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Kinetic treatments of drift tearing modes that match an inner, resonant layer solution
to an external magnetohydrodynamic (MHD) solution, characterised by ∆′, can fail
to match the ideal MHD boundary condition on the parallel electric field, E‖ = 0. In
this paper we demonstrate how consideration of ion sound and ion Landau damping
effects achieves this, placing the theory on a firm footing. These effects are found
to modify the effective critical ∆′ for instability of drift tearing modes, in particular
for weak electron temperature gradients. The implications for a realistic hot plasma
resonant layer model – involving large ion Larmor radius and semi-collisional electron
physics (Connor et al., Plasma Phys. Control. Fusion, vol. 54, 2012, 035003) – are
determined.
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1. Introduction

Tearing modes are driven by current gradients and pressure gradients in the plasma
whose destabilising effects are characterised by a quantity ∆′. The associated tearing
of a tokamak magnetic field occurs at the resonant radius, r= r0, where m= nq(r0),m
and n are the poloidal and toroidal mode numbers of the helical instability and q
is the safety factor. In the vicinity of r = r0 complex kinetic effects can occur and
to account for these it is convenient to treat a narrow ‘inner’ region in which these
effects are included, but the equations are simplified because of the localised nature
of this inner layer. Stability is then determined by matching solutions of these inner
equations to outer ones, valid across the regions away from the layer (and satisfying
appropriate boundary conditions at the plasma boundary and magnetic axis) where
a simple ideal magnetohydrodynamic (MHD) description of the plasma suffices. The
solution of the inner equations provides a quantity ∆(ω), where ω is the complex
mode frequency, while the solution of the outer equations yields the aforementioned
quantity ∆′: the matching condition leads to a dispersion relation and a critical value
of ∆′ for instability.

For a simple resistive MHD model (or even a cold ion model containing
electron diamagnetic effects) of the inner region, the corresponding solutions match
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satisfactorily to the outer ones, with the perturbed parallel electric field, E‖, vanishing
properly as one reaches the outer ideal MHD region. However, for a kinetic or fluid
treatment of the ion physics when the ions have finite temperature, so that the effects
of finite ion Larmor radius (FLR) and their parallel thermal motion or transport are
included, this matching becomes more complex (Coppi et al. 1979; Cowley, Kulsrud
& Hahm 1986; Fitzpatrick 1989; Connor, Hastie & Zocco 2012). Even though one
can match the longitudinal component of the perturbed vector potential, A‖, from the
inner region to its form in the ideal region, where A‖∝ 1+ (r− r0)∆

′, the expression
for E‖ does not necessarily tend to zero. To accomplish this (i.e. decay of E‖) within
the matching region, one must consider an intermediate region where ion sound and
ion Landau damping become significant at the characteristic frequency of a drift
tearing mode (Coppi et al. 1979). Consequently, the overall matching condition is
modified, with an impact on the stability of the drift tearing mode. The investigation
of this effect for the realistic situation in a hot plasma where the ion Larmor orbit
width exceeds the reconnecting layer width associated with a semi-collisional electron
model, is the subject of this paper. In this work, the intermediate region is described
by a cylindrical, collisionless plasma model.

We note in passing that the stabilising effects of ion sound on the ‘drift collisional’
tearing mode were also presented by Bussac et al. (1978) and a simple model for the
effects of ion Landau damping on the semi-collisional neoclassical drift tearing mode
was given by Fitzpatrick (1989), while a more fluid-like treatment of this problem was
presented by Connor, Hastie & Helander (2017).

In § 2 we develop the governing equations, namely the vorticity equation and
Ampere’s equation, that pertain in the intermediate region. To complete these
equations, we solve the collisionless kinetic equations for the perturbed parallel
electron and ion currents. We obtain these solutions in § 3 by calculating in the
space of the radial coordinate. However, we wish to connect this region to inner
region models which feature large ion Larmor radii (as compared to the electron
scales of the reconnecting layer). Since such inner region models are better dealt
with in Fourier space (Pegoraro & Schep 1986), it is convenient to operate with
Fourier transforms of the radially dependent perturbed fields (as in the formalism of
Connor et al. (2012)), deducing the corresponding real space behaviour from their
long-wavelength limit in Fourier transformed variables. The resulting intermediate
region solution is then inserted into Ampere’s law in § 4 to calculate the effect of
the intermediate region on ∆′.

