we have 𝑠0 = 0, 𝑑0 = 0 in the Frenet frame.
Firstly, the arclength 𝑠0 can be determined by:

𝑠0 = arg min
𝜎

| |𝒙 − 𝒓 (𝜎) | |2

The numerical method for solving the previous minimum problem is trivial. As the function of the
reference line is known, we can calculate more information, including the curvature 𝜅𝑟 , 𝜅′𝑟 and
the orientation 𝜃𝑟 when the arclength 𝑠0 is determined. With Δ𝜃 = 𝜃𝑥 − 𝜃𝑟 and Equations (9)–(16), the
remain variables such as �𝑠0, �𝑠0, 𝑑0, �𝑑0, �𝑑0, 𝑑

′
0, 𝑑

′′
0 can also be computed.

2.4.2. Transform Frenet frame to Cartesian frame
When the state lattices are generated, we need to determine the corresponding states [𝒙, 𝜃𝑥 , 𝜅𝑥 , 𝑣𝑥 , 𝑎𝑥]

in the Cartesian coordinate. This can be done using Equations (9)–(16), provided that �𝑠 > 0 for a vehicle
travelling forward.

2.5. Optimal trajectory generation

To reduce the computational complexity of path planning, the heuristic trajectory-generation algorithm
is proposed by selecting the optimal trajectory from a discrete set of manoeuvres covering the free
configuration space. When constructing the manoeuvre sets, referred to as ‘state lattice’, we consider
comfort, vehicle constraints, curve smoothness and obstacle avoidance. The comfort is mathematically
described by the jerk, which is defined by the rate of acceleration change with respect to time. The
following theorem enables us to generate a feasible and comfortable path.

Theorem: Given the state 𝑃0 = [𝑝0, �𝑝0, �𝑝0] at the start time 𝑡0, and 𝑃1 = [�𝑝1, �𝑝1] at 𝑡1 = 𝑡0 + Δ𝑇 , a
quantic polynomial is the minima of the cost function:

𝐶 = 𝑘𝐽 𝐽𝑡 + 𝑘𝑔𝑔(Δ𝑇) + 𝑘ℎℎ(𝑝1)

𝐽𝑡 (𝑝(𝑡)) :=
∫ 𝑡1

𝑡0

�𝑝2(𝜏)d𝜏

Where 𝑔(·) and ℎ(·) are arbitrary functions and 𝑘𝐽 , 𝑘𝑔, 𝑘ℎ > 0.
The proof of this theorem is given in Takahashi et al. (1989). The term �𝑝(𝑡) is known as ‘jerk’ and

𝐽𝑡 (𝑝(𝑡)) can qualitatively describe the jerk within the time interval Δ𝑇 . From Werling et al. (2010),
we know that, in the Frenet frame, the lateral 𝑑 (𝑡) and longitudinal movement 𝑠(𝑡) can be determined
independently for vehicles at higher speed. Thus, the state lattice could be generated by combining
lateral and longitudinal trajectories. As for the jerk, �𝑑 and �𝑠 are introduced.

2.5.1. Lateral movement
Given the start state 𝐷0 = [𝑑0, �𝑑0, �𝑑0], the cost function is expressed as:

𝐶lat = 𝑘𝐽 𝐽𝑡 (𝑑 (𝑡)) + 𝑘𝑡Δ𝑇 + 𝑘𝑑𝑑
2
1

We let 𝑔(Δ𝑇) = Δ𝑇 and ℎ(𝑑1) = 𝑑2
1, to penalise the slow convergence and large lateral offset. The

vehicle is suggested to travel parallel to the reference line, which means �𝑑1 = �𝑑1 = 0 at end time 𝑡0 +Δ𝑇 .
The optimal solution for Equation (19) is a quintic polynomial in the indeterminate 𝑡

