ON 3-CLASS GROUPS OF CERTAIN PURE CUBIC FIELDS

Frank Gerth III

Abstract

Recently Calegari and Emerton made a conjecture about the 3-class groups of certain pure cubic fields and their normal closures. This paper proves their conjecture and provides additional insight into the structure of the 3 -class groups of pure cubic fields and their normal closures.

1. Introduction

Let p be a prime number, and let $K=\mathbb{Q}(\sqrt[3]{p})$. Let $M=\mathbb{Q}(\zeta, \sqrt[3]{p})=\mathbb{Q}(\sqrt{-3}, \sqrt[3]{p})$, where ζ is a primitive cube root of unity. Let S_{K} be the 3-class group of K (that is, the Sylow 3-subgroup of the ideal class group of K). Let S_{M} (respectively, $S_{\mathbb{Q}(\varsigma)}$) be the 3-class group of M (respectively, $\mathbb{Q}(\zeta)$). Since $\mathbb{Q}(\zeta)$ has class number 1 , then $S_{\mathbb{Q}(\zeta)}=\{1\}$.

Assuming $p \equiv 1(\bmod 9)$, Calegari and Emerton [3, Lemma 5.11] proved that the rank of S_{M} equals two if 9 divides $\left|S_{K}\right|$, where $|S|$ denotes the order of a finite group S. Based on numerical calculations, they conjecture that the converse is also true. Their conjecture is equivalent to the following theorem that we shall prove.

Theorem 1. Assume $p \equiv 1(\bmod 9)$, and S_{K} and S_{M} are defined as above. If $9 \nmid\left|S_{K}\right|$, then the rank of S_{M} equals one.

We shall prove some results about the structure of S_{K} and S_{M} for arbitrary pure cubic fields K, and then we shall prove Theorem 1 when $K=\mathbb{Q}(\sqrt[3]{p})$ with $p \equiv 1(\bmod 9)$.

2. Some results for arbitrary pure cubic fields

We first consider arbitrary pure cubic fields $K=\mathbb{Q}(\sqrt[3]{n})$ with cube-free integer $n>1$. Let $M=\mathbb{Q}(\zeta, \sqrt[3]{n})$. Various results about the 3-class groups S_{K} and S_{M} appear in $[1,2,4,5]$. So the reader may consult those papers for more details about some of the results we present.

We let σ be a generator of $\operatorname{Gal}(M / K)$, and we let τ be a generator of $\operatorname{Gal}(M / \mathbb{Q}(\zeta))$. So $\operatorname{Gal}(M / K)=\langle\sigma\rangle$ is a cyclic group of order 2 , and $\operatorname{Gal}(M / \mathbb{Q}(\zeta))=\langle\tau\rangle$ is a cyclic group of order 3. Also $\tau \sigma=\sigma \tau^{2}$ in $\operatorname{Gal}(M / \mathbb{Q})=\langle\sigma, \tau\rangle$. Using the fact that the 3-class group $S_{\mathbb{Q}(\zeta)}=\{1\}$, we observe that if $a \in S_{M}$, then $a^{1+\tau+\tau^{2}}=\mathcal{N}_{M / \mathbb{C}(\zeta)} a=1$, where
$\mathcal{N}_{M / \mathbb{Q}(\zeta)}: S_{M} \rightarrow S_{\mathbb{Q}(\zeta)}$ is the norm map on ideal classes. Then S_{M} may be viewed as a module over $\mathbb{Z}_{3}[\langle\tau\rangle] /\left(1+\tau+\tau^{2}\right) \cong \mathbb{Z}_{3}[\zeta]$, where \mathbb{Z}_{3} is the ring of 3 -adic integers. Let

$$
S_{M}^{(1-\tau)^{i}}=\left\{a^{(1-\tau)^{i}} \mid a \in S_{M}\right\} \text { for } i=0,1,2, \ldots .
$$

