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OSCILLATION OF ELLIPTIC EQUATIONS 
IN GENERAL DOMAINS 

E. S. NOUSSAIR 

1. I n t r o d u c t i o n . Oscillation criteria will be obtained for the linear elliptic 
part ial differential equation 

Lu = ( - l ) m E Da(aaf>(x)Dpu) - c(x)u = 0, 

X \Xli ^ 2 j • • • > %n)i 

in an unbounded domain G of general type in w-dimensional Euclidean space 
En. T h e differential operator D is defined as usual by 

D°u = DfW . . . ZV ( n ) ; OL = («(1), a ( 2 ) , . . . , a (w)) , 

lal = £"=i«(^)> where each a(i), i = 1, . . . , n, is a non-negative integer. I t 
will be assumed throughout t ha t the coefficients aa&, are symmetric, i.e., 
aap = &/3a, and the operator L is uniformly strongly elliptic in G, i.e., there exists 
a positive constant d0 such t ha t 

for all x G G and for every J = (£i, ^2, • . • , fw)- T h e purpose of the present 
work is to extend some recent results by Swanson [6], and K. Krei th to elliptic 
operators of arbi t rary even order. 

2. Def in i t ions a n d n o t a t i o n . A bounded domain N C. G is said to be a 
nodal domain for L if there exists a nontrivial function w G C2m(N) r\Cm(N) 
such tha t Lw = 0 in N, Daw = 0 on dN for all a with |a| ^ m — 1. 

The operator Z, is said to be oscillatory in G if it has a nodal domain outside 
of every sphere centred a t the origin. 

Let the set of multi-indices a be ordered, in an arbi t rary manner, in a 
sequence 5 = {«i, a2, . . . , ak}, where at = (a*( l ) , a*(2), . . . , at{n)), and & is 
the number of multi-indices a. Let M be the k X k matrix defined by 

M = (aaiaj), i,j = 1, 2, . . . , k. 

Let \(x) be the largest eigenvalue of the coefficient matrix M. An elementary 
a rgument [5] shows tha t \(x) does not depend on the multi-indices. 

In the case the domain G is the whole of En, oscillation criteria were obtained 
by the author [5]. For example (1) is oscillatory in En if \(x) is bounded below 

Received May 1, 1974 and in revised form, August 16, 1974. 

1239 

https://doi.org/10.4153/CJM-1975-129-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-129-1


1240 E. S. NOUSSAIR 

in En by some number Xi; n ^ m + 1, and 

/
c(x)dx = + oo. 

UI>o 

The example given by Swanson in [6] can be used to show that the above 
condition is not enough for (1) to be oscillatory if G is too "small" at oo . 

In this paper we only require that the interior of G is unbounded, i.e. For 
any R > 0 the set GR = {x £ G : ||x|| > R} has interior points. In particular, 
the domain G could be quasi-conical or quasi-cylindrical. 

3. Basic lemmas. It is well known that the eigenvectors of the operator L, 
as denned by (1), on a bounded domain Œ of En which has sufficiently smooth 
boundary, lie in the Sobolev space H0

m (the closure in the norm || • ||m defined 
by 

IML2 = ! Z) (Dau)2dx 
J Î2 \a\=m 

of the class Coœ(Œ) of infinitely differentiate functions with compact support 
in 12). The following lemma can be proved by using Garding's inequality [5]. 

LEMMA 1. For 0 < t < oo , let Qt be a domain contained within a domain Q> of 
bounded width ^ t. If 0 < r < s < co implies 12r C ^5, fir ^ 12s, then the smallest 
eigenvalue no(t) of the problem 

Lu = n(t)u in Qt, D
au = 0 on diït, \a\ ^ m — 1 

is monotone decreasing in t, and 

Km no(t) = + oo. 

We can also assume that the smallest eigenvalue varies continuously when 
the domain G is deformed "continuously" in a sense similar to that specified 
i n [ l ] . 

The following lemma can be easily proved by repeated application of 
Leibniz' rule: 

LEMMA 2. If U = u{r) is an m-times differ entiable function for all r in (0, oo ), 
then the following inequality holds: 

m 

E (D"uf S £ mkr^m{u«\r)Y 
\a\=m k=l 

for r > 1, where u(k) (r) = dku/drk, and each mk is a positive constant, k = 1,2, 
. . . , m. 

