
BULL. AUSTRAL. MATH. SOC. 1 1 R 1 6 , 1 1 R 2 9

VOL. 72 (2005) [471-476]

ON 3-CLASS GROUPS OF CERTAIN P U R E CUBIC FIELDS

FRANK GERTH III

Recently Calegari and Emerton made a conjecture about the 3-class groups of certain
pure cubic fields and their normal closures. This paper proves their conjecture and
provides additional insight into the structure of the 3-class groups of pure cubic fields
and their normal closures.

1. INTRODUCTION

Let p be a prime number, and let K = Q(-^jp). Let M = Q(C, tfp) = Q ( \ / = 3 , j/p),
where C is a primitive cube root of unity. Let SK be the 3-class group of K (that is,
the Sylow 3-subgroup .of the ideal class group of K). Let SM (respectively, 5Q(^J) be the
3-class group of M (respectively, Q(C))- Since <Q>(C) has class number 1, then SQ(C) = {1}.

Assuming p = 1 (mod 9), Calegari and Emerton [3, Lemma 5.11] proved that the
rank of SM equals two if 9 divides \SK\, where \S\ denotes the order of a finite group S.
Based on numerical calculations, they conjecture that the converse is also true. Their
conjecture is equivalent to the following theorem that we shall prove.

THEOREM 1 . Assume p = 1 (mod 9), and SK and SM are defined as above. If
9 \ \SK\, then the rank of SM equals one.

We shall prove some results about the structure of SK and SM for arbitrary pure
cubic fields K, and then we shall prove Theorem 1 when K = Q(ffi) with p = 1 (mod 9).

2. SOME RESULTS FOR ARBITRARY PURE CUBIC FIELDS

We first consider arbitrary pure cubic fields K = Q(v
/n) with cube-free integer

n > 1. Let M = Q(£, tfn). Various results about the 3-class groups SK and SM appear
in [1, 2, 4, 5]. So the reader may consult those papers for more details about some of
the results we present.

We let a be a generator of Gai(M/K), and we let r be a generator of Gal(M/Q(£)).
So Ga\{M/K) = (a) is a cyclic group of order 2, and Gal(M/Q(£)) = (r) is a cyclic
group of order 3. Also TO = err2 in Gal(M/Q) = (CT, T) . Using the fact that the 3-class
group 5Q( () = {1}, we observe that if a e SM, then a1+T+r2 = AfM/Q(aa = 1. where
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A/~M/Q(O '• SM —> S<2(0 is t n e norm map on ideal classes. Then SM may be viewed as a
module over Z3 [(r)] / ( I + T + T2) = Z3[C], where Z3 is the ring of 3-adic integers. Let

SM'^ = {«(1"T)i | o € 5W} for t = 0,1,2 , . . . .

Since (1 - C)2 • Z3[C] - 3 • Z3[C], then 5M~T)1+2 = (5M~T)i)3 for i = 0 ,1 ,2 , . . . . So for the
3-rank of SM, we have

(1) rank SM = r ank(5 M /5^) - r ank (S M /S j r ) + rank(5jfT/5M~T)2') .

Next, if (cr) operates on a finite group 5 with 2 f |5 | , we let

S+ = {a G S | a" = a} and

Then with 5 = SM, it is easy to see that SM ^ 5 ^ x 5 ^ , and 5 ^ ^ 5 K / If a € 5^~r)>,
let a = c^1"^' with c & SM. Then a" = c* 1 -^ ' = c^ 1 - ' ^ ' 6 5^"T)*. Also (a1"1-)'
= (a f f ) l - r 2 G 5^" T ) ' + 1 . So 5 ^ " T ) i / 5 ^ T ) i + 1 is a module over Z3[(a)) for i = 0 , 1 , 2 , . . . .
Hence

for i = 0 ,1 ,2 , . . . . We then define surjective maps A, for each i by

a mod S£-T)i+1 ^ al~T mod S ^ ^

for a e S ^ . Let b € ( 5 ^ r ) i / 5 ^ T ) i + I ) + . Then

(ft1--)" - (6')1-'2 - fi1^2 = &3-(l-r)-(l+T+r>) = (6l-r)-l m o d 5 ^ - ) ^

Similarly, if 6 e (5^" T ) 75^~ T ) i + 1 ) - , then ( 6 1 - ) " = ft^^mod 5^ ' T ) < + 2 . So A, maps
i+y < + 7 i + v maps (5^- T ) 7^- T ) i + v onto

We now recall some results from genus theory. Let S$ = {a G 5M \ aT = a}. Then

(2) | S # | = 3 ' - 2 + '

where t is the number of ramified primes for the extension M/Q(C), 8 = 1 if

C G NM/Q(QMX, and J = 0 otherwise. Here NM/Q(o • M* -»• Q(C)X is the norm

map. Now from the exact sequence

https://doi.org/10.1017/S0004972700035292 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700035292


[3] On 3-class groups 473

we see that \SM/S]^T\ — |SJJ | . Furthermore, if Mi is the maximal Abelian extension

of Q(C) which is unramified over M, then G a l ( M i / M ) = SM/SM~T. By Kummer theory,

there is a subgroup B of M x with ( M x ) 3 C f l C M " such that Mx = M(\fB). Let

( B / ( M X ) 3 ) + = { z e B/{MX)3 \z° = z] and

( B / ( M X ) 3 ) - = { 2 6 B / ( M X ) 3 I zff = z - 1 } .

