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Abstract

On analogy with functions of Lebesgue class V on the real line the author considers those
multiplicative arithmetic functions which are bounded in mean a-power, a > 1. Necessary and
sufficient conditions are obtained in order that they should have a mean-value, zero or non-zero.
An application is made to Ramanujan's r-function.
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1

An arithmetic function g{n), possibly complex-valued, is said to be multiplicative
if it satisfies the relation g(ab) = g(a)g(b) whenever a and b are coprime positive
integers.

The study of the average behaviour of arithmetic functions goes back at least
as far as Dirichlet (1849), and, according to him, as far as Gauss (1801, 1870).
Dirichlet proved that the multiplicative function d(n), which counts the number of
divisors of the integer n, has the average estimate

For a discussion of this and related results see Hardy and Wright (1960). They
devote three chapters of their book to the value distribution properties of multi-
plicative functions. For further general results see Atkinson and Cherwell (1949).

In more recent times much effort has been expended on the asymptotic estimation
of sums
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178 P. D. T. A. Elliott [2]

assuming that the behaviour of g(/>*) on the prime-powers pk is known. See, for
example, Delange (1961), Wirsing (1961, 1967), HaMsz (1968), Levin and Fainleib
(1967). Besides being of interest in their own right, such results have applications to
probabilistic number theory (see, for example, Elliott (1980a)) and to the theory
of Sieves (see, for example, Halberstam and Richert (1974)).

It is of equal interest to proceed in the opposite direction; assume familiarity
with the average behaviour of g(n) and then deduce the behaviour of g on the
primes. Indeed, this is the route taken in the classical study of prime numbers.

In the present paper we concentrate our attention upon the problem of giving
necessary and sufficient conditions in order that a finite mean-value

(1) A

exists. This represents an interest to discover what is really needed in order to
determine the average behaviour of a multiplicative function.

As an example we shall apply our results to the study of the function r(n),
defined by Ramanujan according to the equation

S *(»)*» = *fi(l-**)", |*| <1.
71=1 3 = 1

It was conjectured by Ramanujan, and proved by Mordell (1917), that T(H) is
multiplicative. Already in 1918 Hardy proved that

holds with certain positive constants c1 and c2, for all large enough values of x.
This was refined by Rankin (1939), to an asymptotic estimate of the type

for some S>0. Hardy's earlier result may be found in Hardy (1927), and he gives
a general account of these matters in Hardy (1940). We shall deduce from his
upper bound that in a certain sense either T(H)«~U / 2 -»0 almost surely as «^>oo,
or | T(P) |/>-U/2->- 1 almost surely as /7(prime)H-oo.

In its full generality we cannot presently decide the question of when the mean-
value (1) exists. Until recently progress was usually made by making some extra
assumptions to the effect that g(pk) be 'not too large'. In the present paper we
shall instead adopt the point of view of the author's paper (Elliott (1975)).

For each positive number a. we say that g(n) belongs to the class La if
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[3] Mean value theorems for multiplicative functions 179

is finite. This is an analogy with the Lebesgue measurable functions on the real
line.

For functions g(n) which assume only real non-negative values the existence of
a mean-value (1) ensures that g belongs to the class L1. For such functions only
partial results are presently available (see, for example, Erdos and Renyi (1965)).

We shall show that if a multiplicative function g(n) belongs to a class La with
at > 1, then one may completely decide, in terms of its behaviour on the prime-
powers, when it has a mean-value (1).

For the duration of the paper g(n) will denote a multiplicative function.

THEOREM 1. Let g(n) belong to the class La, <x>l. In order that it should possess a
non-zero mean-value

it is necessary and sufficient that the series

n\ ^S(P)~1 v \g(p)~l\2
 v \g(p)\a

W ZJ ~ > 2a > ZJ ~ »
P ll(7(P)l-l|«i P Il3(p)|-l|>i P

converge, and that for each prime p

REMARKS. The convergence of the fourth (and double) series at (2) ensures that
the series

S g(Pm)
m=l P

converges. If the series at (2) converge then, whether (3) holds or not, g(n) will
possess a mean-value, and

exists. The mean-value (1) will then be non-zero if (3) holds.
The result of Theorem 1 generalizes the case <x = 2 which was established by the

author (Elliott (1975)). A modified approach to the necessity of these conditions
when a = 2 was given by Daboussi and Delange (1976). An alternative proof of
the sufficiency of the conditions when <x = 2 has been given by Schwarz (Frankfurt,
unpublished). Apparently a result substantially equivalent to the present Theorem 1
has also been given by Daboussi and Delange (Orsay, unpublished), but with a
different proof method.
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THEOREM 2. Let g{n) belong to the class La, a > 1. In order that g{n) possess a
zero mean-value

it is necessary and sufficient that one of the following four conditions be satisfied:
(i) One of the series