The results are characterised by a quantity a = (ωτLs/2ω∗eLn)((ω−ω∗e)/(ωτ +
(1 + ηi)ω∗e)). Here ω is the mode frequency, ω∗j = mTj/(ejBrLn) is the diamagnetic
frequency of species j ( j= e, i for electrons and ions, respectively), 1/Ln= d(ln n)/dr
with n the plasma density, ηj = d(ln Tj)/d(ln n) with Tj the temperature of species j,
τ = Te/Ti, r is a minor radius of the cylinder and Ls is the magnetic shear length.
Since drift tearing modes typically have a real frequency ω= ω∗e(1+ αηe), where α
is 0(1) (for the collisionless case, α = 0.5 (Drake & Lee 1977; Coppi et al. 1979;
Cowley et al. 1986), while for semi-collisional electrons, α = 0.74 (Cowley et al.
1986; Connor et al. 2012)), a is usually large, but for weak electron temperature
gradients it too can become 0(1). This is the situation addressed by Coppi et al.
(1979) and in the present work.

In § 5, we discuss the implications for a realistic hot plasma resonant layer model –
involving large ion Larmor radius and semi-collisional electron physics (Cowley et al.
1986; Connor et al. 2012). In contrast to the calculation in Coppi et al. (1979), we
now need both real and imaginary parts of the modified ∆′. A final section discusses
the results and draws conclusions.
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2. Intermediate region plasma model

We consider cylindrical geometry with coordinates r, θ, z and magnetic fields
(0, Bθ(r), BZ(r)); the total field strength is B. The perturbed fields of the tearing
mode involve the parallel vector potential, A‖, and electrostatic potential, ϕ, with
frequency ω and structure A‖ ∼ A(x)e−iωt+ikzz−imθ for example. Here x= r − r0, where
the resonant surface, r0, is given by kzBZ(r0)− kθBθ(r0)= 0, with kθ =m/r, so that the
wavenumber parallel to the magnetic field is k‖=mx/rLs, with Ls being the magnetic
shear length. In the toroidal geometry of a tokamak, kz = n/R, Ls = Rq/s, with R the
major radius, s= rd(ln q)/dr and q the safety factor.

The electrons and ions satisfy the linearised, collisionless, kinetic equation:

(ω− k‖v‖)gj = (ω−ω
T
∗j)

ejFMj

Tj
J0

(
k⊥v⊥
ωcj

)
(ϕ − v‖A‖). (2.1)

Here the perturbed electron distribution, δfj is written δfj=−(ejFMj/Tj)ϕ+ gj, where
FMj is the Maxwellian distribution for species j, v‖ is the parallel velocity and v⊥ the
perpendicular velocity, while ωT

∗j = ω∗j(1 + ηj((mjv
2/2Tj) − 3/2)), with v2

= v2
‖
+ v2

⊥
.

J0 is the Bessel function of zero order with k⊥, where k2
⊥
= k2

x + m2/r2, being the
wavenumber perpendicular to the magnetic field, and ωcj = ejB/mj, with mj the mass
of species j, is the cyclotron frequency for species j.

The stability of tearing modes can be investigated from two equations: the vorticity
equation and Ampere’s law. The former is obtained by multiplying (2.1) by ej,
integrating over velocity space, summing over the two species, j, and applying the
quasi-neutrality condition, δne = δni. The result is:

k‖J‖ =
e2nϕ

Ti
[(1− Γ0(b))(ω−ω∗i)−ω∗iηib(Γ0(b)− Γ1(b))] ≡

e2nϕ
Ti

F(b). (2.2)

Here J‖ = J‖,i + J‖,e is the perturbed parallel current density, e the proton charge and
Γl(b)= Il(b)e−b, where b= k2

⊥
Ti/(miω

2
ci), with Il(b) the modified Bessel functions of

order l. Ampere’s equation is simply:

d2A‖
dx2
=−J‖, (2.3)

where we ignore the small contribution to the left-hand side from k2
θ as k2

θx
2
� 1.

In general, one must consider several regions in x: (i) the innermost layer, x ∼ δe,
where δe is the width of the very narrow region where electron physics such as
electron Landau damping or semi-collisional effects play a role in reconnection; (ii)
at somewhat larger values of x, namely x∼ρi>δe, where ρi= vTi/ωci, with vTi the ion
thermal velocity, vTi= (2Ti/mi)

1/2, is the ion Larmor radius, one must retain full finite
ion Larmor radius (FLR) effects; (iii) the ‘intermediate region’, ω∼ k‖vTi, where full
ion parallel dynamics operates (ion sound at x∼ (Ls/Ln)

1/2ρi and ion Landau damping
at x ∼ (Ls/Ln)ρi); and finally; (iv) the outer ideal MHD region. These regions are
shown schematically in figure 1. Solutions of (2.2) and (2.3) must be matched through
all these four regions. In earlier work Connor et al. (2012) considered this problem,
but omitted the intermediate region required to ensure E‖→ 0 as one approaches the
ideal region. We now develop the equations to describe this region.
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FIGURE 1. The regions in which different physical processes occur as the distance, x=
r− r0, from the resonant surface, r0, increases: (i) electron reconnecting physics at a scale
δe; (ii) ion finite Larmor radius effects at a scale ρi; (iii) full ion parallel dynamics, namely
ion sound at a scale (Ls/Ln)

1/2ρi and ion Landau damping effects at a scale (Ls/Ln)ρi; and
(iv) the outer ideal MHD region.

