OSCILLATION OF ELLIPTIC EQUATIONS IN GENERAL DOMAINS

E. S. NOUSSAIR

1. Introduction. Oscillation criteria will be obtained for the linear elliptic partial differential equation

$$
\begin{aligned}
L u & =(-1)^{m} \sum_{|\alpha|=|\beta|=m} D^{\alpha}\left(a_{\alpha \beta}(x) D^{\beta} u\right)-c(x) u=0, \\
x & =\left(x_{1}, x_{2}, \ldots, x_{n}\right),
\end{aligned}
$$

in an unbounded domain G of general type in n-dimensional Euclidean space E^{n}. The differential operator D is defined as usual by

$$
D^{\alpha} u=D_{1}{ }^{\alpha(1)} \ldots D_{n}^{\alpha(n)} ; \quad \alpha=(\alpha(1), \alpha(2), \ldots, \alpha(n)),
$$

$|\alpha|=\sum_{i=1}^{n} \alpha(i)$, where each $\alpha(i), i=1, \ldots, n$, is a non-negative integer. It will be assumed throughout that the coefficients $a_{\alpha \beta}$, are symmetric, i.e., $a_{\alpha \beta}=a_{\beta \alpha}$, and the operator L is uniformly strongly elliptic in G, i.e., there exists a positive constant d_{0} such that

$$
\sum_{|\alpha|=|\beta|=m} a_{\alpha \beta}(x) \xi^{\alpha+\beta} \geqq d_{0}|\xi|^{2 m}
$$

for all $x \in G$ and for every $\xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$. The purpose of the present work is to extend some recent results by Swanson [6], and K. Kreith to elliptic operators of arbitrary even order.
2. Definitions and notation. A bounded domain $N \subset G$ is said to be a nodal domain for L if there exists a nontrivial function $w \in C^{2 m}(N) \cap C^{m}(\bar{N})$ such that $L w=0$ in $N, D^{\alpha} w=0$ on ∂N for all α with $|\alpha| \leqq m-1$.

The operator L is said to be oscillatory in G if it has a nodal domain outside of every sphere centred at the origin.

Let the set of multi-indices α be ordered, in an arbitrary manner, in a sequence $S=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\}$, where $\alpha_{i}=\left(\alpha_{i}(1), \alpha_{i}(2), \ldots, \alpha_{i}(n)\right)$, and k is the number of multi-indices α. Let M be the $k \times k$ matrix defined by

$$
M=\left(a_{\alpha_{i} \alpha_{j}}\right), \quad i, j=1,2, \ldots, k
$$

Let $\lambda(x)$ be the largest eigenvalue of the coefficient matrix M. An elementary argument [5] shows that $\lambda(x)$ does not depend on the multi-indices.

In the case the domain G is the whole of E^{n}, oscillation criteria were obtained by the author [5]. For example (1) is oscillatory in E^{n} if $\lambda(x)$ is bounded below

[^0]in E^{n} by some number $\lambda_{1} ; n \leqq m+1$, and
$$
\int_{|x|>0} c(x) d x=+\infty
$$

The example given by Swanson in [6] can be used to show that the above condition is not enough for (1) to be oscillatory if G is too "small" at ∞.

In this paper we only require that the interior of G is unbounded. i.e. For any $R>0$ the set $G_{R}=\{x \in G:\|x\|>R\}$ has interior points. In particular, the domain G could be quasi-conical or quasi-cylindrical.
3. Basic lemmas. It is well known that the eigenvectors of the operator L, as defined by (1), on a bounded domain Ω of E^{n} which has sufficiently smooth boundary, lie in the Sobolev space $H_{0}{ }^{m}$ (the closure in the norm $\|\cdot\|_{m}$ defined by

$$
\|u\|_{m}^{2}=\int_{\Omega} \sum_{|\alpha|=m}\left(D^{\alpha} u\right)^{2} d x
$$

of the class $C_{0}{ }^{\infty}(\Omega)$ of infinitely differentiable functions with compact support in Ω). The following lemma can be proved by using Garding's inequality [5].