(4) S p-'ll-lgWW2, S /r-M

Merges,
(ii) The condition (i) /a/7?, Z»Mf for each real value of t the series

(5) Ilp-1(\g(p)\-^g(p)p-il)
p

diverges.
(iii) The conditions (i) and (ii) /a//, fcwf. there is a real t so that the series (5)

converges and

m=l

for some prime p.
(iv) The conditions (i), (ii) and (iii) fail, but

(6)

as
We round out these results by showing that in a certain sense we always have a

near mean-value.

THEOREM 3. Let g(n) belong to the class La, a> 1. Then there are constants A,
t (real), and a slowly-oscillating function S(x), so that as x->oo

REMARKS. This result may be compared with Theorem 2 of Halasz (1968). Here
for S(x) to be slowly-oscillating is meant that S(x) is non-zero for all sufficiently
large values of x, and for each fixed positive value of u satisfies S(ux)/S(x)-+1 as
x -> oo. We do not assert that | S(x) \ = 1 holds. As we shall indicate, it is sometimes
possible to give a reasonable description of S(x).

We say that a set of integers E has a density 8 if

8 = limx-1 2 1
x-wo
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[5] Mean value theorems for multiplicative functions 181

exists. We say that a set of primes P has a density A if

A = i i m J

exists.

Concerning Ramanujan's T-function, we deduce from Hardy's upper bound and
the fact that T(«) is multiplicative the following.

THEOREM 4. Either r(n) n~u/i -> 0 as n ->• oo in a sequence of integers of density 1,
or |'K/0|/'~11/2->-l as p^-oo in a sequence of primes of density 1.

We shall, in fact, prove more than this.

In this and Section 3 we investigate the consequences of the following hypothesis,
which we shall call H:

There are constants a and j8, 0 </3 < a, so that

limsupjc"1 2 |£00|a<°°,
x->oo

(7)

The first part of this hypothesis asserts that g(n) belongs to the class L<*. For the
moment a> 1 is not required. Note that if g belongs to La and the hypothesis fails,
then

holds for each fixed 8, 0 < 8 < <x.
It is convenient to define the multiplicative function h(n) = \g(ri)\. Note that

h{n) satisfies H whenever g(n) does. The main conclusions in this and the following
section will be stated in Lemma 1 and Lemma 4.

LEMMA 1. If hypothesis H is satisfied then the series

(8) S -. S
IMp)-l\>iP

are convergent, and

liminf

is finite.
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This lemma will be established with the aid of a result (Lemma 2) from the
probabilistic theory of numbers.

An arithmetic function /(«) is said to be additive if it satisfies the relation
f(ab) =f(a)+f(b) for every pair of coprime positive integers a, b. In this paper all
additive functions will be real-valued. c5, c6,... will denote positive constants.

LEMMA 2. Let c3, c4 be positive real numbers. Assume that for each of an unbounded
sequence of positive x-values, there is a sequence of positive integers

a1<a2<...<ak4:x,

with k^c3x, so that

(9) | /K) -/(«;) \<ct, Ki^j^k.

Then there is a constant c so that for the function l(p) =f(p) — clogp the series

(1(0 S 1. E
P

Mp)\>lP l«p)l«l P

are convergent.

PROOF. The condition (10) actually characterizes those additive functions which
satisfy the hypotheses of the lemma. This was first proved by Erdos (1946). For
an alternative proof see Ryavec (1970).

LEMMA 3. In the notation of Lemma 2 replace the hypothesis (9) by \f{a^ | < (c4)/2,
1 ̂  i ̂  k. Then the series

are convergent, and the partial sums

(12) 2 Rp)

P

are uniformly bounded for x belonging to the sequence of given values.

PROOF. Since the hypotheses of Lemma 2 are valid so is the conclusion (10).
We prove that c = 0 and this will give the convergence of the two series (11).

Let e be a positive real number. Choose pl so large that

£ -+ S -<e
\np)\>iP p>pxP

i

P>PI
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[7] Mean value theorems for multiplicative functions 183

Then the number of integers up to x which are divisible by a prime p for which

\l(p)\> 1 or by the square of a prime p>p1 is at most ex.