Let X(x) denote, as before, the largest eigenvalue of the coefficient matrix 
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(aaiaj). Let 

X(Mi, . . . , 0 n _ i ) = \(x) 

c(r,6i, . . . ,0w-i) = c(x) 

A(r) = I X(r, 0i, . . . , 0„_i)dwB 
d Wn 

c(r) = I c(r, 0i, . . . ,6n-i)dwn 

where r, 0i, . . . , 0w_i are the hyperspherical polar coordinates, and Wn is the 
surface area of the unit ball in En. 

For each pair of real numbers {a, b) such that 0 < a < b < oo, let Ma
b be 

the quadratic functional defined by 

/

b m 

M8
8[K] = D [ w t r " - i " A ( r ) ( « w W - c ( r ) t t V ~ 1 d r 

with domain consisting of all w G Cm(a, 5), where m* and c(r) are as defined 
above. The proof of the following lemma may be found in [5]. 

LEMMA 3. If v — v{r) is a function defined on the interval [a, b], having the 
properties 

(i)w(r) £ Cm-'[a}b] 
(ii)v<w> £ L2(a,b) 

(iii) v<*>(a) = fl(i)(&) = 0, i = 0, 1, 2, . . . , m - 1, 
then for any 8 > 0 //£ere exis/s a function u £ C2m(a, b) which satisfies the con
ditions 

u^(a) = «<*>(&) = 0, i = 0, 1, 2, . . . , 2m - 1, and 

4. Oscillation criteria. 

THEOREM 4. Equation (1) is oscillatory in an unbounded domain G ÇL En if G 
contains a sequence of spherical annuli defined by 

Nk(xk; ak; bk) = {x £ En : 0 < ak < \xk - x\ < bk) ; 

k = 1 , 2 , . . . , having the following properties: 
(a) There exists a function vk = vk(\x — xk\) on each Nk which satisfy, on the 

interval [ak, bk], the properties (i), (ii), (iii) of Lemma 3; and Mak
bk[vk] < 0 for 

all sufficiently large k; and 
(b) For arbitrary r > 0 there exists a number n{r) such that Nk C Gr = 

{x Ç G : \x\ > r} for all k > n(r). 

Proof. Let n(t) denote the smallest eigenvalue of the problem 

Lu = IL(Ï)U in Nk(xk; ak; t), 

Dau = 0 on dNk(xk; ak\ t) for all |a| ^ m — 1, 
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where ak < t ^ bk. By hypothesis (a) and Lemma 3 exists a function wk = 
wk(\x - xk\) e C2m(ak, bk) satisfying 

wk^(ak) = wkW(bk) = 0, i = 1,2, . . . , m - 1, Mfl,
6*[wJ < 0. 

Then 

wkLwkdx ^ M a / " K ] < 0 
/ . 

follows from integration by parts. From the last inequality and by a well known 
variational principle [4] we see that n(bk) ^ 0. By Lemma 1 there exists 
t, (ik < t ^ bk, such that n(t) = 0. Hence the domain Nk(xk; ak; t) is a nodal 
domain of a non trivial solution of (1) for sufficiently large k. By hypothesis 
(b), for arbitrary r > 0 there exists a number n(r) such that Nk(xr; ak\ t) C G>. 
This completes the proof of Theorem 3. 

THEOREM 5. Equation (1) is oscillatory in an unbounded domain G C En if G 
contains a sequence of spherical annuli {Nk(xk; ak/2', 3a*)}, k = 1, 2, . . . , with 
the following properties: 

(i) lim (1**1 - 3ak) = oo ; 
/C->co 

(ii) c{x) is non-negative in each Nk, and 

lim ak
2m\ I X(x)dx I c{x)dx = + oo. 

A;-*» L J Nk (xk -ak ,2 $ak) J J Nk (xk >,ak ; 2ak) 

Proof. A sequence of functions will be constructed which satisfy hypothesis 
(a) of Theorem 4. 

Let 

J o 
v(t) = k I sm-L(l - s)m-Lds, 

J o 

where k is chosen so that v(l) = 1. Let vk be defined by 

v*(r) =0 r < ak/2 

= *M -) ak/2 S r < ak 

\ ak ! 