Lemma 1. For $0<t<\infty$, let Ω_{t} be a domain contained within a domain Ω of bounded width \leqq. If $0<r<s<\infty$ implies $\Omega_{r} \subset \Omega_{s}, \Omega_{r} \neq \Omega_{s}$, then the smallest eigenvalue $\mu_{0}(t)$ of the problem

$$
L u=\mu(t) u \text { in } \Omega_{t}, D^{\alpha} u=0 \text { on } \partial \Omega_{t},|\alpha| \leqq m-1
$$

is monotone decreasing in t, and

$$
\lim _{t \rightarrow 0+} \mu_{0}(t)=+\infty
$$

We can also assume that the smallest eigenvalue varies continuously when the domain G is deformed "continuously" in a sense similar to that specified in $[\mathbf{1}]$.

The following lemma can be easily proved by repeated application of Leibniz' rule:

Lemma 2. If $u=u(r)$ is an m-times differentiable function for all r in $(0, \infty)$, then the following inequality holds:

$$
\sum_{|\alpha|=m}\left(D^{\alpha} u\right)^{2} \leqq \sum_{k=1}^{m} m_{k} r^{2 k-2 m}\left(u^{(k)}(r)\right)^{2}
$$

for $r>1$, where $u^{(k)}(r)=d^{k} u / d r^{k}$, and each m_{k} is a positive constant, $k=1,2$, ..., m.

Let $\lambda(x)$ denote, as before, the largest eigenvalue of the coefficient matrix

$$
\begin{aligned}
& \left(a_{\alpha_{i \alpha} \alpha_{j}}\right) \text { Let } \\
& \tilde{\lambda}\left(r, \theta_{1}, \ldots, \theta_{n-1}\right)=\lambda(x) \\
& \tilde{c}\left(r, \theta_{1}, \ldots, \theta_{n-1}\right)=c(x) \\
& \Lambda(r)=\int_{W_{n}} \tilde{\lambda}\left(r, \theta_{1}, \ldots, \theta_{n-1}\right) d w_{n} \\
& c(r)=\int_{W_{n}} \tilde{c}\left(r, \theta_{1}, \ldots, \theta_{n-1}\right) d w_{n}
\end{aligned}
$$

where $r, \theta_{1}, \ldots, \theta_{n-1}$ are the hyperspherical polar coordinates, and W_{n} is the surface area of the unit ball in E^{n}.

For each pair of real numbers $\{a, b\}$ such that $0<a<b<\infty$, let $M_{a}{ }^{b}$ be the quadratic functional defined by

$$
M_{a}^{b}[u]=\int_{a}^{b} \sum_{k=1}^{m}\left[m_{k} r^{2 k-2 m} \Lambda(r)\left(u^{(k)}(r)\right)^{2}-c(r) u^{2}\right] r^{n-1} d r
$$

with domain consisting of all $u \in C^{m}(a, b)$, where m_{k} and $c(r)$ are as defined above. The proof of the following lemma may be found in [5].

Lemma 3. If $v=v(r)$ is a function defined on the interval $[a, b]$, having the properties
(i) $v(r) \in C^{m-1}[a, b]$
(ii) $v^{(m)} \in L_{2}(a, b)$
(iii) $v^{(i)}(a)=v^{(i)}(b)=0, i=0,1,2, \ldots, m-1$,
then for any $\delta>0$ there exists a function $u \in C^{2 m}(a, b)$ which satisfies the conditions

$$
\begin{aligned}
& u^{(i)}(a)=u^{(i)}(b)=0, i=0,1,2, \ldots, 2 m-1, \text { and } \\
& \left|M_{a}{ }^{b}[u]-M_{a}{ }^{b}[v]\right|<\delta .
\end{aligned}
$$

4. Oscillation criteria.

Theorem 4. Equation (1) is oscillatory in an unbounded domain $G \subset E^{n}$ if G contains a sequence of spherical annuli defined by

$$
N_{k}\left(x_{k} ; a_{k} ; b_{k}\right)=\left\{x \in E^{n}: 0<a_{k}<\left|x_{k}-x\right|<b_{k}\right\} ;
$$

$k=1,2, \ldots$, having the following properties:
(a) There exists a function $v_{k}=v_{k}\left(\left|x-x_{k}\right|\right)$ on each N_{k} which satisfy, on the interval $\left[a_{k}, b_{k}\right]$, the properties (i), (ii), (iii) of Lemma 3; and $M_{a_{k}}{ }^{{ }^{b}}\left[v_{k}\right]<0$ for all sufficiently large k; and
(b) For arbitrary $r>0$ there exists a number $n(r)$ such that $N_{k} \subset G_{r}=$ $\{x \in G:|x|>r\}$ for all $k>n(r)$.