Since $(1-\zeta)^{2} \cdot \mathbb{Z}_{3}[\zeta]=3 \cdot \mathbb{Z}_{3}[\zeta]$, then $S_{M}^{(1-\tau)^{i+2}}=\left(S_{M}^{(1-\tau)^{i}}\right)^{3}$ for $i=0,1,2, \ldots$ So for the 3-rank of S_{M}, we have

$$
\begin{equation*}
\operatorname{rank} S_{M}=\operatorname{rank}\left(S_{M} / S_{M}^{3}\right)=\operatorname{rank}\left(S_{M} / S_{M}^{1-\tau}\right)+\operatorname{rank}\left(S_{M}^{1-\tau} / S_{M}^{(1-\tau)^{2}}\right) \tag{1}
\end{equation*}
$$

Next, if $\langle\sigma\rangle$ operates on a finite group S with $2 \nmid|S|$, we let

$$
\begin{aligned}
& S^{+}=\left\{a \in S \mid a^{\sigma}=a\right\} \text { and } \\
& S^{-}=\left\{a \in S \mid a^{\sigma}=a^{-1}\right\}
\end{aligned}
$$

Then with $S=S_{M}$, it is easy to see that $S_{M} \cong S_{M}^{+} \times S_{M}^{-}$, and $S_{M}^{+} \cong S_{K}$. If $a \in S_{M}^{(1-\tau)^{i}}$, let $a=c^{(1-\tau)^{i}}$ with $c \in S_{M}$. Then $a^{\sigma}=c^{(1-\tau)^{i} \sigma}=c^{\sigma\left(1-\tau^{2}\right)^{i}} \in S_{M}^{(1-\tau)^{i}}$. Also $\left(a^{1-\tau}\right)^{\sigma}$ $=\left(a^{\sigma}\right)^{1-\tau^{2}} \in S_{M}^{(1-\tau)^{i+1}}$. So $S_{M}^{(1-\tau)^{i}} / S_{M}^{(1-\tau)^{i+1}}$ is a module over $\mathbb{Z}_{3}[\langle\sigma\rangle]$ for $i=0,1,2, \ldots$. Hence

$$
\operatorname{rank}\left(S_{M}^{(1-\tau)^{i}} / S_{M}^{(1-\tau)^{i+1}}\right)=\operatorname{rank}\left(S_{M}^{(1-\tau)^{i}} / S_{M}^{(1-\tau)^{i+1}}\right)^{+}+\operatorname{rank}\left(S_{M}^{(1-\tau)^{i}} / S_{M}^{(1-\tau)^{i+1}}\right)^{-}
$$

for $i=0,1,2, \ldots$. We then define surjective maps Δ_{i} for each i by

$$
\begin{gathered}
\Delta_{i}: S_{M}^{(1-\tau)^{i}} / S_{M}^{(1-\tau)^{i+1}} \longrightarrow S_{M}^{(1-\tau)^{i+1}} / S_{M}^{(1-\tau)^{i+2}} \\
a \bmod S_{M}^{(1-\tau)^{i+1}} \longmapsto a^{1-\tau} \bmod S_{M}^{(1-\tau)^{i+2}}
\end{gathered}
$$

for $a \in S_{M}^{(1-\tau)^{i}}$. Let $b \in\left(S_{M}^{(1-\tau)^{i}} / S_{M}^{(1-\tau)^{i+1}}\right)^{+}$. Then

$$
\left(b^{1-\tau}\right)^{\sigma}=\left(b^{\sigma}\right)^{1-\tau^{2}}=b^{1-\tau^{2}}=b^{3-(1-\tau)-\left(1+\tau+\tau^{2}\right)} \equiv\left(b^{1-\tau}\right)^{-1} \bmod S_{M}^{(1-\tau)^{i+2}}
$$

Similarly, if $b \in\left(S_{M}^{(1-\tau)^{i}} / S_{M}^{(1-\tau)^{i+1}}\right)^{-}$, then $\left(b^{1-\tau}\right)^{\sigma} \equiv b^{1-\tau} \bmod S_{M}^{(1-\tau)^{i+2}}$. So Δ_{i} maps $\left(S_{M}^{(1-\tau)^{i}} / S_{M}^{(1-\tau)^{i+1}}\right)^{+}$onto $\left(S_{M}^{(1-\tau)^{i+1}} / S_{M}^{(1-\tau)^{i+2}}\right)^{-}$and maps $\left(S_{M}^{(1-\tau)^{i}} / S_{M}^{(1-\tau)^{i+1}}\right)^{-}$onto $\left(S_{M}^{(1-\tau)^{i+1}} / S_{M}^{(1-\tau)^{i+2}}\right)^{+}$.

