ON BASIS-CONJUGATING AUTOMORPHISMS OF FREE GROUPS

J. McCOOL

1. Introduction. Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ be a free generating set of the free group F_{n}, and let H be the subgroup of Aut F_{n} consisting of those automorphisms α such that $\alpha\left(x_{i}\right)$ is conjugate to x_{i} for each $i=1,2, \ldots, n$. We call H the X-conjugating subgroup of Aut F_{n}. In [1] Humphries found a generating set for the isomorphic copy H_{1} of H consisting of Nielsen transformations

$$
\left\{u_{1}, \ldots, u_{n}\right\} \rightarrow\left\{u_{1}^{\prime}, \ldots, u_{n}^{\prime}\right\}
$$

where each u_{i}^{\prime} is conjugate to u_{i} (see remark 1 below). The purpose of this paper is to find a presentation of H (and hence of H_{1}).

Let $i \neq j$ be elements of $\{1,2, \ldots, n\}$. We denote by $\left(x_{i} ; x_{j}\right)$ the automorphism of F_{n} which sends x_{i} to $x_{j}^{-1} x_{i} x_{j}$ and fixes x_{k} if $k \neq i$. Let S be the set of all such automorphisms. It is easy to check that the following are relations satisfied by the elements of S, provided that, in each case, the subscripts i, j, k, \ldots occurring are distinct:

$$
\begin{align*}
& \left(x_{i} ; x_{j}\right)\left(x_{k} ; x_{j}\right)=\left(x_{k} ; x_{j}\right)\left(x_{i} ; x_{j}\right) \tag{Z1}\\
& \left(x_{i} ; x_{j}\right)\left(x_{k} ; x_{l}\right)=\left(x_{k} ; x_{l}\right)\left(x_{i} ; x_{j}\right) \\
& \left(x_{i} ; x_{j}\right)\left(x_{k} ; x_{j}\right)\left(x_{i} ; x_{k}\right)=\left(x_{i} ; x_{k}\right)\left(x_{i} ; x_{j}\right)\left(x_{k} ; x_{j}\right)
\end{align*}
$$

We denote by Z the set of all relations of the above forms. Our result is
Theorem. The group H has presentation $\langle S ; Z\rangle$.
2. Proof of the theorem. We shall assume familiarity with the notation and results of [5] (see also [2]). We shall use the improved version of Theorem 1 of [5], as outlined in Section 4 of that paper. We take U to be the tuple $\left\{x_{1}^{0}, \ldots, x_{n}^{0}\right\}$, where x_{i}^{0} denotes the cyclic word (i.e., conjugacy class) determined by x_{i}. It is clear that U is a minimal tuple. We have to construct the complex K_{2} described in Section 4 of [5]. The vertices of K_{2} will clearly be the $n!2^{n}$ distinct tuples $U \sigma$, where σ belongs to the extended symmetric group Ω_{n}. There will be a (directed) edge labelled (Ua, Uov; τ) joining $U \sigma$ to $U \sigma \tau$, for each pair $\sigma, \tau \in \Omega_{n}$. In addition, there will be a number of 'type 2 whitehead edges'. In fact, it is not difficult to see that

[^0]the type 2 edges originating at the vertex V will correspond to the set W of Whitehead automorphisms of the form
$$
\left(x_{i_{1}}, x_{i_{i}}^{-1}, \ldots, x_{i_{r}}, x_{i_{r}}^{-1}, x_{i_{k}}^{\epsilon} ; x_{i_{k}}^{\epsilon}\right),
$$
where $\left\{i_{1}, \ldots, i_{r}, k\right\} \subseteq\{1,2, \ldots, n\}, i_{1} \neq i_{2} \neq \ldots \neq i_{r} \neq k$, and $\epsilon= \pm 1$.

We denote this automorphism by $\left(x_{i}, \ldots, x_{i} ; x_{k}^{\epsilon}\right)$ and recall that $x_{j}\left(x_{i_{1}}, \ldots, x_{i} ; x_{k}^{\epsilon}\right)$ is $x_{k}^{-\epsilon} x_{j} x_{k}^{\epsilon}$ if $j \in\left\{i_{1}, \ldots, i_{r}\right\}$ and is x_{j} otherwise. We have $V P=V$ for all vertices V and all $P \in W$. Thus the type 2 edges originating at vertex V consist of the loops $(V, V ; P)$, where $P \in W$.