𝑑 (𝑡) = 𝑎5𝑡
5 + 𝑎4𝑡

4 + 𝑎3𝑡
3 + 𝑎2𝑡

2 + 𝑎1𝑡 + 𝑎0 (19)

https://doi.org/10.1017/S037346332300019X Published online by Cambridge University Press

https://doi.org/10.1017/S037346332300019X

494 Zhihuan Hu et al.

Different coefficients in the end state are considered to generate a set of sufficiently covered and
collision-free manoeuvres. It means the state lattice in the lateral direction Π𝑙𝑎𝑡 consists of polynomials
with different end conditions 𝑑1 and Δ𝑇 :

[𝑑1, �𝑑1, �𝑑1,Δ𝑇]𝑖𝑘 = [𝑑𝑖 , 0, 0,Δ𝑇𝑘]

2.5.2. Longitudinal movement
Usually, marine vehicle moves by either keeping a desired speed �𝑠𝑑 = const or by changing the course.
The course-changing manoeuvre can be achieved by the lateral movement that we have mentioned. For
the speed-keeping behaviour, a quartic polynomial:

�𝑠(𝑡) = 𝑎4𝑡
4 + 𝑎3𝑡

3 + 𝑎2𝑡
2 + 𝑎1𝑡 + 𝑎0

can be used to minimise the cost function:

𝐶𝑙𝑜𝑛 = 𝑘𝐽 𝐽𝑡 (𝑠(𝑡)) + 𝑘𝑡Δ𝑇 + 𝑘 �𝑠 (�𝑠1 − �𝑠𝑑)
2 (20)

whose start state 𝑆0 = [𝑠0, �𝑠0, �𝑠0] at 𝑡0, and end state 𝑆1 = [�𝑠1, �𝑠1] at 𝑡1 = 𝑡0 + Δ𝑇 . The acceleration
is undesirable, resulting in �𝑠1 = 0. By slightly varying the end conditions �𝑠1, we can determine the
coefficients for the quartic polynomial:

[�𝑠1, �𝑠1,Δ𝑇] 𝑗𝑘 = [�𝑠𝑑 + Δ �𝑠 𝑗 , 0,Δ𝑇𝑘]

In this case, the state lattice in the longitudinal direction Πlon is generated.

2.5.3. Combined trajectory
The state lattice is generated by taking the Cartesian product of lateral movement and longitudinal
movement Πlat × Πlon. The total cost of each trajectory in the state lattice can be computed by simple
algebraic operation:

𝐶tot = 𝑘 lat𝐶lat + 𝑘 lon𝐶lon

where 𝑘 lat, 𝑘 lon > 0. The state lattice is shown in Figure 4.

2.6. Path-following algorithm

The path-following algorithm forces an underactuated ship to follow the target path generated by the
path-planning module. In this paper, the pure-pursuit algorithm is used to generate the target speed and
course for the ASV. As shown in Figure 5, the look-ahead distance 𝐿𝑇 is a predefined value, which is
related to the ship length. A point on the target path is said to be a target point if the distance between
such a point and ship CoG is nearest to 𝐿𝑇 . The target point will determine the angle error 𝜃𝑇 , and a PD
controller is applied to compute the thruster command based on the speed and course error. By virtue
of the calculation of future course error, the pure-pursuit algorithm ensures robust and efficient tracking
capability.

2.7. Framework of path-planning algorithm

Given a desired trajectory known as the ‘reference line’, the algorithm only requires the estimated
motion in the Cartesian coordinate as an input to compute the output, as shown in Figure 6. The vehicle
motion is mapped to the state in the Frenet frame, which enables the state lattice generation. Then we
exclude the trajectories exceeding the maximum acceleration of vehicle. It is also undesirable to use the
trajectory with high risk of causing a collision, on which the ship will pass close to the static obstacles

https://doi.org/10.1017/S037346332300019X Published online by Cambridge University Press

https://doi.org/10.1017/S037346332300019X

The Journal of Navigation 495

Figure 4. Optimal trajectory generation: blue triangle indicates static obstacles, red line indicates the
reference line, pink lines indicate the state lattices, and blue dotted line indicates the best planning path.

