
3
The BCS theory

3.1 The BCS wavefunction

To deal with realistic situations, the degenerate model of Section 2.4 has to be
generalized for more realistic applications than those discussed in Chapter 2.
We need to consider not only the case where several nucleons outside a closed
shell occupy non-degenerate single-particle levels, but also the situation where
the matrix elements Gνν ′ of the pairing interaction are not necessarily equal. There
is no analytical method for finding the energy levels and wavefunctions of the
more general pairing Hamiltonian defined in equation (2.28) but the BCS method
gives the solution to this problem in the mean-field approximation (Bardeen,
Cooper and Schrieffer (1957a,b)).

One way to generalize the ground-state wavefunction of the degenerate model
discussed in Chapter 2 is to define an operator

B† =
∑
ν

gνa
†
νa

†
ν̄ , (3.1)

which creates a correlated pair of nucleons analogous to a Cooper pair. The
coefficents gν specify its structure. In a spherical nucleus the binding is strongest
for an s-pair with total angular momentum zero. In this case the pair-creation
operator can be written in terms of the operators P†

j defined in equation (2.16)

B† =
∑

j

g j P†
j . (3.2)

A completely antisymmetric state 
n with n pairs outside a closed inert core
|0〉 is approximated by


n = Nn(B†)n|0〉, (3.3)

52

https://doi.org/10.1017/9781009401920.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401920.004


3.1 The BCS wavefunction 53

where Nn is a normalization constant. The wavefunction (3.3) can be used as
a trial wavefunction in a variational principle and the coefficients g j treated as
variational parameters (de Gennes (1966)). The wavefunction (3.3) is not very
easy to work with. One can consider instead a generating function


 = C�ν>0(1 + eiφgνa
†
νa

†
ν̄)|0〉, (3.4)

where C is chosen so that 
 is normalized. In equation (3.4) ν refers to the
quantum numbers of the single-particle states | j,m〉 and ν̄ to the time-reversed
states (−1) j−m | j − m〉 (see Appendix A, Section A.2).

The product in equation (3.4) is over ν > 0, where the notation indicates that
only a single term is included for each pair of degenerate levels. For example, in
a spherical nucleus the product is taken only over positive values of the magnetic
quantum numbers m. Negative values of m are included automatically because
a†
ν a†

ν̄ creates a pair in the state ν and its time reverse ν̄. The state 
 is not an
eigenstate of the particle number. However the state 
n can be projected out
of 
 by picking out the coefficient of exp(inφ) in the expansion of (3.4) (see
equations (4.45), (4.46) and subsequent discussion).

The BCS wavefunction is obtained by writing 
 in a slightly different way
by incorporating the normalization constant into the product (see Appendix G,
Section G.4)


 = �ν>0 (Uν + Vν a†
ν a†

ν̄)|0〉, (3.5)

with

Vν/Uν = eiφgν, |Uν |2 + |Vν |2 = 1. (3.6)

In general the coefficients Uν and Vν are complex but in Sections 3.2–3.7 they
are taken to be real quantities restricted only by the normalization condition in
equation (3.6), which ensures that
 is normalized to unity. The phase φ will re-
emerge in Section 3.8 and will play an important role as a gauge angle (see also
Chapters 1, 4 and Appendix I). The wavefunction
was introduced by Bardeen,
Cooper and Schrieffer (1957a) in their fundamental paper on superconductivity.

The wavefunction 
 does not have a definite number of particles, but it can
be written as a linear combination of the normalized eigenstates 
n with the
particle number N = 2n


 =
∑

n

an
n.

The average number of particles is

〈N 〉 = 2〈n〉 = 2
∑
ν>0

|Vν |2, (3.7)
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54 The BCS theory

and the width �N of the probability distribution |an|2 is given by

(�N )2 = 〈N 2〉 − 〈N 〉2 = 4
∑
ν>0

|Uν |2|Vν |2. (3.8)

To estimate�N assume that the single nucleon states |ν〉 (i.e. the states | jm〉
with positive m) have an average spacing d and are partially occupied over an
energy range 2�. Then

(�N )2 � 2 �/d � 〈Np〉 (3.9)

where 〈Np〉 is the average number of particles occupying single-particle levels
with energy lying in this energy range.

In a superconductor 〈Np〉 � 1 so that

〈N 〉 > 〈Np〉 � �N � 1. (3.10)

Typical numbers are 〈Np〉 � 1016, �N ∼ 108. In these circumstances the
probability distribution of the number of pairs has a very sharp maximum, but
an still has a rather smooth dependence on n in the sense that

an ≈ an+p, (3.11)

if p is not too large. This result means that expectation values of simple operators
can be calculated accurately with the wavefunction 
. Suppose F conserves
particle number. Then

〈
|F |
〉 =
∑
|aN/2|2〈N |F |N 〉. (3.12)

If 〈N |F |N 〉 is slowly varying on the scale of�N , then N may be replaced by
its average value 〈N 〉 = N ∗, and the matrix element taken outside the summation
so that

〈
|F |
〉 ≈ 〈N ∗|F |N ∗〉, (3.13)

In the same way if F acting on a state with N particles gives a state with
N + 2 particles then

〈
|F |
〉 =
∑

N

a∗( N+2
2 )a( N

2 )〈N + 2|F |N 〉

≈
∑

N

|aN/2|2〈N ∗ + 2|F |N ∗〉

≈ 〈N ∗ + 2|F |N ∗〉. (3.14)

The situation in a nucleus is different because in a typical case 〈Np〉 � 10
and �N ∼ 3. The relations (3.10) are not very well satisfied and the
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3.2 The energy 55

formulae (3.13) and (3.14) are not so accurate. They are, however, still use-
ful for making semi-quantitative estimates. If more accurate values are needed
then there are two ways to proceed. Either the number projected wavefunctions

n must be used, or the particle number fluctuations in 
 must be taken into
account (see Chapter 4 and Appendix I, Section I.4, see also Appendix J). Both
procedures lead to equivalent results (see Section 6.6). The number projected
wavefunctions
n have exactly the form of equation (3.3) with gν = Vν/Uν (see
Section 4.2).