We now recall some results from genus theory. Let $S_{M}^{(\tau)}=\left\{a \in S_{M} \mid a^{\tau}=a\right\}$. Then

$$
\begin{equation*}
\left|S_{M}^{(\tau)}\right|=3^{t-2+\delta} \tag{2}
\end{equation*}
$$

where t is the number of ramified primes for the extension $M / \mathbb{Q}(\zeta), \delta=1$ if $\zeta \in N_{M / \mathbb{Q}(\zeta)} M^{\times}$, and $\delta=0$ otherwise. Here $N_{M / \mathbb{Q}(\zeta)}: M^{\times} \rightarrow \mathbb{Q}(\zeta)^{\times}$is the norm map. Now from the exact sequence

$$
1 \longrightarrow S_{M}^{(\tau)} \longrightarrow S_{M} \xrightarrow{1-\tau} S_{M} \longrightarrow S_{M} / S_{M}^{1-\tau} \longrightarrow 1
$$

we see that $\left|S_{M} / S_{M}^{1-\tau}\right|=\left|S_{M}^{(\tau)}\right|$. Furthermore, if M_{1} is the maximal Abelian extension of $\mathbb{Q}(\zeta)$ which is unramified over M, then $\operatorname{Gal}\left(M_{1} / M\right) \cong S_{M} / S_{M}^{1-\tau}$. By Kummer theory, there is a subgroup B of M^{\times}with $\left(M^{\times}\right)^{3} \subset B \subset M^{\times}$such that $M_{1}=M(\sqrt[3]{B})$. Let

$$
\begin{aligned}
& \left(B /\left(M^{\times}\right)^{3}\right)^{+}=\left\{z \in B /\left(M^{\times}\right)^{3} \mid z^{\sigma}=z\right\} \text { and } \\
& \left(B /\left(M^{\times}\right)^{3}\right)^{-}=\left\{z \in B /\left(M^{\times}\right)^{3} \mid z^{\sigma}=z^{-1}\right\}
\end{aligned}
$$

Then $B /\left(M^{\times}\right)^{3} \cong\left(B /\left(M^{\times}\right)^{3}\right)^{+} \times\left(B /\left(M^{\times}\right)^{3}\right)^{-}$. There is a natural pairing

$$
\begin{gathered}
B /\left(M^{\times}\right)^{3} \times S_{M} / S_{M}^{1-\tau} \longrightarrow\langle\zeta\rangle \\
(z, a) \longmapsto(\sqrt[3]{z})^{a-1}
\end{gathered}
$$

with $\left(B /\left(M^{\times}\right)^{3}\right)^{+}$and $\left(S_{M} / S_{M}^{1-\tau}\right)^{-}$dual groups in this pairing, and with $\left(B /\left(M^{\times}\right)^{3}\right)^{-}$ and $\left(S_{M} / S_{M}^{1-\tau}\right)^{+}$dual groups in this pairing. (See [4, Proposition 2.4].)