Figure 5. Pure pursuit algorithm: 𝐿𝑇 indicates the look ahead distance, 𝜃𝑇 means the angle error
between target and estimated course.

https://doi.org/10.1017/S037346332300019X Published online by Cambridge University Press

https://doi.org/10.1017/S037346332300019X

496 Zhihuan Hu et al.

Figure 6. Algorithm overview. The path-planning algorithm inputs a desired trajectory from route plan-
ner or an operator, and outputs the local replanning trajectory for the vehicle’s controller (‘Cart2Frenet’
means the coordinate transform from Cartesian to Frenet frame, and ‘Frenet2Cart’ means the inversion).

Table 1. Vehicle specifications.

Items Unit Value

Length m 3·10
Width m 1·60
Weight kg 244·0
CoG_X m 0·68
CoG_Y m 0·00

or CPA of dynamic obstacles. The final step is to find the minimum cost 𝐶tot among the collision-free
and feasible trajectories. The desired trajectory is fed to the pure-pursuit method and tracking controller.

3. Experimental setup

The experiment was developed on a catamaran (see Figure 7) by integrating the mmWave radar, GNSS
sensor, thrusters, wireless modem, batteries, and so on. The vehicle is equipped with a pair of unsteerable
propellers, making it underactuated. A 77GHz mmWave radar (Continental ARS404-21) was used for
obstacle detection, which enables the real-time radar data transmission via CANBUS. The field of view
(FoV) of radar ranges from −60 to 60°. The GNSS sensor provides the positioning, heading and velocity
of the vehicle, with a positioning accuracy of 0·5 m and heading accuracy of 0·5 degree. Table 1 lists
the vehicle parameters in detail. The target ship (1·8*0·9 m) is equipped with the same GNSS sensor
and is remotely controlled by humans during the experiment.

The ASV software was developed on a multi-threaded C++ application by integrating various
modules, such as state estimation, feedback control, path planning, and so on. Such a software was
implemented on a computer with an ARM 1·5GHz CPU, running Ubuntu 18·04. For the parameters
used in path planning algorithm, the step length of reference line is 0·05 m; The lateral offset 𝑑1 ranges
from −10 m to 10 m with the common difference 1 m; The planning horizon Δ𝑇 varies from 8 s to 10 s
with the common difference 0·5 s. Replanning frequency is 5 Hz.

https://doi.org/10.1017/S037346332300019X Published online by Cambridge University Press

https://doi.org/10.1017/S037346332300019X

The Journal of Navigation 497

Figure 7. Sketch of the experimental system, including the own ship (a), the remote-controlled vehicle
(b) and the floating pontoons with diameter of 0·9 m (c).

4. Results

4.1. Pure-pursuit test

The pure-pursuit algorithm looks ahead at the target path and determines the future heading error. For
validation of the pure-pursuit algorithm, we present the results of path following tests under calm water.
Figure 8 shows the tracking performance (the parameters in PD heading controller Kp= 3 Kd= 300
are set, and the look-ahead distance in the pure-pursuit algorithm is 3 m). This ensures the stability of
heading control and allows the vehicle to converge to a geometrical path in an elegant manner.

4.2. Collision-avoidance test with a single static obstacle (Scenario I)

In the first scenario, the own ship was given a user-specified straight-line trajectory with constant speed.
When the own ship approached the floating pontoon, the estimated velocity provided by the mmWave
radar was small enough that the ASV treated it as a stationary hazard. The proposed path-planning
method generated an optimal collision-free path, based on the CPA of the tracked obstacle and the
estimated state of the own ship. The controller with pure-pursuit algorithm took the real-time target
path and managed to make a smooth and safe manoeuvre (see Figure 9). The reduced speed ensured the
manoeuvrability of the own ship (see Figure 10 at time duration from 1447 to 1454 s). As the own ship
passed in front of the obstacle, it started to return towards the reference line with a slightly increased
target speed. It should be noted that the short-term memory of static obstacles is considered in the
collision-risk assessment.

