THE REDUCIBILITY THEOREM FOR LINEARISED POLYNOMIALS OVER FINITE FIELDS

Stephen D. Cohen

Abstract

A self-contained elementary account is given of the theorem of S . Agou that classifies all composite irreducible polynomials of the form $P\left(x^{p^{n}}+a_{n-1} x^{p^{n-1}}+\ldots+a_{0} x\right)$ over a fuite field of characteristic p. Written to appeal to a wide readership, it is intended to complement the original rather techuical proof and other contributions by the author and by Mureno.

1. Introduction

A linearised polynomial $f(x)$ over a field F_{q} of prime power order $q=p^{k}$ is one of the form

$$
\begin{equation*}
f(x)=a_{n} x^{p^{n}}+a_{n-1} x^{p^{n-1}}+\ldots+a_{1} x^{p}+a_{0} x \tag{1}
\end{equation*}
$$

in $F_{q}[x]$, where $n \geqslant 0$. Because $(x+y)^{p}=x^{p}+y^{p}$ in F_{q}, evidently a linearised polynomial f represents a linear mapping on F_{q} as a vector space over the prime field F_{p}; thus

$$
\begin{align*}
& f(x+y)=f(x)+f(y) \text { for all } x, y \text { in } F_{q}, \tag{2}\\
& f(c x)=c f(x) \text { for all } x \text { in } F_{q} \text { and } c \text { in } F_{p} .
\end{align*}
$$

A simple consequence is that the set of roots of f form a linear subspace of any field containing them. Not suprisingly, because of this structure, much can be said, both theoretically and practically, about questions of reducibility and root finding for linearised and related polynomials (see [8, Chapter 3, Sections 4 and 5 and the Notes on pp.136-138]).

The theorem which is our topic was first proved by S. Agou in a series of papers $[\mathbf{1}, \mathbf{3}, \mathbf{4}]$. It specifies precisely those composites of linearised polynomials $P(f)$, where P is a polynomial of degree m over F_{q}, that are irreducible over F_{q}, asserting, in particular, that $P(f)$ is always reducible when $n>2$. Moreover, when $n=2$, irreducible composites only occur if $p=2$ and m is odd. (The full statement is given later.)

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/89 \$A2.00+0.00.

Now, composites of linearised polynomials have been most studied when the indices of x in the terms of $f(x)$ are powers of q (not just p as shown in (1)), in which case f is F_{q}-linear over any extension of F_{q}. For such, very general theorems exist displaying the explicit reducibility pattern of $P(f)$ over F_{q}; this comprises a listing of the degrees of the irreducible factors of f with the number of factors of each degree (see, for example, $[\boldsymbol{\theta}, \mathbf{1 0}])$. These results are a rich source of supply of irreducible polynomials of arbitrary degree over F_{q}. On the other hand, although factorising an arbitrary $P(f)$ in any particular case is relatively easy, the task of describing the general reduciblity pattern within a single theorem is a challenge, and even to delineate the relevant f and P for which $P(f)$ is irreducible is a non-trivial exercise. In aggregate, Agou's proof of the reducibility theorem in $[1,3,4]$ is somewhat lengthy with many technical details and the consideration of particular cases. (In fact, we note that, at the cost of yet more complication, he has extended his argument in some instances [2,5] to yield the minimum degree of an irreducible factor of $P(f)$.)

In [7], I gave a much shorter conceptual explanation of the theorem based, however, on relatively sophisticated ideas involving group theory applied to the Galois group of a polynomial associated with f. Finally, a short proof of the theorem for $n>2$ can be extracted from two more recently published articles of Moreno [11, 12]. In qualifying this, we remark that the prouf for $p=2$ in [11] is derived from more elaborate considerations while that for $p>2$ in [12] (by induction on n) needs Agou's work for $n=2$ (itself the product of detailed effort) to start it off. It has also to be said that the exposition is unclear; there are undoubtedly several misprints (for further comments see the review of [11] in Mathematical Reviews, $88 \mathrm{~g}: 11091$). Nevertheless, drawing on the virtues of his work, I found two aspects (nentioned below) that are the key to a brief proof, simple enough I felt to be worthwhile assembling here for general appreciation. Apart from some very basic facts about vector spaces and finite fields it has been made self-contained. The new trick is to split the proof into two parts and apply the easier first part (for which $n=1$) to the second.