Finally, if h_{K} (respectively, h_{M}) is the class number of K (respectively, M), it is known that $h_{M}=q \cdot h_{K}^{2} / 3$, where $q=1$ or 3 . (See [1 , Theorem 12.1 and Theorem 14.1].) In fact, if U_{M} is the group of units in the ring of integers of M, and if $U_{M, 1}$ is the subgroup of U_{M} generated by the units in the rings of integers of the fields $\mathbb{Q}(\zeta), \mathbb{Q}(\sqrt[3]{n}), \mathbb{Q}(\zeta \sqrt[3]{n})$, and $\mathbb{Q}\left(\zeta^{2} \sqrt[3]{n}\right)$, then $q=\left[U_{M}: U_{M, 1}\right]$. Then we get

$$
\begin{equation*}
\left|S_{M}\right|=q \cdot\left(\left|S_{K}\right|\right)^{2} / 3 \text { with } q=1 \text { or } 3 \tag{3}
\end{equation*}
$$

3. Results for special pure cubic fields

We now suppose $n=p$ with p a prime number. As before, we let $K=\mathbb{Q}(\sqrt[3]{p})$ and $M=\mathbb{Q}(\zeta, \sqrt[3]{p})$. Honda $[7]$ showed that $\left|S_{K}\right|=1$ (and hence $\left|S_{M}\right|=1$) if $p=3$ or if $p \equiv-1(\bmod 3)$, and $\left|S_{K}\right|>1\left(\right.$ and hence $\left.\left|S_{M}\right|>1\right)$ if $p \equiv 1(\bmod 3)$. Barrucand and Cohn [1] classified K and M into four types. We shall consider various cases depending on the congruence class of $p(\bmod 9)$. Most of the results in cases 1,2 , and 3 below were previously known, but we include them for the sake of completeness and to illustrate the techniques we are using.
CASE 1. $p=3$ or $p \equiv 8(\bmod 9)$.
Since only one prime ramifies in $M / \mathbb{Q}(\zeta)$, then in Equation 2, $t=1, \delta=1$, and $\left|S_{M}^{(\tau)}\right|=1$. This implies that $\left|S_{M}\right|=1$, and hence from Equation 3, $q=3$ and $\left|S_{K}\right|=1$. Thus the fields K and M are of Type IV in [1].
Case 2. $p \equiv 2$ or $5(\bmod 9)$.
The prime ideals $(1-\zeta)$ and (p) of $\mathbb{Q}(\zeta)$ ramify in M. So $t=2$ in Equation 2. Since the cubic Hilbert symbol $((\zeta, p) / p) \neq 1$ when $p \equiv 2$ or $5(\bmod 9)$, then $\delta=0$. So $\left|S_{M}^{(\tau)}\right|=1$. Hence $\left|S_{M}\right|=1, q=3$, and $\left|S_{K}\right|=1$. This implies that the prime ideal above (3) in K is a principal ideal. (Of course, the prime ideal above (p) in K is obviously principal since it is generated by $\sqrt[3]{p}$.) The fields K and M are of Type I in [1].

It remains to consider cases when $p \equiv 1,4$, or $7(\bmod 9)$. In cases 3 and 4 below, we shall see that $\left|S_{M}^{(\tau)}\right|=3$. Let j be the positive integer such that $S_{M}^{(\tau)} \subseteq S_{M}^{(1-\tau)^{j-1}}$ but $S_{M}^{(\tau)} \nsubseteq S_{M}^{(1-\tau)^{j}}$. Then

$$
\left|S_{M} / S_{M}^{1-\tau}\right|=\left|S_{M}^{1-\tau} / S_{M}^{(1-\tau)^{2}}\right|=\cdots=\left|S_{M}^{(1-\tau)^{j-1}} / S_{M}^{(1-\tau)^{j}}\right|=3
$$

and $\left|S_{M}\right|=3^{j}$. From Equation 1, we see that the 3 -rank of the ideal class group of M equals one if $j=1$ and equals two if $j>1$. Also, since $\left|S_{M} / S_{M}^{1-\tau}\right|=\left|S_{M}^{(\tau)}\right|=3$, there is an unramified cyclic extension M_{1} of M of degree 3 which is an Abelian extension of $\mathbb{Q}(\zeta)$, and $\operatorname{Gal}\left(M_{1} / M\right) \cong S_{M} / S_{M}^{1-\tau}$. Since $p \equiv 1(\bmod 3)$, there is a unique cyclic extension F of \mathbb{Q} of degree 3 in which only p ramifies. If $p=\pi \bar{\pi}$ is a prime factorisation of p in the ring of integers of $\mathbb{Q}(\zeta)$, then $F \cdot \mathbb{Q}(\zeta)=\mathbb{Q}\left(\zeta, \sqrt[3]{\pi \bar{\pi}^{2}}\right)$, and $M_{1}=M\left(\sqrt[3]{\pi \bar{\pi}^{2}}\right)$. Since