The number of integers up to x which are divisible by a prime-power pm where

and m>t, say, is at most

P^Pi P

if t is fixed at a sufficiently large value. On choosing e so that As < c3 we obtain a

subsequence bt of the integers a i ( containing at least c3;c/2 members, such that

f(bj) = clogZ»; + O(w(fr3)). Here co(n) denotes the number of distinct prime divisors

of the integer n. Hence

\c\ 2 logr < v |c | lOgft. < v

= O( X ">(«)) = O(xloglogx),

so that c = O((loglogx)/logjr). This shows that c = 0 must hold.
We now apply the Turan-Kubilius inequality (Kubilius (1962))

2
5~m W(pm)

which is valid for every additive function w(n) and real x ^ 2 . With w{pm) =f(p'")

when w = 1, |/(/>) | < 1; or when p^p1 and w ^ /, and w{pm) = 0 otherwise, we see

that

from the result of Lemma 2 (10) with c = 0. Since the/(Z>3) are bounded inde-
pendently of x (belonging to the special sequence) so are the partial sums at (12).

This completes the proof of Lemma 3.

PROOF OF LEMMA 1. From (7), for all sufficiently large values of x belonging to
a certain sequence

say. Hence, for any fixed e > 0,

Moreover, from our hypothesis H

f> 2 h(n)a

nsgx
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for some constant c9. We can thus find an unbounded sequence of jc-values, and
for each x a sequence of positive integers a1<a2<...<ak^x on which
£<A(af)^ 1/e, where

k > xe(c8 - eP - c9 e
a-P) > c10 x

provided that we fix £ at a suitably small value.
Define an additive function / («) by

flog/</>») if/»(/>"

( 1 otherwise.

Then (typically)

so that the hypotheses of Lemma 3 are satisfied. Hence the series

v 1 v

P
2J I 2J

\HP)\>SP I/(P)I«* P

converge for each fixed 5>0, this being an equivalent form of (11).
If now | h(p) — 11 > 7] for some rj, 0 < rj < f, then

so that the series

converges.
Moreover, if | h{p) — 11 ^ 17 then

|>i; P

= log(l +h(p)-l) = h(p)- 1 + O((KP)-1)2)

so that for ij sufficiently small (but fixed)

and

The series

is thus also convergent.
The proof of Lemma 1 is now readily completed.
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[9] Mean value theorems for multiplicative functions 185

3

We continue to investigate the consequences of hypothesis H.

LEMMA 4. If the hypotheses H is satisfied with a > 1 then the series

s p-

converge.
The proof of this lemma also depends upon a result from the probabilistic theory

of numbers, Lemma 5, due to Levin, Timofeev and Tuliaganov (1973).
To begin with we do not need the condition <x > 1.

LEMMA 5. Let g{n) be a real-valued multiplicative arithmetic function. In order
that there exist functions oc(x) and /?(.*•)# 0, defined for all sufficiently large positive
values of x, so that the frequencies

F(x,z)=[x]-i £ 1
n^x, g{n)—<x{x)^zfilx)

possess a proper weak limiting distribution as x -> oo, it is both necessary and sufficient
that g(n) not be identically one, that the series

(13) S -
a(t»=oP

converges, and that there is a constant c so that the series

(14) S p

converges.
When these three conditions are satisfied one may take <x{x) = 0, and

(15)

REMARKS. A detailed proof of this result together with a discussion of background
material and related topics may be found in Elliott (1980a). Here ||j>|| denotes y
if | y | ^ l and 1 if |j>|> 1. The lemma is valid for g(n) real-valued, whether non-
negative or not.

We shall apply Lemma 5 to the function h(n) in order to establish the following
result.

There is a function w(x) which satisfies

(16) liminf|w(x)|<cu
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and

(17)

so that for each

(18)

sup |

S, 0<8<<x,

s h(ny =
n=£x

w(x) — w(r) | -*• 0, x -> oo,

(l+o(l))fi(S).x:exp (§*(*))

where the constant B(8) is positive.
Consider the three conditions that need to be satisfied in order to ensure the

weak convergence of the frequencies F(x, z) of Lemma 5 (with g(n) replaced by
/?(«)). We may assume that h(n) is not identically one, otherwise the estimate (18)
holds with w(x) = 0 and B(8) = 1.

Suppose now that the series (13) diverges. We maintain that the integers for
which h(n) = 0 have density 1. Let us denote those integers for which h{n) does
not vanish by nt<n2< .... We shall apply the following

LEMMA 6. The inequality

x; p\\m

holds for all complex numbers am, and real

PROOF. This result is proved in Chapter 4 of Elliott (1980a). Here p\\m means
that p divides m but p2 does not.

