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Background. Te problem of prognostic stratifcation in acute myeloid leukemia (AML) patients still has limitations.Methods. Te
expression profle data and clinical features of AML patients were obtained from multiple publicly available sources, including
GSE71014, TCGA-LAML, and TARGET-AML. Single-cell analysis was performed using the TISCH project. All the analysis was
conducted in the R software. Results. In our study, three public AML cohorts, GSE71014, TARGET-AML, and TCGA-AML, were
selected. Ten, we identifed the prognosis-related molecules through bioinformatic analysis. Finally, the DUSP7 was noticed as
a risk factor for AML patients, which has not been reported previously. Biological enrichment analysis and immune-related
analysis were performed to illustrate the role of DUSP7 in AML. Single-cell analysis indicated that the DUSP7 was widely
distributed in various cells, especially in monocyte/macrophages and malignant. Following this, a prognosis model based on
DUSP7-derived genes was constructed, which showed a good prognosis prediction ability in all cohorts. Conclusions. Our results
preliminarily reveal the role and potential mechanism of DUSP7 in AML, providing direction for future research.

1. Introduction

Acute myeloid leukemia (AML) is a highly heterogeneous
malignant clonal disease that seriously afects human health
[1]. Te pathogenesis of AML is extremely complex, and
researchers have not yet fully elucidated it [2]. It is now
recognized that chromosomal karyotype abnormalities and
gene mutation reproducibility play an important initiating
role in the occurrence and development of diseases [3]. By
classifying these two factors, risk stratifcation can be per-
formed on most patients. Based on the diferent risk
stratifcation of patients, corresponding treatment plans can
be adopted, which signifcantly improves the fve-year
survival rate of AML patients [4]. At the same time, with
the development of chemotherapy, hematopoietic stem cell
transplantation, gene targeting therapy, biological immu-
notherapy, and other treatment methods, the complete re-
mission rate and 5-year disease-free survival rate of AML
patients have improved, but most patients still have drug

resistance and relapse, leading to poor prognosis [5]. Tese
issues suggest that clinical doctors need to further explore
the new pathogenesis of AML and improve the existing
prognostic evaluation system.

At present, studies have found that the factors afecting the
prognosis of AML patients not only include general clinical
characteristics such as age and FAB typing, but also include
molecular genetics, cytogenetics, and mutations of specifc
molecules [6]. For instance, Falini et al. noticed that the NPM1
mutation could assist in the genetic typing of AML, thereby
indicating clinical prognosis and treatment choices [7].
Nowadays, many gene mutations have been linked to AML
patients’ prognosis, such as MLL, HOX, RAR-α, CBF, NPM1,
WNT, RUNX1, WT1, RB, PU.1, p53, MYC, MPL, JUNB,
GATA-1, FOS, FES, N-RAS, CEBPA, KIT, and FLT3 [8–10].
Some mutations have been involved in the risk stratifcation of
AML, such as NPM1, RUNX1, c-KIT, RUNX1-RUNX1T1,
CEBPA, PML-RARα, BCR-ABL1, ASXL1, TP53, FLT3-ITD,
and MLL [11, 12]. However, many cases do not have the above
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gene mutations, especially 50% of AML patients with normal
cytogenetics (CN-AML). Tese patients lack characteristic
chromosome changes and clear molecular markers, and it is
difcult to evaluate their prognosis [13]. Numerous pieces of
evidence suggest that gene expression levels are of great sig-
nifcance for the prognostic evaluation of AML [14]. As early as
1996, Bergmann et al. observed that the expression of WT-1
can serve as a prognostic and recurrence marker for AML [15].
Paschka et al.’s study of 196 patients with CN-AML also
supported the above viewpoint, fnding that WT-1 mutation is
an independent risk factor for CN-AML [16]. Recent studies
have shown that gene expression levels of CPT1A, TGFβ1,
VEGF, CSRP2, and others are all associated with the prognosis
of AML [17–19]. As is well known, the prognosis of diseases is
infuenced by multiple factors, and the relationships between
these factors are complex. Terefore, traditional prognostic
evaluation systems are no longer able tomeet the requirements.
With the rise of big data, bioinformatics, and artifcial in-
telligence, their clinical applications in medicine are becoming
increasingly widespread and showing great potential [20–22].