2. Simplifications

Some simplifications are obvious. We can assume that f and P are monic; that is, $a_{n}=1$ in (1) and $P(x)=x^{m}+b_{m-1} x^{m-1}+\ldots+b_{0}$, say. Trivially $P(f)$ is reducible over F_{q} whenever P is, and therefore we suppose that P is irreducible. Finally, because any polynomial in $F_{q}\left[x^{p}\right]$ (being the p th power of one in $F_{q}[x]$) is reducible, we can in (1), without loss, impose the restriction that $a_{0} \neq 0$.

Next, let β be a root of $P(x)$ in $F_{q, m}$ and α any root of $f(x)-\beta$ (in a suitable extension); thus α is also a root of $P(f)$. Because $F_{q}(\beta)=F_{q^{m}}$ has degree m over F_{q}, we liave that $\operatorname{deg}\left[F_{q}(\alpha): F_{q}\right]=m \operatorname{deg}\left[F_{q}(\alpha): F_{q}(\beta)\right]$ and recover the (well-known)
conclusion that $P(f)$ is irreducible over F_{q} if and only of $f(x)-\beta$ is irreducible over $F_{q^{m}}$. In much of our discussion therefore we may take $m=1$ and concentrate on the reducibility of polynomials of the form $f(x)-b$ over F_{q}. The latter are referred to as affine polynonials and are discussed with applications to coding theory in [6, Chapter 11]. Given one root α of such a polynonial, the full set of roots is the translate $\alpha+L$ of L, the linear space of roots of f. We lighlight the fact (featured in [12]) that an affine polynomial for which f is non-singular over F_{q} is bound to be reducible.

Lemma 1. Suppose that the linearised polynomial f has no non-zero root in F_{q}. Then, for any b in $F_{q}, f(x)-b$ has a linear factor $x-A, A \in F_{q}$.

Proof: f is an injective mapping on F_{q} since, if $x, y \in F_{q}$ are such that $f(x)=$ $f(y)$ then, by (2), $f(x-y)=0$ and so $x=y$, by hypothesis. Because F_{q} is finite, it follows that f is also surjective which implies the result as stated.

3. The case $n=1$.

We set $f(x)=x^{p}-a x$, where $a(\neq 0) \in F_{q}$. Of course the reducibility of $x^{p}-a x-b$ is well enough known (see [8, pp.127-129]) but we review it here within the present context.

From Lemma $1, x^{p}-a x-b$ can be irreducible over F_{q} only if $x^{p-1}-a$ has a root in F_{q}. Assume therefore that $A^{p-1}=a$, where $A \in F_{q}$, in which case irreducibility is equivalent to that of $x^{p}-x-b / A^{p}$. Replacing b / A^{p} by b we may thus suppose that $a=A=1$.

Let $T_{k}(x)$ be the linearised polynomial $x+x^{p}+\ldots+x^{p^{k-1}}$, the trace function from F_{q} to F_{p} (because $x^{p^{k}}=x$ for all x in F_{q}). Clearly the image space of the linear mapping $x^{p}-x$ acting on F_{q} has dimension $k-1$ (because the null space is F_{p}) and is contained in the null space of the linear mapping $T_{k}(x)$. Indeed these spaces must be identical because $T_{k}^{\prime}(x)=0$ has (at most) p^{k-1} solutions x in F_{q}. We conclude that $b=x^{p}-x$ for some x in F_{q} if and only if $T_{k}(b)=0$.