4.3. Collision-avoidance test with two static obstacles (Scenario II)

In Scenario II, the desired trajectory inputted to the path-planning algorithm was a straight-line trajectory,
where the distance between two floating pontoons was approximately 35 m. In combination with the
pure-pursuit tracking algorithm, the generated trajectory enabled the ship to make a smooth manoeuvre
to avoid both floating pontoons. Figure 11 shows the target path at different time instants and planar
trajectories of the own ship. It can be seen from Figure 11 that the own ship was approximately 8 m in
front of the first pontoon when doing the portside manoeuvre. As no COLREGS constraint was applied,
the own ship choose to do the starboard manoeuvre, as the path-planning algorithm defined it to be the

https://doi.org/10.1017/S037346332300019X Published online by Cambridge University Press

https://doi.org/10.1017/S037346332300019X

498 Zhihuan Hu et al.

Figure 8. Planar trajectory for the pure pursuit tests at different target speeds (black solid line indicates
the target path). The controller with pure pursuit algorithm was run at a rate of 10 Hz.

Figure 9. Planar trajectory in scenario I (grey line indicates reference line, the blue dot-line indicates
the optimal target path, and the estimated obstacles are marked with blue circle).

optimal path. Figure 12 shows that the target speed was slightly reduced when the ship’s deviation from
the reference line began to increase. Meanwhile, a sufficient course change made it safe for the own ship
to travel. As there were no obstacles at 1046 s, the optimal trajectory of the constraint-only problem was
chosen, which led the ship to approach the reference line and the desired speed.

https://doi.org/10.1017/S037346332300019X Published online by Cambridge University Press

https://doi.org/10.1017/S037346332300019X

The Journal of Navigation 499

Figure 10. Time series of estimated (red dot line) and desired (black line) state in Scenario I.

Figure 11. Planar trajectory in the second scenario (grey line indicates reference line, the blue and
red dot-lines indicate the optimal target path at time 1022·3 s and 1042·6 s, the green dots denote the
trajectory of own ship and the estimated obstacles are marked with blue circle).

4.4. Collision-avoidance test with crossing-from-portside obstacles (Scenario III)

Three scenarios were considered for the moving obstacles: crossing from portside (Scenario III), crossing
from starboard (Scenario IV) and head-on (Scenario V). In each scenario, the speed and course of the
moving obstacle remained constant, which required the ASV to preform collision check and turning
manoeuvres. We assigned each obstacle with a unique ID. Using this ID, we introduced a short-term
memory of trajectory and CPA of moving obstacle. If such a memory was ignored, the own ship might
oscillate along the reference line and result in an undesirable behaviour. This is because the uncertainty
in the radar detection could make the CPA prediction portside and starboard frequently, which drastically
changes the lateral offset of target path.

As no navigation rule was followed by the given path-planning algorithm, the own ship performed
a portside manoeuvre when the obstacle started to approach from portside (see Figure 13). This can
be considered to be optimal as the own ship choose to pass behind the moving obstacle. The GNSS-
estimated trajectory shows that the moving obstacle was out of the FOV of radar at 67·4 s. This means

https://doi.org/10.1017/S037346332300019X Published online by Cambridge University Press

https://doi.org/10.1017/S037346332300019X

500 Zhihuan Hu et al.

Figure 12. Time series of estimated and desired state in Scenario II.

Figure 13. Planar trajectory in Scenario III. The GNSS-estimated and radar-estimated positions of
obstacles are marked with circles. The obstacle velocity measured by radar are marked with arrows.
Best path indicates the optimal path generated by real-time path planning algorithm.

that we retained the memory of radar-based position and CPA of the moving obstacle, which lasted
about 5 s. Such a memory might result in a large clearance to the moving obstacle. The course change
manoeuvre was accompanied by the reduced target speed (see Figure 14). After the avoidance manoeuvre
was finished, the own ship passed the two floating pontoons with sufficient clearance.