In our study, three public AML cohorts, GSE71014,
TARGET-AML, and TCGA-AML, were selected. Ten, we
identifed the prognosis-related molecules through bio-
informatic analysis. Finally, the DUSP7 was noticed as a risk
factor for AML patients, which has not been reported
previously. Biological enrichment analysis, single-cell
analysis, and immune-related analysis were performed to
illustrate the role of DUSP7 in AML. Following this,
a prognosis model based on DUSP7-derived genes was
constructed, which showed a good prognosis prediction
ability in all cohorts.

2. Methods

2.1. Data Collection Process. Te expression profle data and
clinical features of AML patients were obtained from
multiple publicly available sources. For TCGA-LAML (ac-
cess time 22/3/2023) and TARGET-AML (access time 22/3/
2023), the expression profle of each AML patient was
downloaded in a “STAR-Count” form and then extracted
into a merge matrix through R code. Te human genomic
reference fle obtained from the Ensembl project (https://
www.ensembl.org/) was utilized for probe annotation.
Clinical information was downloaded in the “bcr-xml” form
and organized using Perl code. For GSE71014, the expression
profle of patients was downloaded from the direct link
“Series Matrix File(s)” of the website https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE71014. Probe annotation
was conducted by the GPL10558 platform. For all down-
loaded data, data quality control and standardization pro-
cessing are carried out before data analysis. Te interaction
data of multiple proteins were downloaded from the
STRING database and then visualized through Cytoscape
software [23].

2.2. Diferentially Expressed Genes (DEGs) Analysis. DEGs
analysis was performed using the limma package with the
specifc threshold (|logFC|> 1 and P value <0.05) [24].

2.3. Prognosis Analysis. For a specifc gene list, the expres-
sion profle of these genes was frstly combined with the
corresponding survival information. Next, the molecules
remarkably correlated with AML patients’ survival were
identifed using the univariate Cox regression analysis
(P< 0.05). Furthermore, LASSO regression analysis was
performed for variable optimization. Ultimately, multivar-
iate Cox regression analysis was used to screen independent
prognosis markers and model construction. Te
TCGA-AML cohort was set as the training cohort. Te
GSE71014 and TARGET-LAML cohorts were set as the
validation cohort. Kaplan–Meier (KM) survival curves were
used to compare the prognosis diference in diferent groups.
Te prediction ability of specifc variables on patients’
survival was performed using the receiver operating char-
acteristic (ROC) curves.

2.4. Biological Enrichment Analysis. Evaluation of biological
function was performed using specifc R packages. Clus-
terprofler package was used for the Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis [25]. Gene set enrichment analysis (GSEA) was
conducted based on the Hallmark gene set [26].

2.5. Sing-Cell Analysis. Te single-cell data of GSE116256,
GSE135851, GSE154109, PBMC_8K, PBMC_30K, and
PBMC_60K were analyzed in the TISCH project [27].

2.6. Tissue Microenvironment Analysis. Estimate package
was used to quantify the stromal score, immune score, and
estimate score of the tissue microenvironment, respectively,
representing the corresponding cell components [28]. Te
microenvironment of bone marrow was quantifed using the
single sample GSEA (ssGSEA) algorithm [29].

2.7. Statistical Analysis. All the statistical analyses were
performed in the R software. Analysis with a statistic P value
<0.05 was regarded as statistically signifcant. For data with
diferent distributions, diferent analysis methods are used
according to statistical requirements.

3. Results

Te fowchart of the whole study is shown in Figure 1.