3.2 The energy

The best wavefunction 
n of the form (3.3) is obtained by minimizing the
expectation value 〈
n|H |
n〉 with respect to the coefficients gν . When using
the wavefunction
 the procedure is different because the number of particles is
not fixed. The expectation value 〈
|H |
〉 has to be minimized with a constraint
that the average number of particles has a definite value. This can be done by
minimizing

〈
|H − λN |
〉, (3.15)

where λ is a Lagrange multiplier. Physically λ is the Fermi energy. The
Hamiltonian H contains the single-particle term and the pairing interaction de-
fined in equation (2.28) and is

H =
∑
ν>0

εν(a
†
νaν + a†

ν̄aν̄)−
∑
νν ′>0

Gνν ′P
†
ν Pν ′ . (3.16)

The expectation value of H − λN can be calculated in a straightforward way
using equation (3.5) for 
. The result is

〈
|H − λN |
〉 =
∑
ν>0

2V 2
ν (εν − λ)−

∑
νν ′>0

Gνν ′UνVνUν ′Vν ′ −
∑
ν>0

Gνν |Vν |4.

(3.17)

Here we have used the relations

〈
|P†
ν |
〉 = 〈
|Pν |
〉 = UνVν, (3.18)

where Uν and Vν are taken to be real and positive.
The last term proportional to |Vν |4 in equation (3.17) is essentially a Hartree–

Fock self-consistent field contribution to the single-particle energy. Its main
effect is to give a small renormalization of the single-particle energies. It
complicates the theory without giving any important physical effects and is
usually neglected because the aim of the simple BCS theory is to focus on the
effects of pairing (see Appendix G, Section G.3). We omit it in the subsequent
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56 The BCS theory

discussions. Any more general interaction would have other Hartree–Fock con-
tributions.

The stationary condition with respect to variations of Uν and Vν

δ〈
|H − λ|
〉 = 0

with the constraint UνδUν + VνδVν = 0, coming from the normalization condi-
tion on Uν and Vν , leads to the equation

2(εν − λ)UνVν −
∑
ν ′>0

Gνν ′(U
2
ν − V 2

ν )Uν ′Vν ′ = 0. (3.19)

This equation can be simplified by setting

Uν = sin θν, Vν = cos θν, (3.20)

where 0 ≤ θν ≤ π /2 so that Uν ≥ 0 and Vν ≥ 0. This representation was used
by Anderson (1958) in his paper on collective excitations in superconductors.

The normalization condition for Uν and Vν is satisfied automatically by this
choice and

2UνVν = sin 2θν, |Uν |2 − |Vν |2 = cos 2θν. (3.21)

Then the variational equations (3.17) reduce to

2(εν − λ)tan 2θν =
∑
ν ′>0

Gνν ′sin 2θν ′ . (3.22)

Equation (3.22) can be written in the form

tan 2θν = �ν

εν − λ, (3.23)

with

�ν = 1

2

∑
ν ′>0

Gνν ′sin 2θν ′ =
∑
ν ′>0

Gνν ′Uν ′Vν ′ . (3.24)

The angles θν are real and lie in the range 0 ≤ θν ≤ π/2. Hence the �ν are
real and positive if Gνν ′ > 0.

Equations (3.23) is equivalent to the relations

sin 2θν = �ν
Eν
, cos 2θν = (εν − λ)

Eν
, (3.25)

where

Eν =
√

(εν − λ)2 +�2
ν > 0. (3.26)

We also have

|U 2
ν | =

1

2

(
1+ εν − λ

Eν

)
, |V 2

ν | =
1

2

(
1− εν − λ

Eν

)
. (3.27)
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3.3 Excited states and quasiparticles 57

Note that |Vν |2 > 1
2 if the state εν is below the Fermi level λ.

Inserting equations (3.25) into equations (3.24) leads to

�ν = 1

2

∑
ν ′>0

Gν ′ν�ν ′√
(εν ′ − λ)2 +�2

ν ′

. (3.28)

These equations have to be solved simultaneously with

N = 〈N 〉 ≈
∑
ν>0

[
1− εν − λ√

(εν − λ)2 +�2
ν

]
, (3.29)

which can be considered as an equation for the Fermi energy λ. This condition
comes from the constraint that the mean number of particles in 
 should equal
the actual number N in the system. The minimum value of the energy which
corresponds to the above set of variational equations is

〈E〉 =
∑
ν>0

2|Vν |2εν − 1

4

∑
μν>0

Gμν

�μ

Eμ

�ν

Eν
. (3.30)

An important special case is the constant pairing model, where the pairing
matrix elements are Gμν = G for single-particle statesμ and ν lying in a certain
range around the Fermi level, and are zero if μ or ν lie outside that range. In this
case the�ν = � are all equal and the set of equations (3.28) reduces to a single
equation

1 = G

2

∑
ν>0

1√
(εν − λ)2 +�2

= G

2

∑
ν

1

Eν
. (3.31)

This is the well-known gap equation which is the starting point of much of
the theory of pairing in nuclei. The total energy equation (3.30) simplifies to

〈E〉 = 2
∑
ν>0

|Vν |2εν − �
2

G
. (3.32)

The mean square fluctuation in the nucleon number (3.8) is

(�N )2 =
∑
ν>0

�2

E2
ν

. (3.33)

An alternative approach to BCS theory is given in Appendix G.

