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OSCILLATION OF ELLIPTIC EQUATIONS
IN GENERAL DOMAINS

E. S. NOUSSAIR

1. Introduction. Oscillation criteria will be obtained for the linear elliptic
partial differential equation
Lu= (=1)" Y D*(tas®)Du) — c(x)u = 0,

lal=|Bl=m
x = (x1,%2,...,%,),

in an unbounded domain G of general type in n-dimensional Euclidean space
E". The differential operator D is defined as usual by

Doy = D .. D™y a = (a(l), a(2), ..., an)),

le| = > imia(?), where each a(z), 7 = 1, ..., n, is a non-negative integer. It
will be assumed throughout that the coefficients @.5, are symmetric, i.e.,
(lap = Gga, and the operator L is uniformly strongly elliptic in G, i.e., there exists
a positive constant dgy such that

> @) = dolg|™

lal=|B8l=m

for all x € G and for every & = (&, &, ..., &). The purpose of the present
work is to extend some recent results by Swanson [6], and K. Kreith to elliptic
operators of arbitrary even order.

2. Definitions and notation. A bounded domain N C G is said to be a
nodal domain for L if there exists a nontrivial function w € C*(N) NC"(N)
such that Lw = 0in N, D2 = 0 on 9N for all @ with |a| < m — 1.

The operator L is said to be oscillatory in G if it has a nodal domain outside
of every sphere centred at the origin.

Let the set of multi-indices a be ordered, in an arbitrary manner, in a
sequence S = {ay, a3, . .., a}, where a; = (a;(1),a;(2),...,a;(n)), and k is
the number of multi-indices a. Let M be the & X k matrix defined by

M = (aaiaj)y 1’1j = ]-, 2, .o -,k.

Let A(x) be the largest eigenvalue of the coefficient matrix M. An elementary
argument [5] shows that \(x) does not depend on the multi-indices.

In the case the domain G is the whole of E”, oscillation criteria were obtained
by the author [5]. For example (1) is oscillatory in E* if A(x) is bounded below
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1240 E. S. NOUSSAIR
in E" by some number A\;; # £ m + 1, and

f c(x)dx = + .
|z]>0

The example given by Swanson in [6] can be used to show that the above
condition is not enough for (1) to be oscillatory if G is too ‘‘small’”’ at 0.

In this paper we only require that the interior of G is unbounded. i.e. For
any R > 0 the set Gp = {x € G : ||x|| > R} has interior points. In particular,
the domain G could be quasi-conical or quasi-cylindrical.

3. Basic lemmas. It is well known that the eigenvectors of the operator L,
as defined by (1), on a bounded domain @ of E* which has sufficiently smooth

boundary, lie in the Sobolev space H¢" (the closure in the norm || - ||, defined
by
lulln® = ] 22 (Dw)'ds
Q |la|=m

of the class Cy*(Q) of infinitely differentiable functions with compact support
in Q). The following lemma can be proved by using Garding’s inequality [5].

LEuMA 1. For 0 < ¢t < 0, let Q, be a domain contained within a domain Q of
bounded width = t. If 0 < r < s < 00 wmplies Q, C Q;, @, # Qs, then the smallest
eigenvalue uo(t) of the problem

Lu = u(t)uin Q,, Du = 0 on 0Q,, la| =m — 1
is monotone decreasing in t, and
lim wo(t) = + 0.
104+
We can also assume that the smallest eigenvalue varies continuously when
the domain G is deformed ‘“‘continuously’’ in a sense similar to that specified
in [1].

The following lemma can be easily proved by repeated application of
Leibniz’ rule:

LEMMA 2. If u = u(r) is an m-times differentiable function for all v in (0, 00 ),
then the following inequality holds:

Z (Dau)Z é lé mkr2k—2m(u(k)(r))2

la|=m

for r > 1, where u® (r) = d*u/dr®, and each m; 1s a positive constant, k = 1, 2,
., m.