= 1 ak ^ r < 2ak 
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where r = \x — xk\. Then, 

MaJa"[vk\ = P t mir
2i-*mMr)2"ak-

Urn-\v^{r)?dr 
*J ak /2 f = l 

/

'3ak m 
V"* 2 i - 2 m A / \ 0 2 l - 2 1 w - 1 / ( 0 / \ \ 2 j 

2 ^ w*r A(r)2 a* r (ï/fc
 J(r)) dr 

2 « A <=i 

— I vk
2(x)c(x)dx 

J Nk(xkWkirZak) 

r /•«* r3afc "l 

^&ia*~2?n A ( r K ^ r + A( r ) r n "W 
L */ ajfc/2 t / 2a ;c J 

c(x)dx - / 

for some positive constant K\. Hence 

a A \ \{x)dx\ Makl?
akW\ 

^ ki — afc
2m I \(x)dx I c(x)dx 

LJ Nk(xk',ak/2;Sak) J J Xk(xk]ak;2ak) k^xk'^kl2-Mk) J J Nk{xk;ak-,2ak) 

Hypothesis (ii) then shows tha t JlfflA./2
3a*M < 0 for sufficiently large k, and 

therefore hypothesis (a) of Theorem 4 is satisfied. 
By (i), there exists a number n(r) for each r > 0 such tha t |xfc| — 3ak > r 

whenever k > n(r). Then x Ç Nk(xk; ak/2; 3ak) implies tha t \x\ ^ |xfc| — 
|x — xk\ > \x\ — 3ak > r so tha t x £ G>, and Nk(xk; ak/2; ?>ak) C G> for all 
k > w(r). Hence (1) is oscillatory by Theorem 4. 

COROLLARY 6. Equation (1) is oscillatory in an unbounded domain G C En if 
G contains a sequence of spherical annuli {Nk(xk; ak/2; Sak)}, k = 1, 2, . . . , with 
the following properties: 

(i) lim (1**1 - Sak) = oo ; 

(ii) (aas(x)) is bounded (as a form) in G; 
(iii) c(x) is non-negative in each N(xk] ak/2\ 3ak), and 

lima*2m-n I c(x)dx = +oo. 
k->œ jNk^Xk^k>2ak^ 

The above corollary generalizes a recent result of Swanson [6] to differential 
equations of arbi t rary even order. 

Example. Suppose G contains a sequence of open discs {Nk(xk; a)} such t ha t 
l i m ^ ^ x ^ = oo. Evident ly this condition is satisfied if G contains an infinite 
cylinder, and also for a class of "spira l" domains containing no infinite ray. 
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T h e equation 

(-)mAmu + c{x)u = 0 

is oscillatory in G if any one of the following conditions is satisfied: 

(a) c(x) is non-negative in each Nk(xk; a ) , and 

lim I c(x)dx = + oo ; 

(b) c(x) ^ ck > 0 in each Nk(xk; a) where lim ck = + oo ; 

(c) lim c(x) = + o o uniformly in G. 
|z|->oo 

We shall consider now the special case when G is the whole space En. The 
following theorem generalizes a recent result of Kre i th and Travis [3]. 

T H E O R E M 7. The partial differential equation 

(2) Lu = ]T Da(aa0(x)D^u) - c{x)u = 0 
| a | = |/3|=2 

is oscillatory in En if the following ordinary differential equation is oscillatory 
at r = co : 
(3) lu = [rn-lk(r)z"}" - P r ^ A O K ] ' - rn~lc(r)z = 0. 

Proof. Suppose equat ion (3) is oscillatory a t r = oo . Let Ii = {r: rY < r < ti\ 
be a nodal domain for the operator I. By increasing tx if necessary and using 
lemma 1, we can assume tha t the smallest eigenvalue Xi of the problem 

lu = Xu in Ii, 

u(r\) = u'{ri) = u(ti) = u'(ti) = 0 

is negative. Let Z\(r) be the corresponding eigenfunction. Suppose Ik, zk(r) 
have been chosen. Let Ik+i = {r: rk+i < r < ^ + i } be a nodal domain for the 
operator / such tha t rk+i > tk. By increasing tk+i if necessary we can assume, 
as before, t ha t the smallest eigenvalue Xk of the problem 

lu = \u in Ik+i 

u(rk+1) = u;(rk+1) = u(tk+1) = u'(tk+1) = 0 

is negative. Let zk+1(r) be the corresponding eigenfunction. By induction there 
exists a sequence of eigenfunctions on the intervals Ik, k = 1 , 2 , . . . , such tha t 

(4) lzk = \kzk in Ik 

zk(rk) = zk'{rk) = zk{tk) = zk(tk) = 0, 

X, < 0. 

T a k e Nk in Theorem 4 to be the annular domain defined by 

Nk = {x e En : rk < \x\ < tk). 
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Take vk(x) = ^ ( |x | ) . Then v(x) = dv/dxt = 0 on dNk for all k, i = 1 , 2 , . . . , 
w, and it is easily checked that 

f z;*LzWx ^ JkTr/*M = f * A M f e » ) 2 / - 1 + 2(.'(r))Vra-3 

- r*-1c(r)(2:(r))2dr < 0. 

The conclusion follows from Theorem 4. 
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