Summarising, the 1 -skeleton K_{2}^{\prime} of K_{2} consists of
(a) the vertices $U \sigma,\left(\sigma \in \Omega_{n}\right)$
(bl) the edges ($U \sigma, U \sigma \tau ; \tau),\left(\sigma, \tau \in \Omega_{n}\right)$
(b2) the loops (Ua, Uб; P), $\left(\sigma \in \Omega_{n}, P \in W\right)$.
Following the recipe of Section 4 of [5] we must now attach 2-cells to K_{2}^{\prime} corresponding to the relations R1-R10 listed in [4]. Let C be the complex obtained by adding 2 -cells corresponding to the relations R7 to K_{2}^{\prime}. Note that if C^{\prime} is obtained from C by deleting the edges of type (b2) above, then C^{\prime} is just the Cayley diagram of Ω_{n} (on the generating set consisting of all elements of Ω_{n}), with the 2-cells corresponding to R7 added, and hence $\pi_{1}\left(C^{\prime}, U\right)$ is the trivial group.

We now examine the relations R1-R5 and R8-R10 to see which of these give rise to 2-cells of K_{2}. A straightforward examination shows that we use the following relations:
From R1:
(Q1)

$$
\left(x_{i_{1}}, \ldots, x_{i_{r}} ; x_{k}^{\epsilon}\right)^{-1}=\left(x_{i_{1}}, \ldots, x_{i_{r}} ; x_{k}^{-\epsilon}\right) .
$$

From R2:
(Q2) $\left(x_{i_{1}}, \ldots, x_{i_{r}} ; x_{k}^{\epsilon}\right)\left(x_{j_{i}}, \ldots, x_{j_{s}} ; x_{k}^{\epsilon}\right)=\left(x_{i_{1}}, \ldots, x_{i_{i}}, x_{j_{1}}, \ldots, x_{j_{s}} ; x_{k}^{\epsilon}\right)$
if $\left\{i_{1}, \ldots, i_{r}\right\} \cap\left\{j_{1}, \ldots, j_{s}\right\}=\emptyset$.
From R3:

$$
\begin{align*}
& \text { (Q3) } \quad\left(x_{i_{1}}, \ldots, x_{i_{r}} ; x_{k}^{\epsilon}\right)\left(x_{j_{j}}, \ldots, x_{j_{s}} ; x_{l}^{\eta}\right) \tag{Q3}\\
&=\left(x_{j_{1}}, \ldots, x_{j_{s}} ; x_{l}^{\eta}\right)\left(x_{i_{1}}, \ldots, x_{i_{r}} ; x_{k}^{\epsilon}\right) \\
& \text { if }\left\{i_{1}, \ldots, i_{r}, k\right\} \cap\left\{j_{1}, \ldots, j_{s}, l\right\}=\emptyset .
\end{align*}
$$

From R4: no relations arise, since if $(A ; a),(B ; b) \in W$, where $A \cap B=\emptyset, a^{-1} \notin B$ and $b^{-1} \in A$, then $a \neq b^{-1}$ (otherwise $a^{-1}=b \in B$), so $b^{-1} \in A-a$. However $A-a$ is closed under inversion, so that $b \in A-a$, which contradicts $A \cap B=\emptyset)$.

From R5: no relations arise, since no type 2 of the form $\left(A-a+a^{-1}\right.$; b) with $a \neq b, \bar{b}$ can be in W.

From R8: we obtain only relations which are consequences of (Q1) and (Q2) above:

From R9:
(Q4)

$$
\begin{aligned}
& \left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n} ; x_{i}^{\eta}\right)\left(x_{j}, \ldots, x_{j r} ; x_{k}^{\epsilon}\right) \\
& \times\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n} ; x_{i}^{-\eta}\right) \\
& =\left(x_{j_{i}}, \ldots, x_{j_{r}} ; x_{k}^{\epsilon}\right)
\end{aligned}
$$

if $i \notin\left\{j_{i}, \ldots, j_{r}, k\right\}$.
From R10: no relations arise (for the same reason as R4).
We now take each instance of a relation in the set

$$
Q=Q 1 \cup Q 2 \cup Q 3 \cup Q 4,
$$

rewrite it in the form

$$
P_{1} P_{2} \ldots P_{s}=1 \quad\left(P_{i} \in W\right)
$$

and for each vertex $U \sigma$ of C, attach a 2-cell with boundary
(2.1) $\left(U \sigma, U \sigma ; P_{1}\right)\left(U \sigma, U \sigma ; P_{2}\right) \ldots\left(U \sigma, U \sigma ; P_{s}\right)$.