In our present circumstances we set am = 1 if A(/n)#0, and am = 0 otherwise.
Let N(x) denote the number of integers «f not exceeding x. If p || m and h(p) = 0,
then h(m) = h{p)h{p"1m) = 0. For those primes p with h{p) = 0 we have

2 am-p-^am
•; p\\m

= p-lN(xf.

An application of lemma 6 now gives

N{xf

and so x'1 N(x)->0 as *->-oo. This justifies our earlier assertion.
Applying Holder's inequality (jx. = 1 — (jS/a)>0):

as x^oo . This contradicts the second part of our hypothesis H. The series at (13)
converges.
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Thus there is a distribution function F(z) so that

F{x, z) => F(z), x-*oo,

where one may set CX(JC) = 0 and

2 /»-

Define w(x) by
Let t denote a positive continuity point of F(z). Then from hypothesis H

ft
zccdF(z)= limjt"1 2 (Kn) e x P ( ~ w(x))}a ^ ci2>

J 0 x-»oo n^x

where the constant c12 does not depend upon t. Hence

lim

exists. This shows that F(z) has moments of all orders up to and including the ath.
If 0 sg S < a then a similar argument shows that

where the constant B(8) has the value

r
Jo

Since F(z) is proper, that is, does not consist of a single jump, it cannot be concen-
trated at the origin. Thus every B(S) is positive.

We have established the asymptotic estimate (18). In order to obtain (17) note
that

w(x)-w(r)= 2 />-* |l log//(/>) ||.

After an application of the Cauchy-Schwarz inequality,

\w(x)-w(r)\*^ 2 - 2 ^ 1 | l 1 ° g / ' ( / ' ) | | 2 = 0 ( 1 )

as x^-oo, since the series

2 - , 2 ^||log^)||2

have both been proven convergent.
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Moreover, according to hypothesis H there is an unbounded sequence of x-values,
x1 < x2 <... say, so that

2 h(n

holds for certain positive constants c13, c14, and all x = xk. This together with our
estimate (18) gives

ic13<B(S)exp(S(w(A:))<2c]l4

for x = xk sufficiently large. This justifies (16) and so the validity of (16), (17) and
(18).

We need a further result of the type given as Lemma 6. We now assume that a. > 1.

LEMMA 7. For each a. > 1 the inequalities

(19)

(20) 2

V1 n

:; p"\\n n&c

x, peP a:; p||n

a

Ao/rf uniformly for all real x^2, complex numbers an, 1 ^ n < x, and sets of primes P.
The constants c15 and cie depend at most upon a.

PROOF. See Elliott (1980b).

PROOF OF LEMMA 4. We apply the inequality (19) with an = h(n). For a typical
prime-power pm which does not exceed Jx,

(21) 2 an = h(pm) 2 h(s) = h(pm){ 2 *(*)- 2 K
~~ ' <8,P)=1 ~̂ p\8

Our estimate (18) with 8 = 1, B = B{\), making use of (17), gives

2 h(s) = (1 + o(l)) Bp~m x exp (w(x)).

Moreover, by Holder's inequality

2 h(s) = O(( 2 1)
pis pis

= 0(xp-m-1+a/a)).
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[13] Mean value theorems for multiplicative functions 189

If we restrict A: to a sequence x1<x2<... for which | w(x)|^a, say (see (16)), and
ifp is sufficiently large, say p>p0, then

S an>\Btxp(-a)h(pm)p-mx.
n^x; pml\n

It follows from (19) and the fact that g belongs to the class La that

uniformly for x = (xk) sufficiently large.
This establishes the first inequality of Lemma 4 insofar as it deals with primes

which exceed p0. To obtain the full inequality we prove that for each fixed prime
the series

(22) S p-™h(pmr
m=2

converges.
Let p be such a prime. If m0 is chosen suitably the density of those integers

which are exactly divisible by pm with m > m0 is

(•4),m>m.

If /,- denotes a typical such integer, then (once again by Holder's inequality),

where fi = 1 — ()3/a) > 0. If we fix m0 at a sufficiently large value then the last
coefficient of x will not exceed c/2, where

c = limsupjc"1 2 h(ny>0.

Hence, if ' denotes that summation is confined to those integers n which are
divisible only by prime-powers pm with m < m0, then

(23) lim sup x'1 £ ' * ( « / ^ c/2 > 0.

Let 2<m> denote summation over those integers n which are exactly divisible by
pm. It follows from (23) that

2 lira sup x -
m=0 *-»oo
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and hence that for at least one value of m, say to,

(24) lim sup x-1 2 ( w ) h(ny = c20 > 0.
x->oo n^x

Note that for each n which is counted in 2<'u), h{n) = h{pf)h{p'ari), so that h(pa)
cannot be zero.