4.5. Collision-avoidance test with crossing-from-starboard obstacles (Scenario IV)

Figures 15 and 16 show the successful avoidance in Scenario IV, crossing-from-starboard obstacle. At
the time duration from 520 s to 530 s, the own ship keeps a constant course and identifies on which side
the moving obstacle would pass. The memory that the moving hazard approached from the starboard
lasted for a short interval, which forced the own ship to alter its course to starboard and pass abaft of
the moving obstacle. At time 538·3 s, the diameter of radar-estimated obstacle (about 7·0 m) was much

https://doi.org/10.1017/S037346332300019X Published online by Cambridge University Press

https://doi.org/10.1017/S037346332300019X

The Journal of Navigation 501

Figure 14. Time series of estimated and desired state in Scenario III.

Figure 15. Planar trajectory in Scenario IV. The GNSS-estimated and radar-estimated positions of
obstacles are marked with circles. The obstacle velocity measured by radar are marked with arrows.
Best path indicates the optimal path generated by real-time path planning algorithm.

larger than the real value (2·0 m), which might have caused increased obstacle clearance. There was
an abrupt change in the desired heading (see Figure 16) at time 537 s, when the path generation was
affected by noise on obstacle detection. However, the proposed path-planning algorithm made the own
ship travel smoothly and showed good robustness to noise. At time 566·7 s, the target path was aligned
with the reference line, due to the low risk in collision. As the own ship approached the static pontoon,
it performed the starboard manoeuvre to reduce the collision risk.

4.6. Collision-avoidance test with head-on obstacles (Scenario V)

In the head-on scenario (Scenario V), the target ship travelled with a constant speed. As the target ship
took no action to reduce the collision risk, the own ship had to perform a starboard manoeuvre to avoid
the obstacle approaching from the front (see Figure 17). The increase in the rate of turn of the own

https://doi.org/10.1017/S037346332300019X Published online by Cambridge University Press

https://doi.org/10.1017/S037346332300019X

502 Zhihuan Hu et al.

Figure 16. Time series of estimated and desired state in Scenario IV.

Figure 17. Planar trajectory in Scenario V. The GNSS-estimated and radar-estimated positions of
obstacles are marked with circles. The obstacle velocity measured by radar are marked with arrows.

ship might have affected the state estimation errors of obstacles. Therefore, we introduced the shorter-
term memory for these imprecise tracked obstacles. This means that the given algorithm might have
reduced the uncertainty in the situational awareness and increased robustness to noise with respect to
radar detection. With the successful collision checking, the own ship managed to avoid the CPA of the
moving obstacle. Figure 18 illustrates that the pure-pursuit and feedback controller could allow the ASV
to follow the desired speed and heading in a smooth way.

4.7. Repeatability test and failure analysis

More than 100 cases were performed on each scenario. Figure 19 shows the lowest, highest and mean
values of the minimum distance between the own ship and obstacles during the collision avoidance test
of each scenario. The success rate of collision avoidance of each scenario is also illustrated in Figure 19.
It demonstrates that the success rate of Scenario I is 100% when the initial distance between the own

https://doi.org/10.1017/S037346332300019X Published online by Cambridge University Press

https://doi.org/10.1017/S037346332300019X

The Journal of Navigation 503

Figure 18. Time series of estimated and desired state in Scenario V.

Figure 19. The success rate of collision avoidance and minimum distance between own ship and
obstacle in each scenario.

ship and pontoon is larger than 15 m. In Scenario II, none of failure test is observed. However, due to
the limit of measurement accuracy of mmWave radar, the static floating pontoons will be classified as
moving targets at some moments. It is difficult to determine the portside or starboard manoeuvre, which
will increase the risk of collision.