Expressions for the parallel current densities, J‖,e and J‖,i, valid in the ion sound
region and when b� 1, are derived from solving the respective kinetic equations for
electrons and ions, equation (2.1):

J‖,e =−i
e2nE‖
k2
‖Te

(ω−ω∗e) (2.4)

J‖,i =−i
e2nE‖
k2
‖Ti

[
(ω−ω∗i)(1+ ζiZ(ζi))−ω∗iηi

(
ζ 2

i (1+ ζiZ(ζi))−
1
2
ζiZ(ζi)

)]
,

(2.5)

where E‖=−i(k‖ϕ−ωA‖), ζi=ωLs/kθxvTi and Z(ζi) is the plasma dispersion function.
Making use of the long-wavelength approximation, b ∼ |ρ2

i d2/dx2
| � 1, for the ions

in (2.2), eliminating J‖,e,i and introducing the dimensionless variable, X= 1/ζi, so that
X= (2Ln/Ls)(ω∗i/ω)(x/ρi), we obtain the following fourth-order system describing the
potentials ϕ and A‖, replacing the former by φ = ϕ/vTi and denoting the latter by A:
(so that E‖ ∝ (Xφ − A)):

X
d2A
dX2
= βi

(
1−

ω∗i(1+ ηi)

ω

)
d2φ

dX2
, (2.6)

and

X
d2A
dX2
=
βe

2

(
Ls

Ln

ω∗i

ω

)2 (
φ −

A
X

) [
1−

ω∗e

ω
+ τ

(
1−

ω∗i

ω

)(
1+

Z
X

)
− τ

ω∗i

ω

ηi

X2

(
1+

Z
X
−

XZ
2

)]
, (2.7)
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where Z = Z(1/X) and the βj are the ratios of plasma to magnetic pressure for each
species. These two equations can be combined to yield:

d2φ

dX2
=Q(X)

(
φ −

A
X

)
, (2.8)

where

Q(X)=
1
2

(
Ls

Ln

)2
(ω̂τ )2

(ω̂τ + 1+ ηi)

[
ω̂− 1+ (ω̂τ + 1)

(
1+

Z
X

)
+ ηi

(
1

X2
+

Z
X3
−

Z
2X

)]
,

(2.9)
with ω̂=ω/ω∗e. The quantity Q(X) contains the effects of ion sound when X� 1 and
ion Landau damping in the region X∼ 1. Introducing the ion sound approximation,

Q(X)≈
1
2

(
Ls

Ln

)2
(ω̂τ )2

(ω̂τ + 1+ ηi)

[
ω̂− 1− (ω̂τ + 1+ ηi)

X2

2

]
. (2.10)

The validity of the ion finite Larmor radius and ion sound expansions requires these
terms both to be small so that the balance of terms in (2.8), with Q(X) given by
(2.10), implies ω̂− 1∼ ηe ∼ Ln/Ls < 1.

We shall find it to be sufficient to consider only the ion sound approximation in
order to ensure E‖→ 0, the physics of ion Landau damping only playing a conceptual
role that justifies the use of the ‘outward carrying energy’ wave boundary conditions,
as in the theory of the electron drift wave (Pearlstein & Berk 1969).

Inserting the solution for φ into Ampere’s law (2.6) and integrating over X through
the ion sound region yields the modification to ∆′ arising from the intermediate
region (which represents ion sound and, implicitly, ion Landau damping physics and
we designate it as such):

∆′ILD =
1
A

∫
∞

−∞

dx
d2A
dX2
=

1
ρi

∫
∞

−∞

dX
X

[
1+

(1+ ηi)

ω̂τ

]
Q(X)

(
ϕ −

A
X

)
, (2.11)

where we have used (2.8).

3. Solution in the intermediate region
At low βi, equation (2.6) allows us to write A≡ const., since A‖ is an even function

of x, which we choose to be unity: A= 1. Introducing the following scaled variables:

y=
(
ω̂τLs

Ln

)1/2

X, ϕ̂ =

(
ω̂τLs

Ln

)−1/2

φ, a=
ω̂τLs

2Ln

(ω̂− 1)
(ω̂τ + 1+ ηi)

, (3.1a−c)

equation (2.8) can then be written as

d2

dy2
ϕ̂ +

(
y2

4
− a
)
ϕ̂ = R(y), R(y)=−

a
y
+

y
4
. (3.2a,b)

The validity of the ion FLR and ion sound expansions means that (3.2) is only valid
on the domain (Ls/Ln)

1/2 > y> (Ln/Ls)
1/2, requiring (Ln/Ls)� 1.
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To solve (3.2) we adopt two different techniques, corresponding to the two
components of the inhomogeneous term, R(y). For the first term, R(y)→R1(y)=−a/y,
we employ a Fourier transform for its solution, ϕ̂1. For the second one, R(y)→R2(y)=
y/4, we generalise a technique due to Basu & Coppi (1977), involving an integral
representation of its solution, ϕ̂2.