Suppose that $T_{k}(b) \neq 0$ (so that $b=x^{p}-x$ is insoluble in F_{q}). Let α be a root of $x^{p}-x-b$; thus $\alpha \notin F_{q}$. The full set of routs is $\left\{\alpha+c \mid c \in F_{p}\right\}$ and the fields $F_{q}(\alpha+c), c \in F_{p}$ are identical. Hence $\operatorname{deg}\left[F_{q}(\alpha): F_{q}\right]$ divides the prime p. The only conclusion possible is that $F_{q}(\alpha)=F_{q}$ and $x^{p}-x-b$ is irreducible. We summarise the above reasoning in a lemma.

Lemma 2. For any b in $F_{q}, x^{p}-a x-b$ is irreducible over F_{q} if and only if $a=A^{p-1}$ for some A in F_{q} and $T_{k}\left(a / A^{p}\right) \neq 0$.

We deduce the first (and smaller) part of Agou's theorem.

Theorem. Part (i) Let $P(x)=x^{m}+b_{m-1} x^{m-1}+\ldots+b_{0}$ be irreducible over F_{q} and β be a root of P. Then, for any non-zero a in $F_{q}, P\left(x^{p}-a x\right)$ is irreducible over F_{q} if and only if $a^{m_{1}(q-1) /(p-1)}=1$ and $T_{k m}\left(\beta / A^{p}\right) \neq 0$. Here $m_{1}=$ g.c.d. $(m, p-1)$ and $A^{p-1}=a$, where $A \in F_{q^{m}}$.

In particular, if A is in F_{q}, then $P\left(x^{p}-A^{p-1} x\right)$ is irreducible over F_{q} if and only if $T_{k}\left(b_{m-1} / A^{p}\right) \neq 0$ (or equivalently $x^{p}-A^{p-1} x-b_{m-1}$ is irreducible over F_{q} or, indeed, insoluble over F_{q}).

Proof: Apply Lemma 2 to $x^{p}-a x-\beta$ over $F_{q^{m}}$. Now, $a=A^{p-1}$ for $A \in F_{q m}$ if and only if

$$
\begin{equation*}
a^{\left(q^{m}-1\right) /(p-1)}=1 . \tag{3}
\end{equation*}
$$

But, since $a^{q-1}=1$, then (3) holds if and only if $a^{h}=1$, where

$$
h=\left(\frac{q^{m}-1}{p-1}, q-1\right)=\left(\frac{q^{m}-1}{q-1}, p-1\right) \frac{q-1}{p-1} .
$$

Mureover, $\left(q^{m}-1\right) /(q-1)=q^{m-1}+q^{m-2}+\ldots+1 \equiv m(\bmod p-1)$ and consequently $h=m_{1}(q-1) /(p-1)$.

Finally, if $A \in F_{q}$, then $A^{q}=A$ while $\beta+\beta^{q}+\ldots+\beta^{q^{m-1}}=-b_{m-1}$. Hence $T_{k m}\left(\beta / A^{p}\right)=T_{k}\left(-b_{m-1} / A^{p}\right)$ and the proof is complete.

4. Tile case $n>1$.

Begin with a simple version of the "division algorithm" for linearised polynomials, not necessarily monic, as follows.

Lemma 3. Given a linearised polynomial f over F_{q}, there exists another linearised polynomial g over F_{q} (g being the zero polynomial if $n=0$) and an element r in F_{q} such that

$$
f(x)=g\left(x^{p}-x\right)+r x .
$$

Proof: This is by induction on n, the case $n=0$ being trivial. Suppose $n \geqslant 1$ and put

$$
f^{\star}(x)=f(x)-a_{n}\left(x^{p}-x\right)^{p^{n-1}}=\left(a_{n-1}+a_{n}\right) x^{p^{n-1}}+\ldots,
$$

another linearised polynomial but of degree (at most) p^{n-1}. By induction, there is a linearised polynomial g^{\star} such that $f^{\star}(x)=g^{\star}\left(x^{p}-x\right)+r x$ and we simply define $g(x)=x^{p^{n-1}}+g^{\star}(x)$ to reach the conclusion desired.