3.1. Identifcation of the Molecules Signifcantly Correlated
with AML Patients’ Survival. Firstly, after a comprehensive
search, we have fnally identifed three AML datasets with
complete transcriptional profles and clinical information,
including GSE71014, TCGA-LAML, and TARGET-AML
(Figure 2(a)). Ten, we performed univariate Cox regression
analysis to identify the prognosis-related molecules in these
three cohorts (Supplementary fle 1–3). By taking in-
tersections, we noticed that 169 molecules were common
risk factors in GSE71014, TCGA-LAML, and TARGE-
T-AML cohorts, while 36 molecules were common pro-
tective factors in GSE71014, TCGA-LAML, and
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TARGET-AML cohorts (Figures 2(b) and 2(c)). Te PPI
network of the above prognosis-related molecules is shown
in Figure 2(d).

3.2.DUSP7 IsAssociatedwithPoorPrognosis ofAMLPatients.
Ten, based on the identifed risk genes, we performed
LASSO regression analysis to optimize variables
(Figures 3(a) and 3(b)). Following this, multivariate Cox
regression analysis was performed, and we noticed that the
SOCS2, DUSP7, and DDIT4 were signifcantly correlated
with patients’ prognosis (P< 0.001) (Figure 3(c)). Consid-
ering the DUSP7 has not been reported in AML, we selected
it for further analysis. KM survival curves in GSE71014,
TCGA-LAML, and TARGET-AML cohorts all showed that
the AML patients with high DUSP7 expression might have
a poor prognosis (Figure 3(d), GSE71014, HR� 2.64,
P � 0.009; Figure 3(e), TARGET-AML, HR� 1.72,
P< 0.001; Figure 3(f ), TCGA-LAML, HR� 2.27, P< 0.001).

3.3. Biological Enrichment of DUSP7 in AML and Single-Cell
Analysis. Ten, we tried to explore the potential biological
function of DUSP7 in AML. Limma package was used to
screen the DEGs in patients with high and low DUSP7
expression (Figure 4(a)). Te heatmap of these DEGs is
shown in Figure 4(b). KEGG analysis showed that the
molecules upregulated in patients with high DUSP7 levels
were mainly enriched in transcriptional misregulation in
cancer, systemic lupus erythematosus, salivary secretion,
renin-angiotensin system, and relaxin signaling pathway

(Figure 4(c)). For GO analysis, the terms of response to
fungus, neutrophil-mediated cytotoxicity, neutrophil de-
granulation, and neutrophil activation-related pathways
were enriched (Figure 4(d)). As for the downregulated genes,
the terms of viral protein interaction, cytokine and cytokine
receptor, tuberculosis, and transcriptional misregulation in
cancer were enriched by the KEGG analysis (Figure 4(e)).
For GO analysis, these downregulated genes were enriched
in the regulation of regulatory T-cell diferentiation,
mononuclear cell proliferation, lymphocyte proliferation,
leukocyte proliferation, and leukocyte cell-cell adhesion
(Figure 4(f )). Based on the GSEA, we found that the
IL6_JAK_STAT3 signaling, interferon alpha response, bile
acid metabolism, coagulation, and UV response DN were
the top fve pathways DUSP7 involved in (Figure 5(a)).
Single-cell analysis indicated that the DUSP7 was widely
distributed in various cells, especially in monocyte/macro-
phages and malignant (Figure 5(b)).

3.4. Tissue Microenvironment Analysis. Ten, we tried to
explore the efect of DUSP7 on the AMLmicroenvironment.
Interestingly, we found that the DUSP7 was positively
correlated with the immune score, stromal score, and es-
timate score according to the Estimate package (Figure 6(a),
immune score, cor� 0.367, P< 0.001; Figure 6(b), stromal
score, cor� 0.204, P � 0.012; Figure 6(c), estimate score,
cor� 0.327, P< 0.001). Next, the ssGSEA algorithmwas used
to quantify the tissue microenvironment of AML
(Figure 6(d)). Correlation analysis showed that DUSP7 was
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Figure 1: Te fowchart of the whole study.
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positively correlated with B cells, NK CD56 dim cells, Tem,
T17 cells, macrophages, and Treg (Figure 6(e)).