3.3 Excited states and quasiparticles

The wavefunction 
 is a linear combination of states with an even number of
particles and is appropriate as an approximation to the ground state of a system
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58 The BCS theory

with N even. A possible trial wavefunction for an odd nucleus with a single
nucleon in the state μ is


μ = �ν>0,ν �=μ(Uν + Vνa
†
ν̄a

†
ν)a

†
μ|0〉. (3.34)

The expectation value of (H − λN ) in this state can be obtained from equation
(3.17) by replacing the term 2 |Vν |2(εμ − λ) in the sum over single-particle
energies by (εμ − λ) and by omitting the terms with ν or ν ′ equal to μ in the
potential energy terms. The result reduces to

〈
μ|H − λN |
μ〉 − 〈
|H − λN |
〉 = Eμ, (3.35)

where Eμ is given by equation (3.26). It is the energy needed to place an odd
particle in the state μ. The actual situation is more complicated because the
argument assumes that adding the extra particle does not change�ν or λ. In fact
there are changes in both equation (3.28) and equation (3.29) which determine
�ν and λ. The term ν = μ is omitted in equation (3.28), and in equation (3.29) N
must be replaced by N + 1 and the term ν = μ omitted in the sum on the right-
hand side. For a system like a superconductor, where the fluctuations are small,
the changes in λ and �μ are negligible but in a nucleus they can be important.
The changes in excitation energies and wavefunctions due to the fact that the
state μ is occupied by a single nucleon are called ‘blocking effects’.

If blocking effects are neglected, then the wavefunction 
μ defined in equa-
tion (3.34) can be written in another way by introducing quasiparticle creation
and annihilation operators by the Valatin (1958)–Bogoliubov (1958a,b) trans-
formations

α†μ = Uμa†
μ − Vμaμ̄, (3.36a)

α
†
μ̄ = Uμa†

μ̄ + Vμaμ, (3.36b)

αμ̄ = Uμaμ̄ + Vμa+μ , (3.36c)

αμ = Uμaμ − Vμa+μ̄ . (3.36d)

In a spherical nucleus the coefficients (Uμ, Vμ) should depend on j but not
on m. Using the phases introduced in equation (2.22), equation (3.36a) can be
written as

α
†
jm = U j a

†
jm − Vj (−1) j−ma j−m . (3.37a)

Equation (3.36b) becomes

(−1) j+mα
†
j−m = (−1) j+mU j a

†
j−m + Vj a jm . (3.37b)

These two equations are consistent for both positive and negative m.

https://doi.org/10.1017/9781009401920.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401920.004


3.3 Excited states and quasiparticles 59

The quasiparticle operators in equations (3.37) have the properties


μ = α+μ
 , (3.38a)

αμ
 = 0 , (3.38b)

{αμ, α+ν } = δμν. (3.38c)

The operators α†μ and αμ obey fermion commutation relations and are called
quasiparticle creation and annihilation operators. Because of condition (3.38b)

 is the quasiparticle vacuum state, and
μ defined by equation (3.38a) is a one-
quasiparticle state with a quasiparticle in the state μ. The quasiparticle energy
is

Eμ =
√

(εμ − λ)2 +�2 , (3.39)

its minimum value being �.
The wavefunction
 gives an approximate description of the ground state of an

even (open shell) nucleus. The one-quasiparticle state α†μ
 is an approximation
to a state of an odd nucleus. The two-quasiparticle state


μν = α†μα†ν
, (3.40)

with excitation energy

Eμ + Eν ≥ 2�, (3.41)

is an approximation to an excited state of an even nucleus.
Thus BCS theory with constant pairing predicts that there is an energy gap

of at least 2� between the ground state and the two-quasiparticle states. For
a metal, this implies that electrons can move without resistance, provided the
temperature is low so the probability of collisions with an energy exchange of
2� is low (see Chapter 1, see also discussion end Section 1.2). The system
is then said to be in a superconducting state. In the nuclear case the relation
(3.41) implies, for example, that the moment of inertia of a deformed system is
considerably smaller than the rigid value, provided that the angular momentum
is low so that the effect of the Coriolis force is smaller than 2� (see Chapter 6).

The concept of a quasiparticle state is simple only if blocking effects are
neglected and the values of � and λ are kept constant for the ground state and
for excited states. Blocking effects become more and more important as more
quasiparticles are excited and in the end are responsible for the phase transition
from the superconducting to the normal phase when the temperature, magnetic
field or angular velocity are increased beyond critical values. As the temperature
of a superconductor is increased, more and more quasiparticles are excited and
the pairing gap 2� is reduced because of blocking. As the pairing gap is reduced
it is easier to excite quasiparticles. At the critical temperature the blocking effects
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60 The BCS theory

are catastrophic, the pairing gap goes to zero and superconductivity disappears
(see Fig. 1.15).