Now let " denote summation over those integers n which are prime to p. Then
from (24)

(25) lim sup x-1 2 " h(n)fi Js c^p-" hip")-1 > 0.

We define a multiplicative function k(n) by &(«) = h(n) (— \g(n)\) if («,/>) = 1,
and k(n) = 0 otherwise. From (25) and the fact that k{ri) < | g(n) | we see that k(n)
also satisfies the hypothesis H. We may therefore obtain analogues of the estimates
(18) with (16) and (17) for it. In particular,

2 k{ri) = (1 +o(l))Dxexp(r)(x)),

holds for some function rj(x) which satisfies the analogue of (17). Here D is non-zero.
Expressed another way

2 h(n) = (l+o{l))Dexp(r,(x)), JC-̂ OO.
n*ix, {n,p)=l

Returning to (21), where p is now our particular fixed prime and pm^^x, we
obtain

2 an = h(pm)(l + o(l))Dp-mxexp(r,(x))>c21h(pm)p-mx,

provided that x belongs to a suitable (unbounded) sequence. Another application
of the inequality (19) of Lemma 7 and we obtain the convergence of the series (22).

This completes the proof of the first part of Lemma 4.
To obtain the second part we apply inequality (20) of Lemma 7 with an = h(n).

Let P be the set of primes for which | h(p)— 11 > \. According to (8) of Lemma 1,
the series

(26)

converges. Thus we obtain

2 P*'1
p^x.peP

pePp

2 h(n)
nsjx; p\\n
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[15] Mean value theorems for multiplicative functions 191

Here

n*ix;p\\n

arguing as in the earlier (uniform) treatment of prime-powers pm with p >p0. Then

p*<p^x
peP

for an unbounded sequence of x-values. Since | k(p)— 1 | a = O(h(p)a+ 1) and the
series (26) converges anyway, we obtain the convergence of

The truth of Lemma 4 now follows from this result and that at (8) of Lemma 1.

4. Proof of Theorem 4

Define the multiplicative function g(n) = | r(n) n~im |. An integration by parts
allows us to deduce from Hardy's upper bound estimate that

so that g belongs to the class I?. We shall not need Hardy's lower bound. We
deduce from Lemma 4 that

either (H fails and)

for each fixed j3, 0 < ]8 < 2
or (H holds and) ?/»e series

converges.
If the first possibility holds then (with /? = 1) there is a non-increasing function

p(x) so that fi(x)^-0 as *-»-oo and

It follows easily that those integers for which g(n)^/x(n) holds have density
zero.

https://doi.org/10.1017/S1446788700021182 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700021182


192 P. D. T. A. Elliott [16J

Suppose now that the second possibility holds. Then from an application of the
Cauchy-Schwarz inequality

S P-11 g(p) -11 log/> < cM( S Z*'11 g(P) ~ 112 S /»-10og/»)»)»
S p>r psSx

(/") log*,

uniformly for 2 < /• < x, where

Moreover, for each fixed

1
log;

Hence

for every r ̂  2, so that the limit must be zero. There is then a decreasing function
\(x), which approaches zero as x becomes unbounded, so that

2/>-1|*(/0-l|log/><A(*)log*, x>2.

It is now clear that \g(p)—l | < A(p)*->-0 as p-*oo save possibly on a set of primes
of density zero.

This completes the proof of Theorem 4.

5. Proof of Theorem 1, necessity

Let g(n), possibly complex-valued, have a non-zero mean-value A. Let h(n) be
the multiplicative function | #(«)!• This function also belongs to the class La.
Moreover,

for all x sufficiently large, so that h(n) satisfies the hypothesis H (with ft = 1).
For it the results of Lemma 1 and Lemma 4 are therefore valid. This gives at once
the convergence of the third and fourth series at (2).