Next comes a deduction from Lemma 3 also crucial in [12], although used there for a dilferent purpose.

Lemma 4. Suppose that the linearised polynomial f over F_{q} has a non-zero root A in F_{q}. Then there exists a linearised polynonial g over F_{q} such that $f(x)=$ $y\left(x^{p}-A^{p-1} x\right)$.

Proof: $f(A x)$ is a linearised polynomial over F_{q} with 1 as a root. By Lemma 3, for some linearised polynomial g_{1} and r in F_{q}, we have $f(A x)=g_{1}\left(x^{p}-x\right)+r x$. Actually, $r=0$ because $x=1$ yields $0=f(A)=g_{1}(0)+r=r$. The result follows, with $g(x)=g_{1}\left(x / A^{p}\right)$.

From now on, we suppose that $n \geqslant 2$ and f is monic.
Lemma 5. Suppose that f is a linearised polynomial over F_{q} with $n \geqslant 2$. Then, for any b in $F_{q}, f(x)-b$ is irreducible over F_{q} if and only if $p=n=2, f$ has the form

$$
\begin{equation*}
f(x)=x(x+A)\left(x^{2}+A x+B\right) \tag{4}
\end{equation*}
$$

where A and B are (non-zero) elements of F_{q} and the quadratics $x^{2}+A x+D$ and $x^{2}+B x+b$ are both irreducible over F_{q}.

Note. By Lemma 2, when $p=2, x^{2}+A x+B$ is irreducible over F_{q} if and only if $T_{k}\left(B / A^{2}\right)=1$ (since 1 is the only non-zero member of F_{2}); similarly $x^{2}+B x+b$ is irreducible if and only if $T_{k}\left(b / B^{2}\right)=1$.

Proof: By Lemma 1 we may assume that f has a root A in F_{q}. Using Lemma 4, write $f(x)=g\left(x^{p}-A^{p-1} x\right)$ and put $g^{\star}(x)=g(x)-b$. Then $f(x)-b=$ $g^{\star}\left(x^{p}-A^{p-1} x\right)$. Apply the last assertion of Part (i) of the Theorem with $m=\operatorname{deg} g^{\star}=$ p^{n-1}. Since g is a linearised polynomial, the coefficient b_{m-1} of x^{m-1} in g^{\star} is zero unless $p^{n-1}-1=p^{n-2}$ which occurs only if $p=n=2$. Hence, with this exception, $T_{k}\left(b_{m-1} / A^{p}\right)=0$ and $f(x)-b$ is reducible. Finally, suppose $p=n=2$ and $g^{*}(x)=x^{2}+B x+b$. By Part (i) of the Theorem again, $f(x)+b$ is irreducible if and only if both $g^{\star}(x)$ and $x^{2}+A x+B$ are. This completes the proof.

We deduce the major part of the Theorem from Lemma 5.
Theorem. Part (ii) Let P be an irreducible polynomial of degree m over F_{q} (as in Part (i)) and f be a monic linearised polynomial over F_{q} with $n \geqslant 2$. Then $P(f)$ is irreducible over F_{q} if and only if $p=n=2, m$ is odd, f has the form (4) where A and B are in F_{q} and both $x^{2}+A x+B$ and $x^{2}+B x+b_{m-1}$ are irreducible over F_{q}.