3.4 The mean-field Hamiltonian

The single-particle states in the Hartree–Fock theory are eigenstates of the mean-
field Hamiltonian. The mean-field potential in this Hamiltonian describes the
average interaction of a nucleon with all the other nucleons in the nucleus. In the
same way it is possible to introduce a mean field to describe the average pairing
interaction. In what follows we give a heuristic approach which is specific for
the BCS model with a constant pairing strength.

The procedure is to introduce a pair-potential which is analogous to the
Hartree–Fock self-consistent field (see also Appendix G)

Vpair = −�(P† + P) with � = G〈P†〉 = G〈P〉. (3.42)

In this equation 〈P†〉 is shorthand for 〈
0|P†|
0〉 and P† is the pair-creation
operator

P† =
∑
ν>0

a†
νa

†
ν̄ . (3.43)

With the sign convention of Section 3.2, � and 〈P†〉 = 〈P〉∗ are real and
positive. A notable feature of the pair-potential (3.42) is that it does not conserve
particle number. This is not unexpected because the BCS ground state does not
have a good particle number in any case.

The mean-field Hamiltonian is

h′ =
∑
ν>0

(εν − λ)(a†
νaν + a†

ν̄aν̄)−�(P† + P). (3.44)

When h′ is written in terms of the quasiparticle operators (3.36) it reduces to

h′ =
∑
ν

Eν(α
†
ναν + α†ν̄αν̄)+ h0, (3.45)

where Eν are the quasiparticle energies, α†ν , αν are the quasiparticle creation
and annihilation operators and h0 is a constant. The quasiparticle operators (3.36)
satisfy Fermi commutation relations. Hence (see (A.69))

[h′, α†ν] = Eνα
†
ν and [h′, αν] = −Eναν. (3.46)

Substituting the expression (3.44) for h′ and (3.36) for α†ν we find that (3.44)
and (3.45) are consistent provided Uν and Vν satisfy the matrix equations(

εν − λ �

� − (εν − λ)

)(
Uν
Vν

)
= Eν

(
Uν
Vν

)
. (3.47)
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The positive eigenvalue of equation (3.47) is the quasiparticle energy

Eν =
√

(εν − λ)2 +�2,

and the coefficients (Uν, Vν) satisfy

�Vν = (Eν − (εν − λ)) Uν.

Combining this with the normalization condition (U 2
ν + V 2

ν ) = 1 gives

U 2
ν − V 2

ν =
2(εν − λ)

�
UνVν, (3.48)

which is consistent with equations (3.21) and (3.25) (see Appendix G).
We conclude this section with some general remarks about mean-field poten-

tials. Suppose h′ includes a deformation potential as well as a pairing potential.
A possible form is

h′ =
∑
ν>0

(εν − λ)(a†
νaν + a†

ν̄aν̄)− K 〈Q〉Q − G
(〈P†〉P + 〈P〉P†). (3.49)

The first term in (3.49) contains the single-particle energies in a spherical po-
tential. The second is a quadrupole deformation field proportional to a quadrupole
moment operator Q of the nucleons in occupied orbitals. It arises from an effec-
tive quadrupole–quadrupole interaction between nucleons and is self-consistent
in the sense that it is proportional to the average quadrupole moment of the
nucleus (Bohr and Mottelson (1975)). The first two terms in (3.49) together cor-
respond to the Nilsson shell-model potential for a deformed nucleus (Nilsson
(1955), Nilsson and Ragnarsson (1995)). The third term is the pairing potential.

The total energy of a nucleus with mean-field Hamiltonian (3.49) is

〈(H − λN )〉 =
∑

(εν − λ)〈Nν〉 − 1
2 K 〈Q〉.〈Q〉 − G〈P†〉〈P〉. (3.50)

The factor 1
2 in the second term arises because the quadrupole–quadrupole

force is a two-body effective interaction and the term −K 〈Q〉.〈Q〉 counts the
energy of each pair twice. A similar argument explains the relation between the
coefficients of the pairing terms in the mean field and in the total energy.

3.5 The correlation energy

The pair-correlation energy of a many-particle system is the difference between
the energies with and without pairing. If the pairing strength is constant, the
energy including pair correlations is

Ep =
∑
ν>0

2|Vν |2εν −�2/G, (3.51)
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while the energy without correlations is

E0 =
∑
ν>0

2|V 0
ν |2εν. (3.52)

The occupation probabilities |V 0
ν |2 in equation (3.52) are unity below the Fermi

level and zero above. In both equations (3.51) and (3.52) the Fermi energy εF

has to be chosen to give the correct number of particles. The correlation energy
is

Ecorr = Ep − E0. (3.53)

This energy must be negative if the pairing correlations are to be stable. The
correlation energy can also be written as

Ecorr = Es −�2/G (3.54)

where

Es =
∑
ν>0

2(|Vν |2 − |V 0
ν |2)εν. (3.55)

The correlation energy can be estimated in a closed form when the single-
particle levels which contribute to the pairing are uniformly spaced between
εF −� and εF +� and the pairing strength is constant in this range and zero
outside. We choose εF = 0 and denote the single-particle level density by g. The
level ν and its time reverse ν̄ are degenerate so the density of levels with ν > 0 is
g/2. Note that for a uniform level distribution g/2 = 1/d, where d is the energy
difference between two successive levels (see Fig. 2.3). The gap equation (3.31)
can be written as an integral equation

gG

4

∫ �

−�

dε√
ε2 +�2

= 1, (3.56)

provided that the gap parameter� is large compared with the spacing of single-
particle levels (g�� 1). The integral can be evaluated to give

gG

2
sinh−1(�/�) = 1. (3.57)