3.5. Establishment of a Prognosis Model Based on the DUSP7-
Derived Molecules. We then identifed the top 100 molecules
positively and negatively correlated with DUSP7 in AML
patients (Figures 7(a) and 7(b)). Univariate Cox regression
analysis was performed to identify the prognosis-related genes
(Figure 7(c)). LASSO regression analysis was then conducted
to reduce data dimensions and optimize variables (Figures 7(d)
and 7(e)). Multivariate Cox regression analysis was applied to
construct a prognosis model based on the molecules identifed
by LASSO regression analysis, including DOC2B, TGIF1,
TWIST1, SNORA38, HPS6, and PARP3 (Figure 7(f)). Te risk
score of each patient was calculated with the formula of
“Risk score � DOC2B∗ − 0.229 + TGIF1∗ − 0.443 + TWIS
T1∗ − 0.382 + SNORA 38∗ − 0.260 + HPS6∗ 0.514 + PAR
P3∗ 0.385”. We noticed a higher proportion of death cases in
high-risk patients (Figure 8(a)). KM survival curves indicated
that high-risk patients might have a worse prognosis (Fig-
ure 8(b), HR� 3.70, P< 0.001). ROC curves indicated that the
1-year AUC� 0.809, 3-year AUC� 0.851, and 5-year
AUC� 0.935 (Figures 8(c)–8(e)). In the validation cohorts
(GSE71014 and TARGET-AML), our model also showed
a good prognosis prediction ability (Figure 8(f), HR� 2.34,
P � 0.017, 1-year AUC� 0.687, 3-year AUC� 0.707, 5-year
AUC� 0.897; Figure 8(g), HR� 2.57, P< 0.001, 1-year
AUC� 0.677, 3-year AUC� 0.696, 5-year AUC� 0.686).

4. Discussion

AML is a highly heterogeneous hematological malignancy
caused by dysgenesis of myeloid hematopoietic stem/pro-
genitor cells, characterized by abnormal clonal proliferation
and diferentiation arrest of primitive and immature myeloid
cells in the bone marrow and peripheral blood [30–32]. AML
has complex cytogenetic and epigenetic mutations, including
abnormal DNA methylation, resulting in high heterogeneity
in disease diagnosis, development, and prognosis [33]. With
the continuous research on AML, it is found that abnormal
DNA methylation of special gene promoters afects the
change of its expression level, especially tumor suppressor,
which leads to the occurrence and development of disease
[34]. Although various molecular targeted therapies for AML
have emerged one after another, increasing the possibility of
selecting treatment options for AML, its 5-year survival rate is
still very poor, especially for elderly patients with high-risk
factors [35]. Terefore, an in-depth exploration of the
pathogenesis of AML has important scientifc signifcance and
clinical application value for disease prevention, diagnosis,
specifc treatment, and prognosis stratifcation.

In our study, three public AML cohorts, GSE71014,
TARGET-AML, and TCGA-AML, were selected. Ten, we
identifed the prognosis-related molecules through bio-
informatic analysis. Finally, the DUSP7 was noticed as a risk
factor for AML patients, which has not been reported
previously. Biological enrichment analysis, single-cell
analysis, and immune-related analysis were performed to

(d)

Figure 2: Identifcation of prognosis-related molecules in three AML cohorts. (a) Tree AML cohorts were identifed, including GSE71014,
TARGET-AML, and TCGA-LAML; (b) 169 molecules were common risk factors in GSE71014, TCGA-LAML, and TARGET-AML cohorts;
(c) 36 molecules were common protective factors in GSE71014, TCGA-LAML, and TARGET-AML cohorts; (d) PPI network of prognosis-
related molecules.
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Figure 3: DUSP7 is associated with poor prognosis of AML patients. (a, b) LASSO regression analysis; (c) multivariate Cox regression
analysis of prognosis-related molecules; (d) KM survival curves of DUSP7 in GSE71014 cohort; (e) KM survival curves of DUSP7 in
TARGET-AML cohort; (f ) KM survival curves of DUSP7 in TCGA-LAML cohort.
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illustrate the role of DUSP7 in AML. Following this,
a prognosis model based on DUSP7-derived genes was
constructed, which showed a good prognosis prediction
ability in all cohorts.