$$
\left(\pi \bar{\pi}^{2}\right)^{\sigma}=\bar{\pi} \pi^{2} \equiv\left(\pi \bar{\pi}^{2}\right)^{-1} \bmod \left(M^{\times}\right)^{3}
$$

then from the duality results in the previous section, we see that $\left|\left(S_{M} / S_{M}^{1-\tau}\right)^{+}\right|=3$ and $\left|\left(S_{M} / S_{M}^{1-\tau}\right)^{-}\right|=1$. From our observations about the maps Δ_{i} in the previous section,

$$
\left|\left(S_{M}^{(1-\tau)^{i}} / S_{M}^{(1-\tau)^{i+1}}\right)^{+}\right|=3 \text { and }\left|\left(S_{M}^{(1-\tau)^{i}} / S_{M}^{(1-\tau)^{i+1}}\right)^{-}\right|=1
$$

if i is even and $0 \leqslant i \leqslant j-1$;

$$
\left|\left(S_{M}^{(1-\tau)^{i}} / S_{M}^{(1-\tau)^{i+1}}\right)^{+}\right|=1 \text { and }\left|\left(S_{M}^{(1-\tau)^{i}} / S_{M}^{(1-\tau)^{i+1}}\right)^{-}\right|=3
$$

if i is odd and $1 \leqslant i \leqslant j-1$. Then

$$
\left|S_{K}\right|=\left|S_{M}^{+}\right|=3^{j / 2} \text { and }\left|S_{M}^{-}\right|=3^{j / 2}
$$

if j is even, and

$$
\left|S_{K}\right|=\left|S_{M}^{+}\right|=3^{(j+1) / 2} \text { and }\left|S_{M}^{-}\right|=3^{(j-1) / 2}
$$

if j is odd. These results provide additional insight for Equation 3; namely $q=3$ in Equation 3 if j is even, and $q=1$ in Equation 3 if j is is odd. Furthermore, j is even if $\left|\left(S_{M}^{(\tau)}\right)^{-}\right|=3$; on the other hand, j is odd if $\left.\mid S_{M}^{(\tau)}\right)^{+} \mid=3$.
Case 3. $p \equiv 4$ or $7(\bmod 9)($ see $[1,2])$.
The prime ideals $(1-\zeta),(\pi)$, and $(\bar{\pi})$ of $\mathbb{Q}(\zeta)$ ramify in M. So $t=3$ in Equation 2. As in case $2, \delta=0$. So $\left|S_{M}^{(\tau)}\right|=3$. In contrast to cases 1 and 2 where q always equals 3 , q may be either 1 or 3 in case 3 . To see why this is possible, suppose first that 3 is not a cubic residue modulo p. (For example, $p=7$.) Then the ideal (3) is inert in the cyclic extension F of \mathbb{Q} of degree 3 in which only p ramifies. Thus the unique prime ideal \wp_{3} above (3) in M is inert in the unramified Abelian extension $F \cdot M$, which by class field theory implies that \wp_{3} is not a principal ideal. Hence the ideal class of \wp_{3} generates $S_{M}^{(\tau)}$ and is not contained in $S_{M}^{1-\tau}$. Thus $j=1,\left|S_{K}\right|=\left|S_{M}\right|=3$, and $q=1$. So K and M are
of Type III in [1] with the ideal $\wp \bar{\wp}^{2}$ a principal ideal, where \wp (respectively, $\bar{\wp}$) is the prime ideal of M above (π), (respectively, $(\bar{\pi})$).