This equation yields a formula for the gap parameter

� = �/ sinh(2/gG) ≈ 2�e−2/gG, (3.58)

where the last formula is valid in the weak coupling limit 2/gG � 1 or�� �.
With the same approximation the single-particle part of the correlation energy
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is given by

Es = g

2

[ ∫ �

−�

(
1− ε√

ε2 +�2

)
εdε − 2

∫ 0

−�
εdε

]
= g

2

[
�2 −�

√
�2 +�2

]
+�2/G

≈ �2/G − g�2/4, if �� �. (3.59)

Substituting this expression in equation (3.54) gives the BCS expression for
the correlation energy

Ecorr = −g
�2

4
. (3.60)

In the case of a uniform level (g = 2/d) distribution Ecorr = −�2/2d.
At this stage we give some estimates of the parameters in equation (3.58).

The total level density for neutrons and protons for a nucleus with N = Z in the
Fermi gas model is

gn + gp = 3A

2εF
≈ A

25
MeV−1, (3.61)

making use of the Fermi energy εF = 37 MeV. Empirical evidence shows that
the value given in equation (3.61) is an underestimate. A better estimate which
takes surface effects into account (see Chapter 9 and Appendix B) is gn + gp =
A/16 MeV−1 (see Bohr and Mottelson (1969), Bortignon, Bracco and Broglia
(1998)). In this section we use

gn = N/16 MeV−1, gp = Z/16 MeV−1, (3.62)

for the neutron and proton level densities (see Section 8.2).
The monopole pairing force constants used in the rare earth region to reproduce

the empirical value of the pairing gap are (Nilsson and Ragnarsson (1995), see
also equation (2.27))

Gn = 20.5/A MeV, Gp = 26/A MeV. (3.63)

The parameter combination in the gap equation (3.58) is 2/gG. In the rare
earth region this combination does not have a strong A dependence and the values
for neutrons and protons are

2/(gnGn) = 2.7, 2/(gpGp) = 2.9. (3.64)

They are consistent with the weak coupling limit (3.58). Bohr and Mottelson
(1975) choose � = �ωc where �ωc = 41A−1/3 MeV is the major shell spacing
in the harmonic oscillator shell model. For a nucleus with A = 160 we have
� = 7.6 MeV which leads to a gap parameter �n = 1.0 MeV for neutrons. The
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64 The BCS theory

global empirical formula given in equation (1.28) gives �n = 0.95 MeV which
is close to the value calculated from the gap equation.

For the same mass number the numerical values of the terms in (3.59) for one
type of particle are

�2/G ≈ 7.8 MeV, g�2/4 ≈ 1.5 MeV,

where the values of Gn and gn from equations (3.63) and (3.62) have been used.
In this last equation the empirical value N = 0.6A was used.

The total pairing energy�2/G is quite large but in the correlation energy it is
partially cancelled by a similar term describing the fact that, in the BCS ground
state, particles moving in levels close to the Fermi energy are partially excited
across the Fermi surface, in keeping with the fact that V 2

ν changes smoothly from
1 to 0 around λ, being equal to 1

2 at the Fermi energy. The overall result Ecorr ≈
−g�2/4 ≈ −1.5 MeV, corresponds to a considerably smaller (in absolute value)
contribution.

3.6 Pairing correlations in the wavefunction

If the nucleus has many nucleons outside closed shells the pairing interaction
can produce strong correlations in the wavefunction. The matrix element

α0 = 〈
|P†|
〉 (3.65)

of the pair addition operator P† is non-zero and gives a measure of the pair
correlations in the BCS wavefunction. The operator P† increases the number of
particles by 2 and, according to the arguments in Section 3.1,

α0 = 〈
|S+|
〉 ≈ 〈N ∗ + 2|P†|N ∗〉. (3.66)

The matrix element (3.65) can be easily calculated and the result is

α0 =
∑
ν>0

UνVν = �
2

∑
ν>0

1

Eν
= �

G
. (3.67)

Because UνVν is peaked at the Fermi energy, one can replace the state dependent
value of this quantity by 1/2. Consequently 2α0 = �.

Thus, the quantity α0 can be used to give an estimate of the number of corre-
lated pairs in the BCS ground state.

In the rare earth region (A ∼ 170) Gn ≈ 0.12 MeV, Gp ≈ 0.15 MeV and�n ≈
�p ≈ 0.92 MeV and the pairing-correlation parameters for neutrons and protons
are estimated as

(α0)n ≈ 8, (α0)p ≈ 6. (3.68)

Thus the number of correlated neutron and proton pairs is small, and pairing
is a relatively weak effect in nuclei. Consequently, one expects that pairing
fluctuations, which play a minor role in macroscopic systems, become important
in nuclei (see Chapter 5 and Section 8.4).
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3.7 The degenerate model in the BCS approximation

The pairing model with degenerate single-particle levels was solved analytically
by the quasi-spin method in Section 2.4. Expressions were given for the energy
levels, wavefunctions, and pair-distortion matrix elements. In this section we test
the accuracy of the BCS method by comparing the BCS approximation with the
exact results of the quasi-spin approach (see also Appendix H).