Introducing the normalisations (3.1), the contribution to (2.11) from the ion sound
term in Q(X) becomes:

∆′ILD =
βi(ω̂τ + 1+ ηi)

ρi

(
Ls

Lnω̂τ

)1/2 ∫ ∞
0

dy[1− yϕ̂(y)]. (3.3)

(i) Solution ϕ̂1(y)
Fourier transforming equation (3.2) with R(y) → R1(y) = −a/y, we obtain an

equation for ϕ̃1(k):

ϕ̃1(k)=
∫
∞

−∞

dk exp(iky)ϕ̂1(y), (3.4)

namely
1
4

d2

dk2
ϕ̃1 +

(
k2

4
+ a
)
ϕ̃1 = iπa sgn(k), (3.5)

where the transform of the right-hand side is given by Pegoraro & Schep (1986),
utilising the theory for Fourier transforms of generalised functions (Gel’fand & Shilov
1964).

This can be cast in the canonical form for parabolic cylinder functions by
introducing κ = 2k. The solution of (3.5) can then be written as:

ϕ̃1(κ, a) = AE(−a, κ)+ BE∗(−a, κ)

+ iπa
E(−a, κ)

W

∫ κ

0
dκ ′E∗(−a, κ ′) sgn(κ ′)

− iπa
E∗(−a, κ)

W

∫ κ

0
dκ ′E(−a, κ ′) sgn(κ ′), (3.6)

where E(−a, κ) and E∗(−a, κ) are the wave-like parabolic cylinder functions
(Abramowitz & Stegun 1972), the Wronskian, W = −2i and A and B are constants
to be determined by applying appropriate boundary conditions.

The acceptable solution in configuration space (i.e. x-space) is a wave carrying
energy outwards from the resonant layer, eventually decaying due to ion Landau
damping (Pearlstein & Berk 1969). Since the electron drift wave is a ‘backwards’
wave with group velocity opposed to its phase velocity, this translates into suppressing
the wave solution with positive phase velocity in x-space. In k-space this implies
supressing the one with an apparent negative phase velocity, so that

B=
iπa
W

∫
∞

0
dκ ′E(−a, κ ′)sgn(κ ′). (3.7)

We also require ϕ̂1(κ,−a) to be odd in κ with ϕ̂1(0, a)= 0. This requires

A=−
iπaE∗(−a, 0)

WE(−a, 0)

∫
∞

0
dκ ′E(−a, κ ′)sgn(κ ′). (3.8)
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Thus

ϕ̃1(κ, a) =
iπa
W

[
E∗(−a, κ)

∫
∞

κ

dκ ′E(−a, κ ′)sgn(κ ′)

−
E∗(−a, 0)
E(−a, 0)

E(−a, κ)
∫
∞

0
dκ ′E(−a, κ ′)sgn(κ ′)

+ E(−a, κ)
∫ κ

0
dκ ′E∗(−a, κ ′)sgn(κ ′)

]
. (3.9)

(ii) Solution ϕ̂2(y)
Introducing z= iy2/4 and ϕ̂2(y)= u exp(−z) into (3.2) with R(y)→R2(y)= y/4, we

obtain the equation:

z
d2u
dz2
+

(
1
2
− 2z

)
du
dz
+

(
−

1
2
+ ia

)
u=−

eiπ/4z1/2ez

2
(3.10)

for u(z). Generalising the technique of Basu & Coppi (1977), we introduce the
transform:

u(z)= zβ
∫

C
dtv(t)ezt, (3.11)

where the contour C remains to be chosen for convenience. Inserting the substitution
(3.11) in (3.10) leads to

zβ−1
∫

C
dtv(t)ezt

{
z2(t2
− 2t)+ z

[(
2β +

1
2

)
(t− 1)+ ia

]
+ β(β − 1)+ β/2

}
=−eiπ/4z1/2ez/2. (3.12)

Choosing β = 1/2, which eliminates the term independent of z on the right-hand
side bracket, equation (3.12) simplifies to∫

C
dtv(t)ezt

{
z2(t2
− 2t)+ z

[
3
2
(t− 1)+ ia

]}
=−eiπ/4ez/2. (3.13)

Integrating by parts in t,

[v(t)ezt(t2
− 2t)]t2t1

−

∫
C

dtezt

{
d
dt
[((t2
− 2t))v(t)] −

[
3
2
(t− 1)+ ia

]
v(t)
}
=−eiπ/4ez/2, (3.14)

where t1 and t2 are the endpoints of contour C and are to be chosen later for
convenience.