Consider the Dirichlet series
00

G(s) = 2 g(n)n-«, s = a + it, a>\.
n=l
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Since g is of class L", a> 1, G(s) is defined, and an analytic function of s in the
half-plane a > 1. It has in that half-plane an Euler product representation

say. Since the series

n (i + s p-m°g(pm)) = n
p m—l p

p-m\g(pm)\, 2 p-%\gW)\
\Mp)-l\>S

converge, we see that if S ^ £ and v is sufficiently large (in terms of 8) then | K(P) | < |
for all p > v. Moreover,

P>v p>v

< exp ((1 + 8) 2 / 7 - + c».) < c27 £(*?+* < C2B(a-1 )-i-«

uniformly for 1 < a < 2. Here, as usual, we denote by C(s) the Riemann zeta function

CO J

Suppose now that one of the terms

1 + S P~mg(Pm)

has the value zero. Then p < v must hold and 1 + *(/>) = O((a— 1)) as 5 = CT-> 1 + .
Here we have made use of the readily established fact that the function

is analytic in the half-plane a> £ (apply Holder's inequality again). Thus, as a-*-1 +

where 0 < S < £. However, since g(n) has a non-zero mean-value

G(s) = s y-"-1 2 g(n) dy
J1 n^y

as 5-> 1, <r> 1, and a contradiction is obtained.
This establishes the validity of the condition (3).
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Moreover, as s = a-*-1 +,

11(1+*(/>))-»> c ^ O ,
p^v

n
M

and

P>v
Mp)-l\>i

G(o)~c32exp( 2
, P>v

We have already shown that

in the same circumstances, and so may assert that

(27) 2 P~'T{g(p)-i}-^D,

for some finite number D.
Let

Then we may write our condition (27) in the form

r x-i'-v dO(logx)-+D, <7->l+,

and, setting x = ev, u = a— 1,

f °°
Jo

Note that if x^y, x^-oo, y/x->l, then

)-^(x)|^f 2 p-^fflogOtf.

By applying the Hardy-Littlewood Tauberian theorem (see Hardy (1949), or
Elliott (1980a), Chapter 2) to the functions Re 6{y) and Im 6(y) in turn we deduce
that

Urn 0(y) = D.
y-»oo

From this result we readily obtain the convergence of the first series at (2).
Finally,

\g(p)-112 = (Kp)- lf+2(h(p)- l)-2(Rcg(p)-1).

https://doi.org/10.1017/S1446788700021182 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700021182


[19] Mean value theorems for multiplicative functions 195

The series

S p-\h{p)-\f, 2 /

are convergent (in particular, see Lemma 1), and the partial sums

S P

are bounded uniformly for x^2. (See Lemma 1 and Lemma 3 (12) upon which it
rests.) Hence, for some constant c^ and all

i

Letting x-*oo we obtain the convergence of the second (and so of all) the series
at (2).

This completes the proof that the convergence of the series (2) and the condition
(3) in the statement of Theorem 1 are necessary in order that g should belong to
the class La and have a non-zero mean-value (1).

6. Proof of Theorem 1, sufficiency

We do not give a detailed proof here. One may readily modify the treatment
given by the author (Elliott (1975)) for the case a = 2. As remarked earlier, the
conditions at (2) and (3) guarantee both that g belongs to the class La and that
it possesses a non-zero mean-value.

7. Proof of Theorem 2, necessity

Assume that g is of class La, a. > 1 and has a zero mean-value. We shall further
assume that conditions (i), (ii) and (iii) fail, and prove that (iv) must then hold.
Accordingly we may assume the convergence of the series

(28)

and of

p

for some real /. Moreover, for this value of / and each prime p

(29)
m = l
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LEMMA 8. Let g(n) be a multiplicative function for which the series

(30) S
|=Si P

converge, a > 1 fixed. Let the series

(31) S/r
p

converge.
Then

(32) {xA(logx)}-1 S «(»)->/,

(33) A(«) = exp ( S i>-1-"»(g(/') -1 ) )
p

w a slowly oscillating function of exp (u), and the constant J is given by

PROOF. A proof of this result when a = 2 is indicated in Elliott (1980), Chapter 10.
Only slight changes are needed in order to obtain the present result.

In our present circumstances we apply Lemma 8 to the function g(n)n~u. Let
us temporarily denote this function by r(n).

Since g is of class La, an application of Holder's inequality together with the
estimate

gives the upper bound

SJ r(Pm) I = O(x1-% " = («-1)/(2«) > 0.

An integration by parts allows one to deduce the convergence of the series

X>2P-m\r(pm)\.

By means of the identity
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we obtain the convergence of the series

(35) 2 p-11 >•(/>)-112.

