BULL. AUSTRAL. MATH. SOC.
VOL. 5 (I971), 285-286.

Combinatorial matrices

Jennifer Wallis

We investigate the existence of integer matrices B satisfying the equation

$$
\begin{equation*}
B B^{T}=r I+s J, \tag{I}
\end{equation*}
$$

where T denotes transpose, r and s are integers, I is the identity matrix and J is the matrix with every element +1 .

Hadamard matrices are ($1,-1$) matrices of order $n=2$ or $4 t$ which have $r=n$ and $s=0$ in (1). We discuss equivalence of Hadamard matrices over the integers and show that all Hadamard matrices of order $4 t$, where t is odd and square-free are equivalent over the integers. Further, if t is even and square-free and there is a Hadamard matrix of order $2 t$, then there is a Hadamard matrix of order $4 t$ which is equivalent over the integers to the diagonal matrix

$$
\operatorname{diag}(1, \underbrace{2, \ldots, 2}_{2 m-1 \text { times }}, 2 \underbrace{m, \ldots, 2 m}_{2 m-1 \text { times }}, 4 m)
$$

We now develop many methods for constructing Hadamard matrices. Many of these constructions use skew-Hadamard matrices, that is Hadamard matrices $H=I+R$ where $R^{T}=-R$, or n-type matrices, that is ($1,-1$) matrices $N=I+P$ of order n where $P^{T}=P$ and $P P^{T}=(n-1) I$. We first develop some theory on the Williamson method for constructing skew-Hadamard matrices and show if h is the order of a skew-Hadamard matrix (n-type matrix) then there exists a skew-Hadamard (n-type) matrix of order $(h-1)^{u}+1$ where $u=2^{a} 3^{b} 5^{c} 7^{d}, b, c, d$ non-negative integers while a is a positive (non-negative) integer.

Received 31 March 1971. Thesis submitted to La Trobe University, March 1970. Degree approved, March 1971. Supervisors: Professor B. Mond, Professor G. Szekeres (University of New South Wales).

The concept of supplementary difference sets, that is, a set of subsets such that when we take all the differences in each subset and collect them, each difference occurs a fixed number of times in the totality, is introduced and an example given. Hadamard designs on n distinct letters are shown to exist for $n=2,4$ and 8 .
(v, k, λ)-configurations are considered, that is, ($0, I$)-matrices B of order v such that $r=k-\lambda$ and $s=\lambda$ in (1). We show two similar but distinct methods for proving there exists a $\left(q^{2}(q+2), q(q+1), q\right)$ configuration whenever q is prime or $q=2^{2}, 2^{3}, 2^{4}, 3^{2}, 3^{3}$ or 7^{2}. We prove that whenever a (q, k, λ)-configuration exists, q a prime power, then a $\left(q\left(k^{2}+\lambda\right), q k, k^{2}+\lambda, k, \lambda\right)$-configuration exists.

We consider integer matrices satisfying

$$
B B^{T}=v I-J, \quad B J=0=J B \text { and } B^{T}=-B
$$

and find that either the greatest common divisor of the elements of B is 1 or B has zero diagonal and +1 or -1 elsewhere. Also we show that if B is an integer matrix of order b satisfying

$$
\begin{aligned}
B B^{T} & =(p-q) I+q J \\
B J & =d J
\end{aligned}
$$

where p, q and $d>0$ are constants then if z, the least element of B, satisfies

$$
z \leq \frac{d}{b} \quad \text { and } \quad z \leq \frac{|w| d+P}{d+|w| b},
$$

where w is the greatest element of B, then

$$
B=\frac{d}{b} J
$$

We give tables of the orders <4000 of known Hadamard, skew-Hadamard and n-type matrices at the date of submission as well as lists of known classes of these matrices.