Equation (3.14) is solved if

d
dt
[((t2
− 2t))v(t)] −

[
3
2
(t− 1)+ ia

]
v(t)= 0 (3.15)

and
[v(t)ezt(t2

− 2t)]t2t1 =−eiπ/4ez/2. (3.16)
Equation (3.15) is satisfied by:

v(t)=
ĉ

t1/4+ia/2(2− t)1/4−ia/2
(3.17)

and (3.16) by choosing t1 = 0, t2 = 1 and the constant ĉ= eiπ/4/2. Inserting solution
(3.17) into (3.11) for u(z), determines ϕ̂2(y)= u(z) exp(−z) with z= iy2/4.
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4. The ∆′-integral
Inserting the solution ϕ̂ = ϕ̂1 + ϕ̂2 into (3.3) and integrating over y through the ion

sound region yields ∆′ILD, which we can express as

∆′ILD =∆
′(1)
+∆′(2), (4.1)

where

∆′(1) =
βi(ω̂τ + 1+ ηi)

ρi

(
Ls

Lnω̂τ

)1/2 ∫ ∞
0

dy[1− yϕ̂1(y)] (4.2)

and

∆′(2) =
βi(ω̂τ + 1+ ηi)

ρi

(
Ls

Lnω̂τ

)1/2 ∫ ∞
0

dy[1− yϕ̂2(y)]. (4.3)

To evaluate ∆′(1) we introduce the Fourier transform for ϕ̂1(y, a), ϕ̃1(κ, a), perform
the integration over y, using the resulting delta function, δ(k), to reduce the integral
to:

∆′(1) =
βi(ω̂τ + 1+ ηi)

2ρi

(
Ls

Lnω̂τ

)1/2

i
d
dk
ϕ̃1(k, a)k=0. (4.4)

From (3.9) we have the result:

i
d
dk
ϕ̃1(k, a)k=0 =−

2aπ

E(−a, 0)

∫
∞

0
dκ ′E(−a, κ ′)sgn(κ ′), a> 0. (4.5)

As shown in the appendix, equation (A 10), the integral over κ ′ can be performed
analytically to yield:

i
d
dk
ϕ̃1(k, a)k=0 =−

2πeiπ/4aΓ
(

3
4
−

ia
2

)
Γ

(
5
4
−

ia
2

) F
(

1
2
,

1
4
−

ia
2
;

5
4
−

ia
2
; −1

)
. (4.6)

Here F(a, b; c; z) is the hypergeometric function and Γ (z) the gamma function
(Abramowitz & Stegun 1972). Thus:

∆′(1) =−
βi(ω̂τ + 1+ ηi)

2ρi

(
Ls

Lnω̂τ

)1/2

I0(a), (4.7)

with

I0(a)=−
2πeiπ/4aΓ

(
3
4
−

ia
2

)
Γ

(
5
4
−

ia
2

) F
(

1
2
,

1
4
−

ia
2
;

5
4
−

ia
2
; −1

)
. (4.8)

I0(a), not to be confused with the modified Bessel function, is displayed in figure 2.
Inserting ϕ̂2 into integral (4.3) yields

∆′(2) =
βi(ω̂τ + 1+ ηi)

ρi

(
Ls

Lnω̂τ

)1/2
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FIGURE 2. The real and imaginary parts of I0(a) as a function of the parameter a =
(Lsω̂τ/2Ln)(ω̂− 1)/(ω̂τ + 1+ ηi).

×

∫
∞

0
dy
[

1−
iy2

4

∫ 1

0
dt exp

(
−

iy2t
4

)
(1− t)−1/4−ia/2(1+ t)−1/4+ia/2

]
. (4.9)

Using the identity

1= exp
(
−

iy2

4

)
+

iy2

4

∫ 1

0
dt exp

(
−

iy2t
4

)
(4.10)

we can rewrite (4.9) as

∆′(2) =
βi
(
ω̂τ + 1+ ηi

)
ρi

(
Ls

Lnω̂τ

)1/2 {∫ ∞
0

dy exp
(
−

iy2

4

)
+

∫
∞

0
dy

iy2

4

∫ 1

0
dt exp

(
−

iy2t
4

)
[1− (1− t)−1/4−ia/2(1+ t)−1/4+ia/2

]

}
. (4.11)

Now the integration over y can be readily performed to yield:

∆′(2) =
√

πe−iπ/4βi(ω̂τ + 1+ ηi)