The exact ground-state energy of a system with an even number of particles
is given in equation (2.39) as

Eex = Nε − 1
4 G N (2�− N + 2), (3.69)

where 2� is the degeneracy of the level with energy ε. To obtain the BCS
approximation to the ground-state energy we note that, as all the single-particle
energies εν are equal, the quasiparticle energies Eν and occupation probabilities
|Vν |2 are independent of ν. The gap equation (3.31) reduces to a simple algebraic
equation for the quasiparticle energy

E =
√

(ε − λ)2 +�2 = 1
2�G. (3.70)

The constraint (3.7) on the total particle number gives the BCS occupation
probability

V 2 = N

2�
. (3.71)

The Fermi energy and gap parameter are given by

ε − λ = 1
2 G(�− N ), �2 = 1

4 G2 N (2�− N ). (3.72)

Using these in equation (3.32) for the BCS ground-state energy we get

EBCS = Nε − 1
4 G N (2�− N ). (3.73)

To assess the accuracy of the BCS method one can look at the ratio

Eex − EBCS

Eex − Nε
= 2

2�− N + 2
. (3.74)

As an example, one can consider the case of 116Sn where there are N = 16 va-
lence neutrons occupying the orbits g7/2, h11/2, d5/2, d3/2 and s1/2 (see Fig. 10.2).
If all these levels are assumed to be degenerate then� = 16 and the ratio (3.74)
is 0.11 or 11%.

The first excited states in the exact solution are the seniority v = 2 states while
in the BCS method they are the two-quasiparticle states. The excitation energy is
�E = G� in both cases. The pair-transfer amplitude is the BCS pair-distortion
parameter (3.67)

α0 = �/G = 1
2

√
N (2�− N ),
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66 The BCS theory

which agrees well with (2.57) if N and � are reasonably large. For the 116Sn
example the ratio α0/〈N + 2, 0|P+|N , 0〉 is equal to (16/18)1/2 = 0.94, im-
plying a 6% error of the BCS estimate. However, the measurable quantity is
the ratio of the two-particle transfer cross-sections. In this case, the ratio is
16/18 = 0.89, corresponding again to an 11% error. Note that if one con-
siders the Hartree–Fock self-consistent field contribution in equation (3.17),
(3.73) becomes EBCS = NE − 1

4 G N (2�− N + N/�). The ratio (3.74) is equal
to (2− N/�)/(2�− N + 2) (Lawson (1980)) which has the value 0.06 for
� = N = 16.

3.8 Gauge invariance

There is a close analogy between the BCS wavefunction for a system with
pairing and the Hartree–Fock wavefunction of a deformed nucleus (Bes and
Broglia (1966)). In both cases there is a broken symmetry, which is the topic
of discussion of the next chapter, and which is briefly touched upon in this section.
First we recall some properties of a deformed Hartree–Fock wavefunction.

The Hartree–Fock method approximates the ground-state wavefunction of a
nucleus by a Slater determinant which minimizes the expectation value of the
Hamiltonian (see Appendix A). The nuclear Hamiltonian is rotationally invariant
and its exact eigenstates are also eigenstates of angular momentum. On the
other hand, in many cases, the Hartree–Fock state is deformed and is not an
angular momentum eigenstate. Symmetry is broken because the Hartree–Fock
wavefunction has a lower symmetry than the original Hamiltonian. Rotational
symmetry is still present in the sense that there are many degenerate solutions
of the Hartree–Fock equations. Rotating one solution yields another with the
same energy. States with definite angular momentum, which are approximations
to the states in the lowest rotational band of the nucleus, can be projected out
of a deformed Hartree–Fock wavefunction. The Hartree–Fock state is called the
intrinsic state of the rotational band (Nilsson (1955), Bohr and Mottelson (1975),
see equation (3.50)).

The BCS wavefunction has analogous properties. The pairing Hamiltonian
conserves particle number and if N is the particle number operator

[N , H ] = 0 or U †(χ )HU (χ ) = 1, (3.75)

where the unitary gauge operator is defined as

U (χ ) = e−iNχ/2. (3.76)

The relations (3.75) express the fact that H is invariant for rotations in gauge
space. The general BCS wavefunction is


 = �ν>0(Uν + eiφVνa
†
νa

†
ν̄)|0〉, (3.77)
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where Uν and Vν are chosen to be real. The gauge operator acting on 
 gives

U (χ )
 = �ν>0(Uν + ei(φ−χ )Vνa
†
νa

†
ν̄)|0〉. (3.78)

The BCS state 
 does not have a definite particle number and can be called
a ‘deformed state in gauge space’. The angle φ specifies the orientation of the
BCS state
 in gauge space and U (χ ) rotates it through an angle χ in that space.
Invariance of H for rotations in gauge space implies that the energy expectation
value is independent of φ or χ . The BCS wavefunction (3.77) can be thought
of as being deformed in gauge space. The α0 in equation (3.65) gives a measure
of the deformation. For this reason it is sometimes called the pair-distortion
parameter.

As discussed in Section 3.1 the BCS state can be written as a linear combination
of normalized states 
n with a definite number of pairs n = N/2,


 =
∑

aneinφ
n. (3.79)

Projection of a state with definite particle number n means to pick out the com-
ponent 
n from 
. It is the term with coefficient proportional to einφ in the
expansion (3.79).