The success rate of Scenarios III, IV and V is about 98%, 97% and 99%, respectively. The reason
of the failure in collision avoidance of Scenario III is due to the fact that the moving target is classified
as a static one at first, allowing the own ship to perform starboard manoeuvre; however, as the own

https://doi.org/10.1017/S037346332300019X Published online by Cambridge University Press

https://doi.org/10.1017/S037346332300019X

504 Zhihuan Hu et al.

ship approaches the moving target, such a target is classified as crossing-from-portside one, leading to
portside manoeuvre of the own ship; the inconsistency in the collision avoidance manoeuvre increases
the risk of collision. For the same reason, it fails to avoid a collision in Scenarios IV and V.

As shown in Figure 19, the minimum distance in scenario V is smaller than the other scenarios. The
reason is that the minimum distance between the own ship and obstacles are mainly determined by the
lateral distance along the reference line. In Scenarios III and IV, the relative lateral speed between the
own ship and moving target is large enough to maintain a safe distance. Meanwhile, the lateral speed of
moving target is very small, leading to the smaller relative lateral speed and distance in Scenario V.

5. Conclusion

The contribution of this paper is a radar-based trajectory-generation algorithm which allows for collision
avoidance. Such a method can easily accommodate the passenger comfort, physical constraints and
manoeuvre smoothness. The experimental results demonstrate that it realises the short-term objectives,
such as velocity keeping and collision avoidance. Future work includes combining GNSS with the inertial
measurement unit to enable high-frequency and high-quality measurements on the motion of the own
ship and obstacles. This might achieve the increased robustness of collision avoidance, especially for
the dynamic obstacles. Extensive experimental study should be conducted on the effect of parameters
on the performance of the given path-planning algorithm, which will develop an adaptive path-planning
method.

Acknowledgements. This paper is partly supported by the National Science Foundation of China (61473183, U1509211,
61627810), and National Key R&D Program of China (2017, YFE0128500).

References
Bishop, G. and Welch, G. (2001). An introduction to the kalman filter. Proc of SIGGRAPH, Course, 8(27599–23175), 41.
Blaich, M., Rosenfelder, M., Schuster, M., Bittel, O. and Reuter, J. (2012a). Fast Grid Based Collision Avoidance for Vessels

Using A∗ Search Algorithm. Presented at the 2012 17th International Conference on Methods & Models in Automation &
Robotics (MMAR), IEEE, pp. 385–390.

Blaich, M., Rosenfelder, M., Schuster, M., Bittel, O. and Reuter, J. (2012b). Extended grid based collision avoidance
considering COLREGs for vessels. IFAC Proceedings Volumes, 45(27), 416–421.

Cockcroft, A. N. and Lameĳer, J. N. F. (2003). Guide to the Collision Avoidance Rules. Oxford: Elsevier.
Dolgov, D., Thrun, S., Montemerlo, M. and Diebel, J. (2008). Practical search techniques in path planning for autonomous

driving. Ann Arbor, 1001(48105), 18–80.
Eriksen, B. H., Breivik, M., Wilthil, E. F., Flåten, A. L. and Brekke, E. F. (2019). The branching-course model predictive

control algorithm for maritime collision avoidance. Journal of Field Robotics, 36(7), 1222–1249.
Fossen, T. I. (2011). Handbook of Marine Craft Hydrodynamics and Motion Control. Chichester: John Wiley & Sons.
Frenet, F. (1852). Sur les courbes à double courbure. Journal de mathématiques pures et appliquées, 17, 437–447.
González, D., Pérez, J., Milanés, V. and Nashashibi, F. (2015). A review of motion planning techniques for automated vehicles.