ρi

(
Ls

Lnω̂τ

)1/2

×

{
1+

1
2

∫ 1

0
dt t−3/2

[1− (1− t)−1/4−ia/2(1+ t)−1/4+ia/2
]

}
. (4.12)

Thus, we require the integral

Î(a)=
1
2

∫ 1

0
dt t−3/2

[1− (1− t)−1/4−ia/2(1+ t)−1/4+ia/2
]. (4.13)

This can be evaluated analytically, as shown in (B 9) of appendix B:

Î(a)=−1+

√
(2π)Γ

(
3
4
−

ia
2

)
Γ

(
1
4
−

ia
2

) . (4.14)
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FIGURE 3. The real and imaginary parts of I1(a) as a function of the parameter
a= (Lsω̂τ/2Ln)(ω̂− 1)/(ω̂τ + 1+ ηi).

FIGURE 4. The real and imaginary parts of I(a) = I0(a) + I1(a) as a function of the
parameter a= (Lsω̂τ/2Ln)(ω̂− 1)/(ω̂τ + 1+ ηi).

Thus, from (4.7) and (4.12)–(4.14) we obtain:

∆′ILD =
βi(ω̂τ + 1+ ηi)

2ρi

(
Ls

Lnω̂τ

)1/2

(I0(a)+ I1(a)), (4.15)

where

I1(a)=
√

2πe−iπ/4
Γ

(
3
4
−

ia
2

)
Γ

(
1
4
−

ia
2

) , (4.16)

which is evaluated numerically and displayed in figure 3. The combination

I(a)= I0(a)+ I1(a) (4.17)

is plotted in figure 4. When a= 0, the expression (4.15) reduces to the analytic result
for the real part of ∆′ quoted in Coppi et al. (1979) for the case ηe = 0.

5. The effective ∆′ for stability
The result (4.15) for ∆′ILD, the modification to ∆′ due to the ion sound/ion Landau

damping physics, can be substituted into expressions in the literature for the drift
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tearing mode growth rate at finite ion temperature which have ignored the presence
of these effects.

For example, the semi-collisional tearing mode with large ion Larmor orbits in the
absence of the ion sound intermediate layer has a growth rate γ̂ given by Im(δω̂),
where ω̂= ω̂0 + δω̂, and δω̂ satisfies the dispersion relation (Connor et al. 2012):

δω̂∼−
δscω̂

1/2
0

πβ̂
e−iπ/4(∆′ −∆′crit). (5.1)

Here ω̂0 = (1 + 0.74ηe), δsc = (νeρeL2
s/kθvTeLn)

1/2, with νe the electron collision
frequency, ρe the electron Larmor radius and vTe the electron thermal velocity, is the
semi-collisional width (δsc� ρi) and

∆′crit =

√
πβ̂

ρi

(ω̂0 − 1)2

ω̂0

(
1+ ω̂0τ −

ηi

2

)
ln(ρi/(δscω̂

1/2
0 ))

−
πβ̂

ρi
ω̂0(ω̂0 − 1)I, (5.2)

with β̂ = βe(Ls/Ln)
2/2. I(ω̂0(ηe), ηi,τ) is an integral that is negative and numerical

evaluation shows that it is well represented by I ∼= −1.3η1/2
e (Connor et al. 2012).1

The first contribution to ∆′crit in (5.2) is due to finite ion Larmor radius effects (FLR),
while the second term represents diamagnetic effects. The most sensitive dependence
of ∆′crit is on ηe.

To introduce the effect of the intermediate ion sound layer, we replace ∆′ in (5.1)
by (∆′−∆′ILD). Using (4.15) and (5.1), with the result for I(a) displayed in figure 4,
we show ∆′eff , the critical value of ∆′ (i.e. the value of ∆′ for which the growth rate,
as calculated from (5.1), vanishes) as a function of ηe in figure 5, for typical values of
the other parameters (β̂ = 0.05, δsc/ρi= 10−3, τ = 1, ηi= 0,Ln/Ls= 0.1). Because ∆′ILD
is complex, both its real and imaginary parts contribute to the growth rate in (5.1).
We see that the contribution from the ion sound/ion Landau damping layer is less
important than those arising from ∆′crit , representing the FLR and diamagnetic terms,
except near ηe = 0 where it remains finite. There it provides a persistent stabilising
contribution, unlike the others, which tend to zero.