The gauge angle χ is the conjugate variable to the number n of pairs. One
can transform from a pair number to a gauge angle representation by making a
Fourier transformation (see discussion after equation (4.46), Section 4.2)


(χ ) =
∑

n

einφ
n. (3.80)

Then the gauge angle χ is a dynamical variable conjugate to the number of pairs
n. In the gauge angle representation the operator can be written as

n = −i
∂

∂χ
. (3.81)

There is an uncertainty relation between χ and n

�χ�n ∼ 1, (3.82)

which has to be understood with the same qualifications as for the angle –
angular momentum uncertainty relation because χ is restricted to the range
0 ≤ χ < 2π . These subjects are taken up in further detail in the next chapter
(see also Appendix I).

3.9 Matrix elements of one-body operators

Formulae for matrix elements of one-body operators in the BCS theory are
derived in Lane (1964), Kisslinger and Sorensen (1963), Rowe (1970), Bes
and Sorensen (1969), Ring and Schuck (1980), Bohr and Mottelson (1975).
For completeness we summarize some of the important results here. In second
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68 The BCS theory

quantization the one-body operator F̂ is

F =
∑
μν

〈μ|F |ν〉a†
μaν. (3.83)

Expressing the particle-creation and annihilation operators in terms of
quasiparticle operators this equation becomes

F =
∑
μν

〈μ|F |ν〉 (Uμα†μ + Vμαμ̄
) (

Uναν + Vνα
†
ν̄

)
= F0qp + F1qp + F2qp + F†

2qp. (3.84)

Here

F0qp =
∑
ν

〈ν|F |ν〉V 2
ν ,

F1qp =
∑
μν

〈μ|F |ν〉
(

UμUνα
†
μαν − VμVνα

†
ν̄αμ̄

)
,

F2qp =
∑
μν

〈μ|F |ν〉UμVνα
†
μα

†
ν̄ , (3.85)

where the Bogoliubov amplitudes Uν and Vν are real.
The operator F0qp does not depend on the quasiparticle operators and may have

a non-zero expectation value in the BCS vacuum state |BCS〉. The F1qp operator
has matrix elements between one-quasiparticle states while the operators F2qp

and F†
2qp create and annihilate pairs of quasiparticles respectively.

When the operator F has the time-reversal properties (τ−1 Fτ )† = −cF then
the analysis carried out in Appendix A, Section A.2 shows that

〈μ̄|F |ν̄〉 = −c〈ν|F |μ〉 and 〈μ|F |ν̄〉 = c〈ν|F |μ̄〉. (3.86)

Using these relations we get

F0qp =
∑
ν>0

V 2
ν (〈ν|F |ν〉 + 〈ν̄|F |ν̄〉) =

∑
ν>0

V 2
ν (1− c)〈ν|F |ν〉. (3.87)

The expression for F1qp can be simplified by making a change of summation
variables ν̄ → μ and μ̄→ ν in the second term. It reduces to

F1qp =
∑
μν

〈μ|F |ν〉 (UμUνα
†
μαν + cVμVνα

†
ναν

)
. (3.88)

In a similar way

F2qp =
∑
μ>ν

(
UνVμ − cUμVν

) 〈μ|F |ν̄〉α†μα†ν. (3.89)

Matrix elements of F between states with the same number of quasiparti-
cles or with quasiparticle number differing by 2 can be calculated from these
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expressions. Pair correlations can enhance or suppress matrix elements depend-
ing on the time-reversal properties of the operator.

One example is the influence of pairing correlations on matrix elements
of single-particle multipole operators in one-quasiparticle states in a spheri-
cal nucleus. The reduced matrix element of the operator Fλμ in a quasiparticle
state j̄ is related to the corresponding single-particle reduced matrix element
by

〈 j̄‖Fλ‖ j̄〉 = (
U 2

j + cV 2
j

) 〈 j‖Fλ‖ j〉. (3.90)

The quadrupole operator Q2μ is time-even and has c = −1. Hence quadrupole

matrix elements in one-quasiparticle states are modified by a factor
(

U 2
j − V 2

j

)
.

This factor is positive if the quasiparticle state is above the Fermi level and
negative if it is below. On the other hand the magnetic moment operator M1μ is

time-odd, has c = 1 and the corresponding factor is
(

U 2
j + V 2

j

)
= 1. Thus the

magnetic moment of a quasiparticle state is the same as for a particle state.
Another example is the effect of pairing on the moment of inertia of a deformed

nucleus. The cranking moment of inertia in a nucleus with pairing is (Belyaev
(1959), Migdal (1959), Bohr and Mottelson (1975))

I = 2�
2
∑
μν

|〈μν| jy|BC S〉|2
Eμ + Eν

, (3.91)

where the sum is taken over two-quasiparticle states. Using the relation between
two-quasiparticle matrix elements and particle matrix elements we have

|〈μν| jy|BC S〉|2 = |〈μ| jy|ν̄〉|2
(
UμVν −UνVμ

)2
(3.92)

because jy is a time-odd operator and c = 1. The cranking formula gives a mo-
ment of inertia equal to the rigid value when there are no pairing correlations.
Pairing correlations reduce the moment of inertia partly because the energy de-
nominators are increased (the quasiparticle excitation energies are larger than the
corresponding particle excitations) and partly because the two-quasiparticle ma-
trix elements of jy are smaller than the corresponding particle matrix elements.