Let A(x) denote, as before, the largest eigenvalue of the coefficient matrix
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(Gasa;). Let
X(T, 01, ceey 0n—l) = )\(IXJ)
5(7’, 01, ceey 9,,_1) = c(x)

A(T) = f 7\(?’, 011 LIRS} en—l)dwn
Wn

6(r)=f E(r, 01, . . ., Opy)dw,
Wn

where 7, 0y, ..., 6,1 are the hyperspherical polar coordinates, and W, is the
surface area of the unit ball in E".

For each pair of real numbers {a, b} such that 0 < a < b < 0, let M,° be
the quadratic functional defined by

MSru] = fb ké: ™2 A () @™ (1)) — c(r)u’ )" dr

with domain consisting of all # € C™(a, b), where m; and c¢(r) are as defined
above. The proof of the following lemma may be found in [5].

LemMA 3. If v = v(r) 1s a function defined on the interval [a, b], having the
properties
(i) v(r) € C"[a, b]
(ii) v™ € Ls(a, b)
(iii) vP(a) = 22() =0,1=0,1,2,...,m — 1,
then for any 6 > 0O there exists a function u € C*(a, b) which satisfies the con-
ditions
u®@) = u®) =0,7=0,1,2,...,2m — 1, and
[ M u] — M 0] <.

4. Oscillation criteria.

THEOREM 4. Equation (1) s oscillatory in an unbounded domain G C E*if G
contains a sequence of spherical annuli defined by
Ni(xw; ax; bx) = {x € E*: 0 < ap < lxk — x| < b}

k=1,2, ..., having the following properties:

(a) There exists a function v, = v;(|Jx — x¢|) on each N, which satisfy, on the
interval [ay, by], the properties (1), (ii), (iii) of Lemma 3; and M, "[v] < O for
all sufficiently large k; and

(b) For arbitrary r > 0 there exists a number n(r) such that N, C G, =
{x € G:|x| > r} forall k > n(r).

Proof. Let u(t) denote the smallest eigenvalue of the problem
Lu = u(t)u in Ni(xx; ax; t),
Deu = 0 on dN;(x;; ai; ) for all ja| = m — 1,
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where a; < ¢ < b;. By hypothesis (a) and Lemma 3 exists a function w, =
w(|x — x]) € C*™(ay, by) satisfying

wD(ap) = w, (b)) =0, 1=1,2,...,m—1, M, w] <O0.

Then
f wLwidx < Ma,*|lw] < 0
N (@5ay308)

follows from integration by parts. From the last inequality and by a well known
variational principle [4] we see that u(b;) = 0. By Lemma 1 there exists
t, ap < t £ by, such that p(¢) = 0. Hence the domain Ny (x;; ax; t) is a nodal
domain of a nontrivial solution of (1) for sufficiently large k. By hypothesis
(b), for arbitrary » > 0 there exists a number n(r) such that N (x,; ax; t) C G,.
This completes the proof of Theorem 3.

THEOREM 5. Equation (1) is oscillatory in an unbounded domain G C E"if G
contains a sequence of spherical annuli { Ny (xy; ax2; 3ax)}, B = 1,2, ..., with
the following properties:

(i) lim (Jxe| — 3ae) = o0

—>00
(i) c¢(x) is non-negative in each Ny, and
-1
. 2
lim a, ™ f N (x)dx f c(x)dx = + o0.
ko Ny (xysay, 12:3ar) N (g 5a32a,)

Proof. A sequence of functions will be constructed which satisfy hypothesis
(a) of Theorem 4.
Let

1
v(t) =k f SN — s)™ s,
0

where % is chosen so that v(1) = 1. Let v; be defined by

() =0 r < ai/2
=v(u) W2y <a
ay
=1 ay = r < 2ay
= v(%——l) 2a;, = v < 3ay
&
= O ' g 3ak
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where 7 = |x — xi|. Then,

ak m

Mak/'zgak[vk] = e S mt”“_mA(7)22iak—217’n_1(71k”) (7’))2d7'
512 1=

3a, m
+ f Zl mir21—2m A<r)22iak-—2lrn—l (vk(i) (7))2d7’
=

2a;,
2
Lk(zk;ak/2;3”k) e (x)C(x)dx
ay 3ak
klak_zm[f A" Ydr + f A(r)r"_ldr]
a;/2 2a,,

— c(x)dx
j;vk(“k;“k;2ak) ()

for some positive constant K;. Hence

-1
2m 3a;
A d } Mo v,
@ [ ‘/:Vk(zk§“k/273”k) (x) X k12 [ kJ

-1
<k —a" [f )\(x)dx} f c(x)dx.
Ni(zpiap 2530,) Ny (zp5a52a)

Hypothesis (ii) then shows that M, »*%*[v;] < 0 for sufficiently large &, and
therefore hypothesis (a) of Theorem 4 is satisfied.