Note that 11 r{p) \ — 11 *£ | r(p) — 11 so that we have obtained the convergence of the
first series at (30).

ff|r(p)-l|>* but ||r(/>)|-l N i then

If j r(/?) — 11 > ^ but 11 r(/») | — 11 > i then

Hence we obtain from (35) and (28) the convergence of all the series at (30).
We have at once the condition (31) and the lemma may be applied. We see that in
our present circumstances

* = (1 + o(l))JxA(logx), x+oo,

since the condition (29) ensures that J is non-zero.
However, at the outset of this proof we assumed that g(n) had a mean-value

zero, and an integration by parts enables us to assert that

x-1 2 g(n) n~u -> 0, x -> oo,
n^x

must also hold. For example, for each fixed e, 0 < e < 1,

2 g(n) n'il = [r« S *(«)&+it f V*-1

rx

ex

as x->oo, whilst

2

since g is of class La.
We deduce that

as *->oo, or put another way

(36)

as l

< ( 2 i)1-«1/a)(2k(«)h1/a =
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To set this in a more convenient form we apply the following

LEMMA 9. Let a. be fixed, <x>l. Let >p(p) be complex numbers for which the series

converge. Define the function

p=Sexp(u)

Then there is a constant c so that

where

for

REMARK. Compare with Deboussi and Delange (1976).

PROOF. After an integration by parts

p Jo Jo

With the change of variables /3M = y this last integral becomes

Hence we obtain the representation

Consider first the range j^max(l(j31og2). We write

where the first sum is over those primes p, exp(l/j3)</><exp(>'/j3), say, for which
h a n ( l t n e second sum is over the remaining primes in this same interval.
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From the Cauchy-Schwarz inequality

and by means of Holder's inequality

^P'11KP) I < (S^"11 HP) \a)Va

so that

= O(( \logy\

If y< max (1,/J log 2) we argue similarly to obtain the bound

Notice that a(j/£) = 0 if j> </3 log 2.
Hence

reiogz
5

. '0 J/?log2

and the lemma is proved.
In our present circumstances we have tfi(p) = 1 — /-(/?), and

199

uniformly for 0 < / 3 < | . From (36) we obtain at once the validity of condition (iv)
of Theorem 2.

This completes the considerations of this section.

8. Proof of Theorem 2, sufficiency

Let g belong to class La, a > 1, and let one of the conditions (i)—(iv) in the state-
ment of Theorem 2 be satisfied. We wish to prove that g has a zero mean-value.

Suppose that it does not. Then

limsupx- l >0

and in particular both g(n) and |g(«)| satisfy hypothesis H with j8 = 1. From an
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application of Lemma 4 we obtain the convergence of

and from Lemma 1 and Lemma 4 together the convergence of both the series
at (4). Hence condition (i) of Theorem 2 must fail.

With h(ri) = \g{n)\ we have the estimate (18), where

W(X)= S /7"11| log/>(/>) ||-

In particular (setting 8 = 1), since h(n) belongs to La, a> 1, there is a constant
so that

2 />-* || log/*(/>) 1 1 ^ ,
P^x

h(P)¥-0

When | h(p)— 11 < \ we apply the estimate

-1)2)

(compare with the arguments in Section 2). In view of the convergence of the series
at (4) we obtain

To put this into a more useful form we integrate by parts, and obtain

(37) £/>-"(/*(/>)-0<2C37, K a < 2 .

Alternatively, this may be deduced from an application of Lemma 9.
We now seek an analogue of Lemma 8, valid when the series

diverges for each real t. We sketch the procedure.
Beginning with the representation

X 1 rtr+i<x>G' Xs

(38) 2g(«)lognlog^ = — I 7 ^ ) 7 , * .

where the integration is along the line Re (s) = a > 1 in the complex s-plane, where
s = a+ it we set a = 1 + (I/logx) and show that

G' x8

— (s) -zds= O(M -1 x log x).
U\>M G S'
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This requires straightforward modification of the argument given in Elliott (1980a)
Chapter 10, the essential preliminary results being available in Halasz (1968).
Define

A =

Then it is not difficult to show that the range 11 | ^ M of the integral in (38) contri-
butes an amount which is

O(&Px log x)

for a certain positive constant p.
Suppose for the moment that A->0 as x-^-oo (and so CT->1+). Then dividing

both sides of the equation in (38) by xlogx, letting x-^-oo and then M->oo would
lead to the estimate

X
(39) 2 g(") log n log - = o(x log x), x -> oo.

n^x n

Let us consider A more closely. Employing Euler products and taking advantage
of the convergence of the series (4) we readily obtain an upper bound

| F(o + it) | U")-1 < cM exp ( - £/>-'(l
v

Moreover, the sum in the exponential has the alternative representation

According to our temporary hypothesis that (ii) is valid, the first of these series
becomes negatively unbounded as <r-»-l+. However, from (37) the second sum
does not exceed 2c37, 1 < a < 2. Hence for each real t

and A->0 as (7-> 1 + . It follows that (39) is indeed valid.
Let e be temporarily fixed, 0 < e < 1. We apply the estimate (39) with x, and x

replaced by x(l +e), and by subtraction obtain

(40)
n

The sum which appears in the error term on the right-hand side of this equation
may be estimated by means of Holder's inequality to be