Then B / ( M X ) 3 S ( B / ( M X ) 3 ) + x ( B / ( M X ) 3 ) - . There is a natural pairing

S/(MX)3 x 5M/5i7T —> (C)

with (J5/(MX)3)+ and {SM/S]^T)- dual groups in this pairing, and with (B/(MX)3)~

and (SM/S1MT)+ dual groups in this pairing. (See [4, Proposition 2.4].)

Finally, if h]< (respectively, hM) is the class number of K (respectively, M ) , it is

known that hM = q- h2
K/3, where q = 1 or 3. (See [1, Theorem 12.1 and Theorem 14.1].)

In fact, if UM is the group of units in the ring of integers of M, and if UM,I is the subgroup

of UM generated by the units in the rings of integers of the fields Q(C), Q{\^n), QiCffi),

and Q ( C 2 ^ " ) , then q = [UM : UM,i}- Then we get

(3) \SM\ = q • (\SK|)2/3 with g = l or 3 .

3 . R E S U L T S F O R S P E C I A L P U R E C U B I C F IELDS

We now suppose n = p with p a prime number. As before, we let K — Q ( ^ > ) and

M = Q(C,$»)- Honda [7] showed that \SK\ = 1 (and hence \SM\ = 1) if p = 3 or if

p = - l ( m o d 3), and \SK\ > 1 (and hence \SM\ > 1) if P = l (mod 3). Barrucand and

Cohn [1] classified K and M into four types. We shall consider various cases depending

on the congruence class of p (mod 9). Most of the results in cases 1, 2, and 3 below were

previously known, but we include them for the sake of completeness and to illustrate the

techniques we are using.

C A S E 1. p = 3 or p = 8 (mod 9).

Since only one prime ramifies in M/Q(C) , then in Equation 2, t = 1, 6 = 1, and

15^'I = 1. This implies that \SM\ = 1> and hence from Equation 3, q — 3 and \SK\ — 1.

Thus the fields K and M are of Type IV in [1].

CASE 2. p = 2 or 5 (mod 9).

The prime ideals (1 - C) and (p) of Q(C) ramify in M. So t = 2 in Equation 2.

Since the cubic Hilbert symbol ((C,p)/p) # 1 when p = 2 or 5 (mod 9), then 6 = 0. So

| 5 ^ } | = 1. Hence \SM\ = 1, Q = 3, and \SK\ = 1. This implies that the prime ideal above

(3) in K is a principal ideal. (Of course, the prime ideal above (p) in K is obviously

principal since it is generated by tfp.) The fields K and M are of Type I in [1].
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It remains to consider cases when p = 1, 4, or 7 (mod 9). In cases 3 and 4 below,
we shall see that \S{^\ = 3. Let j be the positive integer such that S$ C 5^~T ) J" ' but
S^gSft"^. Then

ISM/SJTI = Isir/sJT'1! = • • • = |sit"T>"1/s£-T)ll = 3

and | 5 M | = 3^. From Equation 1, we see that the 3-rank of the ideal class group of M
equals one if j = 1 and equals two if j > 1. Also, since \SM/S]^T\ — \S^\ = 3, there is an
unramified cyclic extension M\ of M of degree 3 which is an Abelian extension of Q(C),
and Gal(Mi/M) = SM/S]^T. Since p = 1 (mod 3), there is a unique cyclic extension F
of Q of degree 3 in which only p ramifies. If p = nW is a prime factorisation of p in the
ring of integers of Q(C), then F • Q(C) = Q(C, v'n?2), and Mx = M{\fn¥). Since

(TTTT2)" = TfTT2 = (TTTT2)"1 m o d ( M x ) 3

then from the duality results in the previous section, we see that \{SM/S\[T)+\ = 3 and
\{SM/S1MT)~\ = 1. From our observations about the maps Ai in the previous section,

|(SiJ-T)</SiJ-T)l+I)+|=3 and \{S^/S^)-\ = 1

if i is even and 0 ^ i ^ j — 1;

Ir«7(1-T) i /S(1-T) i+Vl - 1 and U9(1~T)i/<?(1~r)i+Vl - 3

if i is odd and 1 ^ i ^ j — 1. Then

|S,r| = |5+ | = 3^2 and | 5 ^ |

if j is even, and
and \S~M\ = &-W

if j is odd. These results provide additional insight for Equation 3; namely q = 3 in
Equation 3 if j is even, and q = 1 in Equation 3 if j is is odd. Furthermore, j is even if
| (5^))-1 = 3; on the other hand, j is odd if |S£')+I = 3.

C A S E 3. p = 4 or 7(mod 9) (see [1, 2]).