Proof. Let $\mu(t)$ denote the smallest eigenvalue of the problem

$$
\begin{aligned}
& L u=\mu(t) u \text { in } N_{k}\left(x_{k} ; a_{k} ; t\right), \\
& D^{\alpha} u=0 \text { on } \partial N_{k}\left(x_{k} ; a_{k} ; t\right) \text { for all }|\alpha| \leqq m-1,
\end{aligned}
$$

where $a_{k}<t \leqq b_{k}$. By hypothesis (a) and Lemma 3 exists a function $w_{k}=$ $w_{k}\left(\left|x-x_{k}\right|\right) \in C^{2 m}\left(a_{k}, b_{k}\right)$ satisfying

$$
w_{k}{ }^{(i)}\left(a_{k}\right)=w_{k}{ }^{(i)}\left(b_{k}\right)=0, \quad i=1,2, \ldots, m-1, \quad M_{a_{k}}{ }^{b_{k}}\left[w_{k}\right]<0 .
$$

Then

$$
\int_{N_{k}\left(x_{k} ; a_{k} ; b_{k}\right)} w_{k} L w_{k} d x \leqq M a_{k}{ }^{b_{k}}\left[w_{k}\right]<0
$$

follows from integration by parts. From the last inequality and by a well known variational principle [4] we see that $\mu\left(b_{k}\right) \leqq 0$. By Lemma 1 there exists $t, a_{k}<t \leqq b_{k}$, such that $\mu(t)=0$. Hence the domain $N_{k}\left(x_{k} ; a_{k} ; t\right)$ is a nodal domain of a nontrivial solution of (1) for sufficiently large k. By hypothesis (b), for arbitrary $r>0$ there exists a number $n(r)$ such that $N_{k}\left(x_{r} ; a_{k} ; t\right) \subset G_{r}$. This completes the proof of Theorem 3.

Theorem 5. Equation (1) is oscillatory in an unbounded domain $G \subset E^{n}$ if G contains a sequence of spherical annuli $\left\{N_{k}\left(x_{k} ; a_{k / 2} ; 3 a_{k}\right)\right\}, k=1,2, \ldots$, with the following properties:
(i) $\lim _{k \rightarrow \infty}\left(\left|x_{k}\right|-3 a_{k}\right)=\infty$;
(ii) $c(x)$ is non-negative in each N_{k}, and

$$
\lim _{k \rightarrow \infty} a_{k}^{2 m}\left[\int_{N_{k}\left(x_{k} ; a_{k} / 2 ; 3 a_{k}\right)} \lambda(x) d x\right]^{-1} \int_{N_{k}\left(x_{k} ; a_{k} ; 2 a_{k}\right)} c(x) d x=+\infty
$$

Proof. A sequence of functions will be constructed which satisfy hypothesis (a) of Theorem 4.

Let

$$
v(t)=k \int_{0}^{t} s^{m-1}(1-s)^{m-1} d s
$$

where k is chosen so that $v(1)=1$. Let v_{k} be defined by

$$
\begin{aligned}
v_{k}(r) & =0 & & r<a_{k} / 2 \\
& =v\left(\frac{2 r-a_{k}}{a_{k}}\right) & & a_{k} / 2 \leqq r<a_{k} \\
& =1 & & a_{k} \leqq r<2 a_{k} \\
& =v\left(\frac{3 a_{k}-r}{a_{k}}\right) & & 2 a_{k} \leqq r<3 a_{k} \\
& =0 & & r \leqq 3 a_{k}
\end{aligned}
$$

where $r=\left|x-x_{k}\right|$. Then,

$$
\begin{aligned}
M a_{k / 2}^{3 a_{k}}\left[v_{k}\right] & =\int_{a_{k} / 2}^{a_{k}} \sum_{i=1}^{m} m_{i} r^{2 i-2 m} \Lambda(r) 2^{2 i} a_{k}{ }^{-2 i} r^{n-1}\left(v_{k}^{(i)}(r)\right)^{2} d r \\
& +\int_{2 a_{k}}^{3 a_{k}} \sum_{i=1}^{m} m_{i} r^{2 i-2 m} \Lambda(r) 2^{2 i} a_{k}{ }^{-2 i} r^{n-1}\left(v_{k}{ }^{(i)}(r)\right)^{2} d r \\
& -\int_{N_{k}\left(x_{k} ; a_{k / 2} ; 3^{a_{k}}\right.} v_{k}{ }^{2}(x) c(x) d x \\
& \leqq k_{1} a_{k}^{-2 m}\left[\int_{a_{k} / 2}^{a_{k}} \Lambda(r) r^{n-1} d r+\int_{2 a_{k}}^{3 a_{k}} \Lambda(r) r^{n-1} d r\right] \\
& -\int_{N_{k}\left(x_{k} ; a_{k} ; 2 a_{k}\right)} c(x) d x
\end{aligned}
$$