DUSP7, whose full name is dual specifcity phosphatase
7, has been reported involved in various pathophysiological
processes, especially in cancers [36–38]. For instance, Li et al.
found that DUSP7 could afect the dephosphorylation of
PEA15 and resistance to breast cancer [39]. Guo et al. have
proved that DUSP7 is extremely important for the correct
chromosome arrangement during cell division through
a series of experiments at the cellular level [40]. Moreover,

Tischer and Schuh also supported this viewpoint at the
animal level [41]. It is worth noting that over half of AML
patients are accompanied by chromosomal abnormalities,
and the promoting efect of DUSP7 on AML seems un-
derstandable, but the relevant mechanisms still need further
exploration.

Biological enrichment analysis showed that the
IL6_JAK_STAT3 signaling, interferon alpha response, bile
acid metabolism, coagulation, and UV response DN were
the top fve pathways DUSP7 was involved in. Tis suggests
the importance of metabolism and immunity in AML. AML
cells have an atypical metabolic phenotype, characterized by
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Figure 4: Biological enrichment analysis of DUSP7. (a) DEGs analysis in patients with high and low DUSP7 expression; (b) the heatmap of
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Figure 5: Single-cell analysis of DUSP7. (a) GSEA of DUSP7 based on hallmark gene set; (b–g) single-cell analysis of DUSP7 in multiple
cohorts.
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Figure 8: Evaluation of the prognosis model. (a) Te overview of the prognosis model; (b) KM survival curve of patients in high- and low-
risk groups; (c–e) ROC curves of 1, 3, and 5 years in TCGA-LAML cohort; (f ) evaluation of our model in GSE71014; (g) evaluation of our
model in TARGET-AML cohort.
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increased mitochondrial mass, and more dependence on
oxidative phosphorylation and fatty acid oxidation for
survival. Tcheng et al. indicated that AML has a special fatty
acid metabolism manner and level [42]. Moreover, in
a retrospective study involving 84 patients, researchers
found that IFN-α can efectively reduce the recurrence rate
of AML patients [43]. Also, based on the long-term results of
two registered studies, IFN-α can prevent recurrence and
improve the survival rate [44]. Terefore, the correlation
between DUSP7 and IFN-α response can partially explain
the impact of DUSP7 on the prognosis of AML patients.
However, further research is needed to confrm the re-
lationship between DUSP7 and IFN-α response.

Immune-related analysis showed that the DUSP7 was
positively correlated with B cells, NK CD56 dim cells,
Tem, T17 cells, macrophages, and Treg. Some studies
have begun to focus on the role of immune cells in AML.
Goswami et al. found that after chemotherapy, AML
patients experienced irreversible immune damage to their
B cells [45]. Meanwhile, researchers also found that
regulatory B cells have clinical indicative signifcance in
AML [46, 47]. Moore et al. found that the AML pro-
gression could be suppressed by LC3-associated phago-
cytosis medicated by bone marrow macrophages [48]. Liu
et al. demonstrated that chenodeoxycholic acid can inhibit
M2 macrophage polarization through lipid peroxidation
[49]. Moreover, Treg is believed to play a role in helping
leukemia cells evade immune surveillance, thereby pro-
moting AML progression [50, 51]. Our results suggest that
DUSP7 may afect AML progression by afecting the re-
cruitment of local immune cells.

Te continuous development of bioinformatics and
the massive data in the era of big data have improved the
convenience of data secondary mining. Although our
results are based on reliable data and algorithms, some
limitations cannot be ignored. Firstly, most patients are of
Western ethnicity. Tere are specifc diferences in ge-
nomics among populations of diferent ethnicities;
therefore, racial bias will reduce the universality of our
conclusions. Secondly, it cannot be denied that bio-
informatics analysis cannot fully refect the true situation
in the body. Terefore, most conclusions only have in-
dicative signifcance and still require subsequent experi-
mental verifcation.
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