Proof: Apply Lemma 5 to $f(x)-\beta$ over $F_{q^{m}}$, where $P(\beta)=0$. We conclude that $P(f)$ is irreducible over F_{q} if and only if $p=n=2$ and f has the form (4) where $A, B \in F_{q^{m}}$ with $x^{2}+A x+B$ irreducible over $F_{q^{m}}$ and $T_{k m}\left(\beta / B^{2}\right)=1$. Assuming therefure that $p=n=2$, we show that these last conditions are equivalent to those
of the theorem. To see this we note that $f(x) / x$, being a polynomial in $F_{q}[x]$, has an irreducible quadratic factor in $F_{q^{m}}$ if and only if it has one over F_{q} and m is odd. (Of course, if $f(x) / x$ is irreducible over F_{q} it remains so, or is a product of linear factors over $F_{q} m$). Hence $x^{2}+A x+B$ is irreducible over $F_{q} m$ if and only if A and hence B are in $F_{q}, x^{2}+A x+B$ is irreducible over F_{q} and m is odd.

Finally, these last conditions imply that $T_{k m}\left(\beta / B^{2}\right)=T_{k}\left(b_{m-1} / B^{2}\right)$ (as B is in F_{q}); also $T_{k}\left(b_{m-1} / B^{2}\right)=1$ if and only if $x^{2}+B x+b_{m-1}$ is irreducible over F_{q}. This completes the proof.

References

[1] S. Agou, 'Irréducibilité des polynômes $f\left(X^{p^{\prime}}-a X\right)$ sur un corps fini $F_{p s}$ ', J. Reine Agnew. Math. 292 (1977), 191-195.
[2] S. Agou, 'Factorisation sur un corps fini $F_{p} n$ des polynômes composés $f\left(X^{p r}-a X\right)$ lorsque $f(X)$ est un polynôme irréductible de $F_{p^{\prime \prime}}\left[X^{\prime}\right]$ ', J. Number Theory θ (1977), 229-239.
[3] S. Agou, 'lrréductibilité des polynômes $f\left(X^{p^{2 r}}-a X^{p r}-b X\right)$ sur un corps fini $F_{p}{ }^{\prime}$ ', J. Nurnber Theory 10 (1978), 64-69. 11 (1979) 20.
[4] S. Agou, 'Irréductibilité des polynômes $f\left(\sum_{i=0}^{m} a_{i} X^{p^{r i}}\right)$ sur un corps fini F_{p}^{\prime} ', Canad. Math. Bull. 23 (1980), 207-212.
[5] S. Agou, 'Sur la factorisation des polynômes $f\left(X^{p^{2 r}}-a X^{p^{r}}-b X\right)$ sur un corps fini $F_{p^{n}}$ ', J. Number Theory 12 (1980), 447-459.
[6] E.R. Berlekamp, Algebraic Coding Theory (McGraw-Hill, New York, 1968).
[7] S.D. Cohen, 'The irreducibility of compositions of linear polynomials over a finite field', Compositio Math. 47 (1982), 149-152.
[8] R. Lidl and H. Niederreiter, 'Finite Fields', in Encyclopedia Math. App. Vol. 20, now distributed by Cambridge University Press (Addisun Wesley, Reading, Mass.).
[日] A.F. Long, 'Factorisation of irreducible polynomials over a finite field with the substitution $\boldsymbol{x}^{\boldsymbol{q} \boldsymbol{\top}}-\boldsymbol{x}$ for x^{\prime}, Acta Arith. 25 (1973), 65-80.
[10] A.F. Long and T.P. Vaughan, 'Factorisation of $Q(h(T)(x))$ over a finite field where $Q(x)$ is irreducible and $h(T)(x)$ is linear 1, II', Linear Algebra 11 (1975), 53-72. 13 (1976), 207-221.
[11] O. Moreno, 'Discriminants and the irreducibility of a class of polynomials', Lect. Notes in Comput. Sci. 228 (1988), 178-181.
[12] O. Moreno, 'Discriminants and the irreducibility of a class of polynomials in a finite field of arbitrary characteristic', J. Number Theory 28 (1988), 62-65.

[^1]
[^0]: Received 29 November, 1988

[^1]: Department of Mathematics
 University of Glasgow
 Glasgow G12 8QW
 Scotland