for some positive constant K_{1}. Hence

$$
\begin{aligned}
& a^{2 m}\left[\int_{N_{k}\left(x_{k} ; a_{k} / 2 ; 3 a_{k}\right)} \lambda(x) d x\right]^{-1} M a_{k / 2}{ }^{3 a_{k}}\left[v_{k}\right] \\
& \leqq k_{1}-a_{k}^{2 m}\left[\int_{N_{k}\left(x_{k} ; a_{k} / 2 ; 3 a_{k}\right)} \lambda(x) d x\right]^{-1} \int_{N_{k}\left(x_{k} ; a_{k} ; 2 a_{k}\right)} c(x) d x
\end{aligned}
$$

Hypothesis (ii) then shows that $M_{a_{k} / 2}{ }^{3 a_{k}}\left[v_{k}\right]<0$ for sufficiently large k, and therefore hypothesis (a) of Theorem 4 is satisfied.

By (i), there exists a number $n(r)$ for each $r>0$ such that $\left|x_{k}\right|-3 a_{k}>r$ whenever $k>n(r)$. Then $x \in N_{k}\left(x_{k} ; a_{k} / 2 ; 3 a_{k}\right)$ implies that $|x| \geqq\left|x_{k}\right|-$ $\left|x-x_{k}\right|>|x|-3 a_{k}>r$ so that $x \in G_{r}$, and $N_{k}\left(x_{k} ; a_{k} / 2 ; 3 a_{k}\right) \subset G_{r}$ for all $k>n(r)$. Hence (1) is oscillatory by Theorem 4.

Corollary 6. Equation (1) is oscillatory in an unbounded domain $G \subset E^{n}$ if G contains a sequence of spherical annuli $\left\{N_{k}\left(x_{k} ; a_{k} / 2 ; 3 a_{k}\right)\right\}, k=1,2, \ldots$, with the following properties:
(i) $\lim _{k \rightarrow \infty}\left(\left|x_{k}\right|-3 a_{k}\right)=\infty$;
(ii) $\left(a_{\alpha \beta}(x)\right)$ is bounded (as a form) in G;
(iii) $c(x)$ is non-negative in each $N\left(x_{k} ; a_{k} / 2 ; 3 a_{k}\right)$, and

$$
\lim _{k \rightarrow \infty} a_{k}^{2 m-n} \int_{N_{k}\left(x_{k} ; a_{k} ; 2 a_{k}\right)} c(x) d x=+\infty
$$

The above corollary generalizes a recent result of Swanson [6] to differential equations of arbitrary even order.

Example. Suppose G contains a sequence of open discs $\left\{N_{k}\left(x_{k} ; a\right)\right\}$ such that $\lim _{k \rightarrow \infty}\left|x_{k}\right|=\infty$. Evidently this condition is satisfied if G contains an infinite cylinder, and also for a class of "spiral" domains containing no infinite ray.

The equation

$$
(-)^{m} \Delta^{m} u+c(x) u=0
$$

is oscillatory in G if any one of the following conditions is satisfied:
(a) $c(x)$ is non-negative in each $N_{k}\left(x_{k} ; a\right)$, and

$$
\lim _{k \rightarrow \infty} \int_{N_{k}\left(x_{k} ; a / 3 ; 2 \pi / 3\right)} c(x) d x=+\infty ;
$$

(b) $c(x) \geqq c_{k}>0$ in each $N_{k}\left(x_{k} ; a\right)$ where $\lim _{k \rightarrow \infty} c_{k}=+\infty$;
(c) $\lim _{|x| \rightarrow \infty} c(x)=+\infty$ uniformly in G.

We shall consider now the special case when G is the whole space E^{n}. The following theorem generalizes a recent result of Kreith and Travis [3].