The prime ideals (1 — C), (T) , and (W) of Q(C) ramify in M. So t = 3 in Equation 2.
As in case 2, 6 = 0. So \S^, \ = 3. In contrast to cases 1 and 2 where q always equals 3,
q may be either 1 or 3 in case 3. To see why this is possible, suppose first that 3 is not
a cubic residue modulo p. (For example, p = 7.) Then the ideal (3) is inert in the cyclic
extension F of Q of degree 3 in which only p ramifies. Thus the unique prime ideal p^
above (3) in M is inert in the unramified Abelian extension F • M, which by class field
theory implies that p3 is not a principal ideal. Hence the ideal class of p3 generates 5 ^
and is not contained in S}fT. Thus j = 1, \SK\ = \SM\ = 3, and q = l. So K and M are
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of Type III in [1] with the ideal pp2 a principal ideal, where p (respectively, p) is the
prime ideal of M above (TT), (respectively, (¥)).

On the other hand, if p = 61, then the class numbers h^ = 6 and KM = 36. So
\SK\ — 3 and \SM\ — 9- Thus 9 = 3 and j = 2. In this case the prime ideal NM/Kp3 is
principal, and the ideal pp2 generates (Sff)'. Note S M ' = {S^)~, and K and M are of
Type I in [1]. For this example with p = 61, 3 is a cubic residue modulo 61. (However, I
do not know whether 3 being a cubic residue modulo a prime p with p = 4 or 7 (mod 9) is
sufficient to guarantee that q = 3.) This example with p = 61 does show that Theorem 1
cannot be extended to all primes p = 1 (mod 3) since 9 f \SK\ but rank 5 M = 2.
C A S E 4. p = 1 (mod 9).

The prime ideals (TT) and (n) of Q(() ramify in M. So t = 2 in Equation 2. Since
p = 1 (mod 9), the cubic Hilbert symbols ((£,p)/n) = ((C>p)/?f) — 1> a n d hence 6 = 1.
So |5<?| = 3.

Let p and p be the prime ideals of M above (?r) and (TT), respectively. Note that
PP = {^/v)i a principal ideal. If p is not a principal ideal, then p is not a principal
ideal, and the ideal class of pp2 generates S M \ So if that happens, |5 M ' )~ | = 3 and
|SJ^')+| = l. If p is a principal ideal, then p is also a principal ideal, and hence a
generator of S)2 does not contain a ramified prime of the extension M/Q(C). (In the
terminology of [1, 4], there exist ambiguous classes which are not strong ambiguous,
which occurs when C ^ NM/Q(()UM even though £ 6 NM/Q(£)M*.)

We first focus on the case where p is principal. From part (1) of [6, Proposition 2],
we know that a generator of S$ comes from S £ . So | (S£ ' ) + | = 3 and | ( 5 ^ ) ) " | = 1.
In the discussion preceding case 3, we see that j is odd and q = 1. If j = 1, then
\SK\ = | S M | = 3 and \SM\ = 3, and hence rankSM = 1. If j ^ 3, then 9 divides
|S M | = \SK\, and rank SM = 2. So Theorem 1 is true if p is principal. We remark that
the fields K and M are of Type III in [1]. An example where this paragraph applies is
when p — 19.

It remains to consider the situation where p is not principal. Because | (5^ ' )~ | = 3
when p is not principal, we see that j is even and q — 3. (The fields K and M would be
of Type IV in [1].) Now in Theorem 1, we assume 9 f | 5 ^ | . Hence j = 2. If j = 2 were
possible, Theorem 1 would be false. So we must show that j = 2 is impossible. Let F be
the cyclic cubic extension of Q in which only p ramifies, and let L = F • Q(Q. Let Ui be
the group of units in the ring of integers of L, and let Uiti be the subgroup of Ui generated
by the units in the rings of integers of F and Q(C). By [8, Theorem 4.12], [UL : ULA] = 1
or 2. Since NL/Q^()UL,I = {±1}, then C ^ N L / Q ( 0 % , 1 I and s i nce \UL : ULti] = 1 or 2,
then C i NL/Q(QUL. However, C e NL/^QLX since p = 1 (mod 9). Now from genus
theory \S^\ = 3, where a; is a generator of Gal(X/Q(C)), SL is the 3-class group of L,
and S[w) = {a € SL \ au = a}. Since £ ^ NL/Q^QUL but C G NL/Q«)LX, a generator
of S^ does not contain a ramified prime of the extension L/Q(C). This means that V
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and V are principal ideals, where V and V are the prime ideals of L above (IT) and (TT),
respectively.

Now assuming j = 2, the Hilbert 3-class field of M is an extension M' of M of
degree 9, which is a Galois extension of Q(() and contains the field L. Then M'/L is a
Galois extension of degree 9 which is unramified at all primes. Because |Gal(M'/£)| = 9,
then Gal(M'/L) is Abelian. So M' is contained in the Hilbert 3-class field of L. Since V
and V are principal ideals of L, they must split completely in M'/L. But then p and p
split completely in M'/M, which is impossible since M' is the Hilbert 3-class field of M,
and p and p are not principal ideals of M. Hence we have a contradiction, which means
that j = 2 cannot happen. So the proof of Theorem 1 is complete.
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