On the other hand, if $p=61$, then the class numbers $h_{K}=6$ and $h_{M}=36$. So $\left|S_{K}\right|=3$ and $\left|S_{M}\right|=9$. Thus $q=3$ and $j=2$. In this case the prime ideal $N_{M / K} \wp_{3}$ is principal, and the ideal $\wp \bar{\wp}^{2}$ generates $\left(S_{M}^{(\tau)}\right)^{-}$. Note $S_{M}^{(\tau)}=\left(S_{M}^{(\tau)}\right)^{-}$, and K and M are of Type I in [1]. For this example with $p=61,3$ is a cubic residue modulo 61. (However, I do not know whether 3 being a cubic residue modulo a prime p with $p \equiv 4$ or $7(\bmod 9)$ is sufficient to guarantee that $q=3$.) This example with $p=61$ does show that Theorem 1 cannot be extended to all primes $p \equiv 1(\bmod 3)$ since $9 \nmid\left|S_{K}\right|$ but rank $S_{M}=2$.
Case 4. $p \equiv 1(\bmod 9)$.
The prime ideals (π) and $(\bar{\pi})$ of $\mathbb{Q}(\zeta)$ ramify in M. So $t=2$ in Equation 2. Since $p \equiv 1(\bmod 9)$, the cubic Hilbert symbols $((\zeta, p) / \pi)=((\zeta, p) / \bar{\pi})=1$, and hence $\delta=1$. So $\left|S_{M}^{(\tau)}\right|=3$.

Let \wp and $\bar{\wp}$ be the prime ideals of M above (π) and $(\bar{\pi})$, respectively. Note that $\wp \bar{\wp}=(\sqrt[3]{p})$, a principal ideal. If \wp is not a principal ideal, then $\bar{\wp}$ is not a principal ideal, and the ideal class of $\wp \bar{反}^{2}$ generates $S_{M}^{(\tau)}$. So if that happens, $\left.\mid S_{M}^{(\tau)}\right)^{-} \mid=3$ and $\left.\mid S_{M}^{(\tau)}\right)^{+} \mid=1$. If \wp is a principal ideal, then $\bar{\wp}$ is also a principal ideal, and hence a generator of $S_{M}^{(\tau)}$ does not contain a ramified prime of the extension $M / \mathbb{Q}(\zeta)$. (In the terminology of $[\mathbf{1}, \mathbf{4}]$, there exist ambiguous classes which are not strong ambiguous, which occurs when $\zeta \notin N_{M / \mathbb{Q}(\varsigma)} U_{M}$ even though $\zeta \in N_{M / \mathbb{Q}(\zeta)} M^{\times}$.)

We first focus on the case where \wp is principal. From part (1) of [6, Proposition 2], we know that a generator of $S_{M}^{(\tau)}$ comes from S_{M}^{+}. So $\left|\left(S_{M}^{(\tau)}\right)^{+}\right|=3$ and $\left|\left(S_{M}^{(\tau)}\right)^{-}\right|=1$. In the discussion preceding case 3 , we see that j is odd and $q=1$. If $j=1$, then $\left|S_{K}\right|=\left|S_{M}^{+}\right|=3$ and $\left|S_{M}\right|=3$, and hence $\operatorname{rank} S_{M}=1$. If $j \geqslant 3$, then 9 divides $\left|S_{M}^{+}\right|=\left|S_{K}\right|$, and $\operatorname{rank} S_{M}=2$. So Theorem 1 is true if \wp is principal. We remark that the fields K and M are of Type III in [1]. An example where this paragraph applies is when $p=19$.