O(elogx S \g(n)\) = (Kelogxe* 2 |g(«)|") = O(t*+* xlogx),

https://doi.org/10.1017/S1446788700021182 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700021182


202 P. D. T. A. Elliott [26]

where/x = 1— (l/a)>0. Since log(l + e) = e + O(s2) we obtain the estimate (dividing
both sides of (40) by e)

2 g(n) log n = {o( 1) + O(e>')} x log x, x -x».
n^x

However, e may be chosen arbitrarily small, and therefore

2 g(n)logn - o(xlogx),

Integrating by parts we see that g(n) has the mean value zero.
But this contradicts the assumption made at the beginning of this section.

Hence condition (ii) fails and there is a real value of / for which the series (5)
converges.

Consider next the possibility that (i) and (ii) fail, but (iii) does not. We may
argue as in Section 7 and establish an estimate

where g(n) is everywhere to be replaced by g{n) rru. Here J has a factor

1 + V p-mg{p™)p-mil
m=l

which presently has the value zero. Hence 7 = 0. Moreover, with a = 1 + (l/log;t)

(41) | A (log*) | =
v

= exp (-^p-"{\g{p) | - Re £(/>)/>"") + YiP-'i | g<j>) 1-0),
V V

which is bounded above uniformly for x>e. Hence g(ri)n~*1 and so g(n) has the
mean-value zero. We have reached a contradiction. Therefore condition (iii) must
also fail.

We are now only left with condition (iv). Since conditions (i)-(u'O a " fail there
is a value of t so that

where J is non-zero. In this case (see (41))

We apply Lemma 9 and deduce from condition (iv) that as a approaches 1 from
above the sum in the exponent in this last inequality becomes unbounded, and
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A(logx) approaches zero. Hence g(n)n~il and so g(ri) has mean-value zero.
This again contradicts our initial assumption.

Since in every case our initial assumption led to a contradiction it must have
been false, that is to say, g(n) has a mean-value zero.

This completes the proof of Theorem 2.
An interesting feature of the proof of this part of Theorem 2 is that we do not

seem to be able to deduce directly from (i) that g(ri) has a mean-value zero.

9. Proof of Theorem 3

This is now easy. Either g(n) has a mean-value zero or it satisfies hypothesis H.
In the first case we set A — 0, S(x) = 1. In the second case either the series (5)
diverges for each real / and g has again the mean-value zero, or there is a real value
of t so that the function g(ji)n~u meets the hypotheses of Lemma 8. Then (see
Section 7)

2 g(n)n-il =

for some (possibly zero) constant J. Here we set S(x) = A(logjc), and so define a
slowly oscillating function of x. An integration by parts, treating ranges 0 < n < ex,

separately, leads to the estimate

We define

A =J(l+it)-1

and the proof of Theorem 3 is complete.

Concluding remarks

Theorems 1 and 2 are not quite the same in form. One can reformulate the
result of Theorem 1 so as to give necessary and sufficient conditions in order that
an arbitrary multiplicative function simultaneously belong to some class La with
a > 1 and have a non-zero mean-value. In Theorem 2 one postulates at the outset
that g belongs to some class La and has a zero mean-value and deduces the validity
of one of the conditions (i)—(iv). In the other direction the results assert that for
functions of class La any one of these conditions is also sufficient.

What are the necessary and sufficient conditions for a multiplicative function
to belong to the class La, for a > 1; for 0 < a < 1 ?
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Note that the function r(n) n~im belongs to L? so that necessary and sufficient
conditions in order for it to have a mean-value zero may be read off from Theorem
2. Since it is known to have a mean-value zero one of these conditions must be
satisfied. Which?

The methods of the present paper enable the following result to be established:
Let g{n) be a non-negative multiplicative arithmetic function and let g\ri) have a

non-zero mean-value. Then in order for g(n) not to have a zero mean-value it is both
necessary and sufficient that the series

converges.
Assuming that g does not have a mean-value zero the essential point is to

deduce from the existence of the non-zero mean-value for g2 that the series

converges. One then applies Theorem 2.
We proved earlier that either

x-1 S I T(«) I «-11/2 -> 0, x -»• oo,

or the series

converges. In view of Rankin's asymptotic estimate (See section 1) the above
remark shows that both of these conditions cannot hold. Which does ?
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