IEEE Transactions on Intelligent Transportation Systems, 17(4), 1135–1145.
Howard, T. M. and Kelly, A. (2007). Optimal rough terrain trajectory generation for wheeled mobile robots. The International

Journal of Robotics Research, 26(2), 141–166.
Kühnel, W. (2015). Differential Geometry, vol. 77. Stuttgart: American Mathematical Soc.
Kuwata, Y., Wolf, M. T., Zarzhitsky, D. and Huntsberger, T. L. (2013). Safe maritime autonomous navigation with COLREGS,

using velocity obstacles. IEEE Journal of Oceanic Engineering, 39(1), 110–119.
Paden, B., Čáp, M., Yong, S. Z., Yershov, D. and Frazzoli, E. (2016). A survey of motion planning and control techniques for

self-driving urban vehicles. IEEE Transactions on Intelligent Vehicles, 1(1), 33–55.
Reif, J. and Wang, H. (1998). The Complexity of the two Dimensional Curvature-Constrained Shortest-Path Problem. Presented

at the Third International Workshop on Algorithmic Foundations of Robotics. pp. 49–57.
Schuster, M., Blaich, M. and Reuter, J. (2014). Collision avoidance for vessels using a low-cost radar sensor. IFAC Proceedings

Volumes, 47(3), 9673–9678.
Takahashi, O. and Schilling, R. J. (1989). Motion planning in a plane using generalized Voronoi diagrams. IEEE Transactions

on Robotics and Automation, 5(2), 143–150.
Takahashi, A., Hongo, T., Ninomiya, Y. and Sugimoto, G. (1989). Local Path Planning and Motion Control for AGV in

Positioning. Presented at the Proceedings. IEEE/RSJ International Workshop on Intelligent Robots and Systems’.(IROS’89)’The
Autonomous Mobile Robots and its Applications, IEEE, pp. 392–397.

https://doi.org/10.1017/S037346332300019X Published online by Cambridge University Press

https://doi.org/10.1017/S037346332300019X

The Journal of Navigation 505

Werling, M., Ziegler, J., Kammel, S. and Thrun, S. (2010). Optimal Trajectory Generation for Dynamic Street Scenarios in A
Frenet Frame. Presented at the 2010 IEEE International Conference on Robotics and Automation. IEEE, pp. 987–993.

Wilthil, E. F., Flåten, A. L., Brekke, E. F. and Breivik, M. (2018). Radar-based Maritime Collision Avoidance Using Dynamic
Window. Presented at the 2018 IEEE Aerospace Conference, IEEE, pp. 1–9.

Cite this article: Hu Z, Yang Z, Liu X, Zhang W (2023). Radar-based path planning of autonomous surface vehicle with static and dynamic
obstacles in a Frenet Frame. The Journal of Navigation 76: 4–5, 487–505. https://doi.org/10.1017/S037346332300019X

https://doi.org/10.1017/S037346332300019X Published online by Cambridge University Press

https://doi.org/10.1017/S037346332300019X
https://doi.org/10.1017/S037346332300019X

	1 Introduction
	2 Theoretical background
	2.1 Vessel model
	2.2 Collision risk assessment
	2.3 Frenet frame
	2.4 Coordinate transformation
	2.4.1 Transform Cartesian frame to Frenet frame
	2.4.2 Transform Frenet frame to Cartesian frame

	2.5 Optimal trajectory generation
	2.5.1 Lateral movement
	2.5.2 Longitudinal movement
	2.5.3 Combined trajectory

	2.6 Path-following algorithm
	2.7 Framework of path-planning algorithm

	3 Experimental setup
	4 Results
	4.1 Pure-pursuit test
	4.2 Collision-avoidance test with a single static obstacle (Scenario I)
	4.3 Collision-avoidance test with two static obstacles (Scenario II)
	4.4 Collision-avoidance test with crossing-from-portside obstacles (Scenario III)
	4.5 Collision-avoidance test with crossing-from-starboard obstacles (Scenario IV)
	4.6 Collision-avoidance test with head-on obstacles (Scenario V)
	4.7 Repeatability test and failure analysis

	5 Conclusion