By (i), there exists a number % (r) for each » > 0 such that |x;| — 3a;, > r
whenever & > n(r). Then x € Ny(xx; a:r/2; 3ay) implies that |x| = |x:] —
le — x| > |x| — 3ax > r so that x € G,, and N;(x:; a/2; 3a;) C G, for all
k > n(r). Hence (1) is oscillatory by Theorem 4.

I\

COROLLARY 6. Equation (1) is oscillatory in an unbounded domain G C E™ if
G contains a sequence of spherical annult { Ny (xx; ar/2; 3ax)}, k= 1,2, ..., with
the following properties:

(i) lim (|xx| — 3ax) = o0
koo

(i1) (aas(x)) s bounded (as a form) in G;
(iii) c(x) is non-negative in each N (xy; ar/2; 3ay), and

. 2m—
hmak"'"f c(x)dx = + .
koo Ny (z)50;52a,)

The above corollary generalizes a recent result of Swanson [6] to differential
equations of arbitrary even order.

Example. Suppose G contains a sequence of open discs { N, (x;; @)} such that

limy_,|xx] = co. Evidently this condition is satisfied if G contains an infinite
cylinder, and also for a class of ‘“‘spiral’” domains containing no infinite ray.
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The equation
(=) A™ + c(x)u = 0
is oscillatory in G if any one of the following conditions is satisfied:

(a) c(x) is non-negative in each Ny (x;; a), and

lim c(x)dx = +
koo VY Nip(Zria/352q/3)

(b) C(x) Z_ cx > 0 in each Nk(xk;a) where lim Cr = + 0 ;

k>
(¢) lim ¢(x) = + o uniformly in G.

17| 500

We shall consider now the special case when G is the whole space E". The
following theorem generalizes a recent result of Kreith and Travis [3].

THEOREM 7. The partial differential equation
(2) Lu= 2, D%*(aas(x)D’u) — clx)u =0
el =TBI=2

is oscillatory in E" if the following ordinary differential equation 1is oscillatory
atr = O :
B) lu =[] — [2r3A(r)3") — " le(r)z = 0.

Proof. Suppose equation (3) is oscillatory atr = 00. Let I, = {r: r; < r < t;}
be a nodal domain for the operator . By increasing ¢, if necessary and using
lemma 1, we can assume that the smallest eigenvalue \; of the problem

lu = \uin Iy,

w(r) = u'(r) = u(t) = ' () =0
is negative. Let z,(r) be the corresponding eigenfunction. Suppose I, z:(7)
have been chosen. Let Iy = {r: 741 < 7 < fx41} be a nodal domain for the
operator [ such that ;.1 > #. By increasing ¢, if necessary we can assume,
as before, that the smallest eigenvalue \; of the problem

lu = M in Iy,

u(ree1) = ' (ri41) = u(leyr) = /(L) = 0
is negative. Let 2,41 (7) be the corresponding eigenfunction. By induction there
exists a sequence of eigenfunctions on the intervals I, # = 1,2, ..., such that

(4) le = )\kzk in Ik
zi(rx) = 2/ (1) = z2(t) = 2/ (&) = 0,
e < 0.

Take N, in Theorem 4 to be the annular domain defined by

Ny ={x € E": 7, < |x| < 4}.
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Take v (x) = z.(Jx|). Then v(x) = dv/dx; = O on N, forall kb, i = 1,2, ...
n, and it is easily checked that

fN velvdx < M, "* o] = frk AP G ) 2@ ()

— ") (2(r))dr < 0.
The conclusion follows from Theorem 4.
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