3.10 Pairing and isospin

An important nuclear symmetry property manifests itself in the conservation of
isospin: a nuclear state is characterized by the total isospin quantum number as
well as by the total angular momentum, the number of pairs of particles, etc. The
existence of the isospin symmetry requires that the Hamiltonian describing the
nuclear system should be invariant under rotations in isospace. The isospin sym-
metry is violated by a pairing interaction acting only between identical nucleons,
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as was the case considered in the previous sections. Thus an invariant pairing
force must, in addition to the nn and pp terms, contain pn components. One
may distinguish between an isoscalar (T = 0) and an isovector (T = 1) pairing
interaction. The isoscalar pairing interaction acts only between np pairs coupled
to T = 0. The isovector interaction has equal matrix elements between pp, np
and nn pairs coupled to T = 1 (see e.g. Bohr (1968), Nathan (1968), Bayman et
al. (1969), Bes et al. (1977), Dussel et al. (1970), Garrido et al. (1999)).

Parikh (1965) gave an exact solution of the pairing problem for a system of
neutrons and protons in a degenerate single-particle level interacting with an
isovector pairing force by generalizing the quasi-spin methods using identical
nucleons. The role of the seniority υ is played by two quantum numbers, namely
the seniority itself and the reduced isospin t (which is the isospin of the unpaired
nucleons). Within each representation (υ, t), the states are labelled by the total
number of nucleons N , the total isospin T and its z-component Tz . The energy
eigenvalues are given by

E (υ, t ; N , T ) =−G1

2

[
N

(
�− N − 6

4

)
− v

(
�− υ − 6

4

)
+ t (t + 1)− T (T + 1)

]
(3.93)

This expression reduces to equation (2.39) in the case of identical nucleons by
putting T = N/2 and t = υ/2. If υ = 0 only even (odd) values of T are allowed
if the number of pairs is even (odd).

3.10.1 T = 0 and T = 1 pairing co-existence

All the discussion in the previous sections of this chapter relate to isovector
pairing. The strength of the two-body nucleon–nucleon interaction is comparable
in T = 0 and T = 1 states so there is no a priori reason why pairing should be
more important for isovector pairs than for isoscalar pairs. To give an idea of
the issues involved we refer to a selection of the many papers written on this
subject.

Engel et al. (1997) examined the possible co-existence of isovector and
isoscalar pairing in an exactly solvable model. They considered a degener-
ate model with a Hamiltonian containing both isovector (T = 1, S = 0) and
isoscalar pairing (T = 0, S = 1) pairing. The Hamiltonian contains a parameter
x which fixes the relative strengths of the isovector and isoscalar pairing; x = −1
is pure isovector pairing, x = 1 is pure isoscalar while for x = 0 the isovector
and isoscalar strengths are equal. They calculated the overlap between the exact
ground state and the pure isovector spin-singlet paired state as a function of x
in a T = 0 nucleus with an even number of pairs. They found that there is a
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relatively sharp phase transition as x increases through zero. The ground state is
a rather pure isovector paired state for x < 0 and changes to an isoscalar paired
state as x increases through zero. There is a strong mixing for x = 0 and for this
value of x the Hamiltonian has Wigner SU(4) supermultiplet symmetry.

Goodman (1998) solved the isospin generalized BCS and Hartree–Fock–
Bogoliubov equations for the ground states of even–even N = Z nuclei with
mass numbers A = 76–96. His calculations included both isovector and isoscalar
pairing. He found a transition from isovector pairing at the beginning of the iso-
tope sequence to isoscalar pairing near the middle of the sequence. These results
indicate that T = 0 and T = 1 pairing can co-exist and that T = 0 pairing can
be dominant in some nuclei. This result is consistent with the findings of Engel
et al. (1997). In a recent paper Bes et al. (2000) found a more general class of
solutions to the BCS equations in the presence of isovector and isoscalar pairing
correlations.

One indication of np pairing comes from the Wigner energy. This is an ad-
ditional binding energy of an N = Z nucleus relative to its neighbours which
appears as a spike in the isobaric mass parabola as a function of T3 = |N − Z | /2.
Satula et al. (1997a) used a standard form for the Wigner energy and extracted
its parameters from experimental binding energies. Then they made shell model
calculations in the s-d and p-f shells using standard interactions which include
both T = 1 and T = 0 components. The parameters of the Wigner energy
extracted from the shell model binding energies fit the experimental values (see
also Goriely et al. (2001, 2002)). The authors repeated the shell model calcula-
tions with the T = 0 components removed. By comparing the results of the two
calculations they found that most of the Wigner energy in the shell model calcula-
tions comes from the T = 0 neutron–proton interaction and that the interaction
between deuteron-like (J = 1) and ‘stretched’ (Jmax) pairs are of comparable
importance. Within this context, it may be possible to create a T = 0 nuclear
vortex (see Appendix K, and Ramon Wyss, Key Topics in Nuclear Structure,
Abstracts, Paestum 23–27 May 2004, p. 73, as well as Satula and Wyss (2001a)
and Frauendorf and Sheikh (2000)).

Satula and Wyss (1997b) studied the competition between T = 0 and T = 1
pairing in N ≈ Z nuclei in a cranked mean field calculation (see also Satula and
Wyss (2001b)). They found that the sudden phase transition between T = 0 and
T = 1 pairing is a generic feature of the BCS approximation for N = Z nuclei.
This phase transition is smeared out if a good particle number is projected out
by the Lipkin (1960), Nogami (1964) method. Then the T = 0 and T = 1 pairing
correlations can co-exist even at non-zero rotational frequencies. For N �= Z nu-
clei T = 0 and T = 1 pairing correlations can co-exist even in the BCS approxi-
mation but are confined to a narrow region along the N = Z line. The additional
binding arising from these correlations can be viewed as a microscopic origin of
the Wigner energy in even nuclei.
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