Theorem 7. The partial differential equation

$$
\begin{equation*}
L u=\sum_{|\alpha|=|\beta|=2} D^{\alpha}\left(a_{\alpha \beta}(x) D^{\beta} u\right)-c(x) u=0 \tag{2}
\end{equation*}
$$

is oscillatory in E^{n} if the following ordinary differential equation is oscillatory at $r=\infty$:
(3) $l u=\left[r^{n-1} \Lambda(r) z^{\prime \prime}\right]^{\prime \prime}-\left[2 r^{n-3} \Lambda(r) z^{\prime}\right]^{\prime}-r^{n-1} c(r) z=0$.

Proof. Suppose equation (3) is oscillatory at $r=\infty$. Let $I_{1}=\left\{r: r_{1}<r<t_{1}\right\}$ be a nodal domain for the operator l. By increasing t_{1} if necessary and using lemma 1, we can assume that the smallest eigenvalue λ_{1} of the problem

$$
\begin{aligned}
& l u=\lambda u \text { in } I_{1}, \\
& u\left(r_{1}\right)=u^{\prime}\left(r_{1}\right)=u\left(t_{1}\right)=u^{\prime}\left(t_{1}\right)=0
\end{aligned}
$$

is negative. Let $z_{1}(r)$ be the corresponding eigenfunction. Suppose $I_{k}, z_{k}(r)$ have been chosen. Let $I_{k+1}=\left\{r: r_{k+1}<r<t_{k+1}\right\}$ be a nodal domain for the operator l such that $r_{k+1}>t_{k}$. By increasing t_{k+1} if necessary we can assume, as before, that the smallest eigenvalue λ_{k} of the problem

$$
\begin{aligned}
& l u=\lambda u \text { in } I_{k+1} \\
& u\left(r_{k+1}\right)=u^{\prime}\left(r_{k+1}\right)=u\left(t_{k+1}\right)=u^{\prime}\left(t_{k+1}\right)=0
\end{aligned}
$$

is negative. Let $z_{k+1}(r)$ be the corresponding eigenfunction. By induction there exists a sequence of eigenfunctions on the intervals $I_{k}, k=1,2, \ldots$, such that
(4) $l z_{k}=\lambda_{k} z_{k} \quad$ in I_{k}

$$
z_{k}\left(r_{k}\right)=z_{k}^{\prime}\left(r_{k}\right)=z_{k}\left(t_{k}\right)=z_{k}^{\prime}\left(t_{k}\right)=0,
$$

$$
\lambda_{k}<0
$$

Take N_{k} in Theorem 4 to be the annular domain defined by

$$
N_{k}=\left\{x \in E^{n}: r_{k}<|x|<t_{k}\right\} .
$$

Take $v_{k}(x)=z_{k}(|x|)$. Then $v(x)=\partial v / \partial x_{i}=0$ on ∂N_{k} for all $k, i=1,2, \ldots$, n, and it is easily checked that

$$
\begin{aligned}
\int_{N_{k}} v_{k} L v_{k} d x \leqq M_{r_{k}}^{t_{k}}[v]=\int_{r_{k}}^{t_{k}} \Lambda(r)\left(z_{k}^{\prime \prime}(r)\right)^{2} r^{n-1} & +2\left(z^{\prime}(r)\right)^{2} r^{n-3} \\
& -r^{n-1} c(r)(z(r))^{2} d r<0
\end{aligned}
$$

The conclusion follows from Theorem 4.

References

1. R. Courant and D. Hilbert, Methods of mathematical physics I (Wiley, New York, 1953).
2. D. R. Dunninger, A Picone integral identity for a class of fourth order elliptic differential inequalities, Atti Accad. Naz. Lincie Rend. Cl. Sci. Fis. Mat. Natur. 50 (1971), 630-641.
3. Kurt Kreith and Curtis C. Travis, Oscillation criteria for self-adjoint elliptic equations Pacific J. Math. 41 (1972), 743-753.
4. S. G. Mikhlin, The problem of the minimum of a quadratic function (Holden-Day, San Francisco, 1965).
5. E. S. Noussair, Oscillation theory of elliptic equations of order 2m, J. Differential Equations 10 (1971), 100-111.
6. C. A. Swanson, Strong oscillation of elliptic equations in general domains, Can. Math. Bull. 16 (1973), 105-110.

The University of New South Wales, Kensington, N.S.W., Australia

[^0]: Received May 1, 1974 and in revised form, August 16, 1974.