It remains to consider the situation where \wp is not principal. Because $\left|\left(S_{M}^{(\tau)}\right)^{-}\right|=3$ when \wp is not principal, we see that j is even and $q=3$. (The fields K and M would be of Type IV in [1].) Now in Theorem 1, we assume $9 \nmid\left|S_{K}\right|$. Hence $j=2$. If $j=2$ were possible, Theorem 1 would be false. So we must show that $j=2$ is impossible. Let F be the cyclic cubic extension of \mathbb{Q} in which only p ramifies, and let $L=F \cdot \mathbb{Q}(\zeta)$. Let U_{L} be the group of units in the ring of integers of L, and let $U_{L, 1}$ be the subgroup of U_{L} generated by the units in the rings of integers of F and $\mathbb{Q}(\zeta)$. By [8, Theorem 4.12], $\left[U_{L}: U_{L, 1}\right]=1$ or 2. Since $N_{L / Q(\zeta)} U_{L, 1}=\{ \pm 1\}$, then $\zeta \notin N_{L / Q(\zeta)} U_{L, 1}$, and since $\left[U_{L}: U_{L, 1}\right]=1$ or 2 , then $\zeta \notin N_{L / Q(\zeta)} U_{L}$. However, $\zeta \in N_{L / Q(\zeta)} L^{\times}$since $p \equiv 1(\bmod 9)$. Now from genus theory $\left|S_{L}^{(\omega)}\right|=3$, where ω is a generator of $\operatorname{Gal}(L / \mathbb{Q}(\zeta)), S_{L}$ is the 3-class group of L, and $S_{L}^{(\omega)}=\left\{a \in S_{L} \mid a^{\omega}=a\right\}$. Since $\zeta \notin N_{L / Q(\zeta)} U_{L}$ but $\zeta \in N_{L / Q(\zeta)} L^{\times}$, a generator of $S_{L}^{(\omega)}$ does not contain a ramified prime of the extension $L / \mathbb{Q}(\zeta)$. This means that \mathcal{P}
and $\overline{\mathcal{P}}$ are principal ideals, where \mathcal{P} and $\overline{\mathcal{P}}$ are the prime ideals of L above (π) and ($\bar{\pi}$), respectively.

Now assuming $j=2$, the Hilbert 3 -class field of M is an extension M^{\prime} of M of degree 9 , which is a Galois extension of $\mathbb{Q}(\zeta)$ and contains the field L. Then M^{\prime} / L is a Galois extension of degree 9 which is unramified at all primes. Because $\left|\operatorname{Gal}\left(M^{\prime} / L\right)\right|=9$, then $\operatorname{Gal}\left(M^{\prime} / L\right)$ is Abelian. So M^{\prime} is contained in the Hilbert 3-class field of L. Since \mathcal{P} and $\overline{\mathcal{P}}$ are principal ideals of L, they must split completely in M^{\prime} / L. But then \wp and $\bar{\wp}$ split completely in M^{\prime} / M, which is impossible since M^{\prime} is the Hilbert 3-class field of M, and \wp and $\bar{\wp}$ are not principal ideals of M. Hence we have a contradiction, which means that $j=2$ cannot happen. So the proof of Theorem 1 is complete.

References

[1] P. Barrucand and H. Cohn, 'Remarks on principal factors in a relative cubic field', J. Number Theory 3 (1971), 226-239.
[2] P. Barrucand, H. Williams and L. Baniuk, 'A computational technique for determining the class number of a pure cubic field', Math. Comp. 30 (1976), 312-323.
[3] F. Calegari and M. Emerton, 'On the ramification of Hecke algebras at Eisenstein primes', Invent. Math. 160 (2005), 97-144.
[4] F. Gerth, 'On 3-class groups of pure cubic fields', J. Reine Angew. Math. 278/279 (1975), 52-62.
[5] F. Gerth, 'Ranks of 3-class groups of non-Galois cubic fields', Acta Arith. 30 (1976), 307-322.
[6] G. Gras, 'Sur les ℓ-classes d'idéaux des extensions non galoisiennes de \mathbb{Q} de degré premier impair ℓ a clôture galoisienne diédrale de degré $2 \ell^{\prime}$, J. Math. Soc. Japan 26 (1974), 677-685.
[7] T. Honda, 'Pure cubic fields whose class numbers are multiples of three', J. Number Theory 3 (1971), 7-12.
[8] L. Washington, Introduction to cyclotonic fields (Springer-Verlag, New York, 1982).
Mathematics Department
The University of Texas at Austin
1 University Station C1200
Austin, TX 78712-0257
United States of America
e-mail: gerth@math.utexas.edu