6. Discussion and conclusions
We have investigated the impact of ion sound and ion Landau damping on the

effective tearing mode stability parameter, ∆′, in a hot tokamak plasma. These effects
are essential in ensuring the parallel electric field approaches zero as one attempts to
match solutions of the inner resonant layer equations to those of the external ideal
MHD model. Because the tearing mode frequency is effectively determined by the
resonant layer physics and depends on ηe, it transpires that the effect is significant
even for weak electron temperature gradients. In this situation one can introduce
an intermediate region, between that where the key resonant layer physics lies and
the ideal MHD region, where electron drift wave physics dominates (Coppi et al.
1979). Indeed, by recalling the ideas of Pearlstein & Berk (1969) one does not need
to explicitly consider the ion Landau damping region, replacing it by the boundary

1We point out that (5.2) corrects an evident misprint in the corresponding equation 42 in Connor et al.
(2012). The corresponding figure there, figure 4, was, however, correctly calculated.
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FIGURE 5. The effective critical value of ∆′ρi, ∆′effρi (full (blue) line), as a function of ηe

for typical values of the other parameters: β̂ = 0.05, δsc/ρi = 10−3, τ = 1, ηi = 0, Ln/Ls =

0.1. ∆′crit is the contribution from FLR and diamagnetic effects (long dashed (brown) line),
while (Re[∆′ILD] − Im[∆′ILD]) is the contribution from the real and imaginary parts of the
ion Landau damping terms (dashed (green) line).

condition that the drift waves must only carry energy outwards. Matching solutions
through this layer provides a link between the true ∆′ and the effective one seen by
the inner layer.

The effect of the intermediate layer is parametrised by the quantity a = (ωτLs/
2ω∗eLn)((ω−ω∗e)/(ωτ + (1+ ηi)ω∗e)). Recalling that a good fit to the drift tearing
mode frequency is ω̂0 = (1 + 0.74ηe) (Connor et al. 2012), we see that a is indeed
essentially a function of ηe and Ls/Ln. However, the validity of the theory requires
the electron temperature gradient to be rather weak, with ηe ∼ Ln/Ls, i.e. LTe ∼ Ls,
so that a∼ 0(1) (Coppi et al. 1979). Although the effects of the intermediate region
increase as ηe increases, a valid treatment for ηe ∼ 0(1) would require a numerical
calculation involving the full effects of ion Larmor radius and ion Landau damping,
as the approximations inherent in the simple electron drift wave model, namely the
long-wavelength ion Larmor radius and the ion sound expansion, no longer hold.

Given these constraints on ηe, we have applied the results to a realistic hot tokamak
plasma model, although in cylindrical geometry, where the ion Larmor orbit exceeds
the reconnecting layer width, which itself is described by semi-collisional electron
physics (Cowley et al. 1986; Connor et al. 2012) and compared the stabilising effects
from the ion sound/ion Landau damping physics with other stabilising effects, as a
function of ηe. The sum of these effects then leads to a critical value, ∆′eff for tearing
instability. Although ∆′ILD is generally a less important stabilising term than the FLR
and diamagnetic contributions in ∆′crit, it persists as ηe→ 0, unlike the others.

The calculation in this paper is only strictly valid for a collisionless plasma slab in a
sheared magnetic field geometry, as it only ignores possible curvature, collisional and
trapped particle effects. However, these are weak in the range of x (ρi < x< ρiLs/Ln)
that is relevant for the ion dynamics involved in the calculation; it is therefore a
meaningful calculation for more general geometries.

Acknowledgements
This work has been part funded by the RCUK Energy Programme [grant number

EP/P012450/1]. To obtain further information on the data and models underlying this
paper please contact PublicationsManager@ukaea.uk.

https://doi.org/10.1017/S0022377819000217 Published online by Cambridge University Press

http://PublicationsManager@ukaea.uk
https://doi.org/10.1017/S0022377819000217


Ion Landau damping and drift tearing modes 13

Appendix A. Derivation of (4.6) for I0(a)

This appendix leans heavily on results concerning the confluent hypergeometric
functions, the hypergeometric functions and the parabolic cylinder functions,
respectively from chaps 13, 15 and 19 of Abramowitz & Stegun (1972).

Firstly E(−a, z) can be related to the usual parabolic cylinder function
Dia−1/2(e−iπ/4z), so that

I0(a)=−2aπ

∫
∞

0
dzDia−1/2(e−iπ/4z)/Dia−1/2(0). (A 1)

Now Dia−1/2(e−iπ/4z) itself can be expressed in terms of a confluent hypergeometric
function, U:

Dia−1/2(e−iπ/4z)= 2(ia/2−1/4)eiz2/4U
(

1
4
−

ia
2
,

1
2
; −

iz2

2

)
. (A 2)

The confluent hypergeometric function, U(a, b; x), has an integral representation;
using this we can write:

U
(

1
4
−

ia
2
,

1
2
; −

iz2

2

)
=

e−iz2/2

Γ

(
1
4
−

ia
2

) ∫ ∞
1

dteitz2/2(t− 1)−(ia/2+3/4)t(ia/2−3/4). (A 3)

This enables one to perform the integration over z in the numerator of (A 1), which
becomes:

2(ia/2−1/4)eiπ/4

Γ

(
1
4
−

ia
2

) (π

2

)1/2
∫
∞

1
dt(t− 1)−(ia/2+3/4)t(ia/2−3/4)(t− 1/2)−1/2. (A 4)

Finally, introducing u= 1/t, result (A 4) becomes

2(ia/2−1/4)eiπ/4

Γ

(
1
4
−

ia
2

) (π

2

)1/2
∫ 1

0
du(1− u)−(ia/2+3/4)(1− u/2)−1/2. (A 5)

Now the hypergeometric function, F(a, b; c; x) also has an integral representation and
one observes

F
(

1
2
,

1
4
−

ia
2
;

5
4
−

ia
2
; −1

)
=

Γ

(
5
4
−

ia
2

)
Γ

(
1
4
−

ia
2

)
Γ (1)

∫ 1

0
dtt−(ia/2+3/4)(1+ t)−1/2 (A 6)
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so that, on substituting t= 1− u, we obtain

F
(

1
2
,

1
4
−

ia
2
;

5
4
−

ia
2
; −1

)

=

Γ

(
5
4
−

ia
2

)
√

2Γ
(

1
4
−

ia
2

)
Γ (1)

∫ 1

0
du(1− u)−(ia/2+3/4)(1− u/2)−1/2. (A 7)

Thus, result (A 5) can be rewritten as:
√

π2(ia/2−1/4)eiπ/4

Γ

(
5
4
−

ia
2

) F
(

1
2
,

1
4
−

ia
2
;

5
4
−

ia
2
; −1

)
. (A 8)

Concerning the denominator in (A 1), we have:

Dia−1/2(0)=
√

π2(ia/2−1/4)

Γ

(
3
4
−

ia
2

) (A 9)

so that, finally, on using properties of the gamma function:

I0(a)=−
2πeiπ/4aΓ

(
3
4
−

ia
2

)
Γ

(
5
4
−

ia
2

) F
(

1
2
,

1
4
−

ia
2
;

5
4
−

ia
2
; −1

)
. (A 10)

Expression (A 10) provides (4.8) of the main text.

Appendix B. Derivation of (4.14) for Î(a)

We first need to evaluate integral Î(a) in (4.13). This is integrable because the
two terms in the denominator cancel as t→ 0. It is convenient to consider it as the
difference of the two diverging integrals:

Î(a) =
1
2

lim
δ→0

∫ 1

δ

dt
t3/2
− lim

δ→0

1
2

∫ 1

δ

dt
t3/2

(1− t)−ia/2−1/4(1+ t)ia/2−1/4

≡ J1(δ)− J2(δ, a). (B 1)

The first is readily evaluated:

J1(δ)=−1+
1
δ1/2

. (B 2)

For the second we substitute, t= 1/(2v + 1), to obtain

J2(δ, a)= 2−1/2
∫ z

0
dvv−ia/2−1/4(1+ v)ia/2−1/4, (B 3)
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where z= (1− δ)/2δ. Now J2(δ, a) can be expressed in terms of the incomplete beta
function, B1−2δ(3/4− ia/2,−1/2) (see §§ 1.5 and 2.53 of Erdelyi 1953):

J2(δ, a)= 2−1/2B1−2δ

(
3
4
−

ia
2
,−

1
2

)
. (B 4)

The incomplete beta function can be expressed in terms of the hypergeometric
function, F(a, b; c; z) (Abramowitz & Stegun 1972):

B1−2δ

(
3
4
−

ia
2
,−

1
2

)
=
(1− 2δ)−ia/2+3/4(
−

ia
2
+

3
4

) F
(

3
4
−

ia
2
,

3
2
;

7
4
−

ia
2
; 1− 2δ

)
. (B 5)

A suitable transformation for considering the limit δ→ 0 is the relation

F(a, b; c; z)=
Γ (c)Γ (c− b− a)
Γ (c− a)Γ (c− b)

F(a, b; a+ b− c+ 1; 1− z)

+ (1− z)c−a−bΓ (c)Γ (a+ b− c)
Γ (a)Γ (b)

F(c− a, c− b; c− a− b+ 1; 1− z), (B 6)

where we can then use the result

F(a, b; c; 0)= 1 (B 7)

(Abramowitz & Stegun 1972) to take the limit δ→ 0. The result is

J2(δ, a)=
1
δ1/2
−
√

2π

Γ

(
3
4
−

ia
2

)
Γ

(
1
4
−

ia
2

) . (B 8)

Combining with the result (B 2), we obtain

Î(a)=−1+
√

2π

Γ

(
3
4
−

ia
2

)
Γ

(
1
4
−

ia
2

) . (B 9)

This is the result quoted in (4.14).
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