Let us denote the resulting complex by K_{2}^{\prime}.
To obtain K_{2} we add to K_{2}^{\prime} 2-cells corresponding to the relations R6. The relations arising here are all of the form

$$
\tau^{-1}(A ; a) \tau=(A \tau ; a \tau)
$$

where $(A ; a) \in W$ and $\tau \in \Omega_{n}$. Thus we attach to K_{2}^{\prime} all 2-cells with boundaries

$$
\begin{align*}
& \left(U \sigma, U \sigma \tau^{-1} ; \tau^{-1}\right)\left(U \sigma \tau^{-1}, U \sigma \tau^{-1} ;(A ; a)\right) \tag{2.2}\\
& \times\left(U \sigma \tau^{-1}, U \sigma ; \tau\right)\left(U \sigma, U \sigma ;(A \tau ; a \tau)^{-1}\right),
\end{align*}
$$

where $(A ; a) \in W$. The resulting complex is K_{2}.
Let T be a maximal tree in K_{2}. We compute a presentation of $H=\pi_{1}\left(K_{2}, U\right)$ using T. Note that T consists of edges of the form ($U \sigma, U \sigma \tau ; \tau$) for $\sigma, \tau \in \Omega_{n}$. We have a generator ($U \alpha, U \alpha \beta ; \beta$) for each edge of K_{2}. Since C^{\prime} is simply connected, we will have $(U \sigma ; U \sigma \tau ; \tau)=1$ in H for $\sigma, \tau \in \Omega_{n}$. Taking $\sigma=\tau$ in (2.2) (and using the fact that

$$
\left.(U \alpha, U \alpha \beta ; \beta)^{-1}=\left(U \alpha \beta, U \beta ; \beta^{-1}\right) \text { in } H \text { for any }(U \alpha, U \alpha \beta ; \beta)\right)
$$

we obtain

$$
\begin{equation*}
(U, U ;(A ; a))=(U \sigma, U \sigma ;(A \sigma ; a \sigma)) \tag{2.3}
\end{equation*}
$$

in H, for all $\sigma \in \Omega_{n}$ and $(A ; a) \in W$. It follows that H is generated by the elements ($U, U ; P$) for $P \in W$. This tells us that H is generated by the set W, and that the 2-cells (2.1), interpreted as relations on W, merely give us
back the relations Q1-Q4. Any other relation arising in our presentation will be an instance of a relation arising from the 2-cells (2.1). Using (2.3) (and interpreting $(U, U ;(A ; a))$ as being $(A ; a)$), this will yield a relation on the generating set W. However, it is clear that the relation obtained will actually be an instance of one of Q1-Q4 (essentially because in Aut F_{n} we have $\boldsymbol{\sigma} W \boldsymbol{\sigma}^{-1}=W$ for all $\sigma \in \Omega_{n}$, and the set $\mathrm{Q}=\mathrm{Q} 1 \cup \mathrm{Q} 2 \cup Q 3 \cup Q 4$ is closed under conjugation by $\sigma \in \Omega_{n}$).

Thus we have established that H has presentation $\langle W ; Q\rangle$. To obtain the presentation of the theorem, we proceed as follows:

From Q2 we have

$$
\begin{equation*}
\left(x_{i_{1}}, \ldots, x_{i_{r}} ; x_{k}\right)=\left(x_{i_{1}} ; x_{k}\right)\left(x_{i_{2}} ; x_{k}\right) \ldots\left(x_{i_{r}} ; x_{k}\right), \tag{2.4}
\end{equation*}
$$

and it follows from Q1 that H is generated by the $\left(x_{i} ; x_{j}\right)$. Starting with the presentation $\langle S ; Z\rangle$, it is clear that if we define $\left(x_{i}, \ldots, x_{i} ; x_{k}\right)$ by (2.4) and define $\left(x_{i_{1}}, \ldots, x_{i} ; x_{k}^{-1}\right)$ to be $\left(x_{i}, \ldots, x_{i} ; x_{k}\right)^{-1}$, we can then recover the relations Q2 and Q3. It only remains then to show, with these definitions, that Q4 holds. We may clearly assume in Q 4 that $\epsilon=\eta=1$. We thus consider

$$
\begin{aligned}
L & =\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n} ; x_{i}\right)\left(x_{j_{1}}, \ldots, x_{j} ; x_{k}\right) \\
& \times\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n} ; x_{i}\right)^{-1} .
\end{aligned}
$$

Using $Z 2$, we have in $\langle S, Z\rangle$,

$$
\begin{aligned}
L & =\left(x_{j_{1}}, \ldots, x_{j_{r}}, x_{k} ; x_{i}\right)\left(x_{j_{i}}, \ldots, x_{j_{r}} ; x_{k}\right)\left(x_{j_{1}}, \ldots, x_{j_{r}}, x_{k} ; x_{i}\right)^{-1} \\
& =\left(x_{j_{2}}, \ldots, x_{j_{r}} ; x_{i}\right)\left(x_{k} ; x_{i}\right)\left(x_{j_{1}} ; x_{i}\right) \\
& \times\left(x_{j_{1}} ; x_{k}\right)\left(x_{j_{2}}, \ldots, x_{j_{r}} ; x_{k}\right)\left(x_{j_{1}}, \ldots, x_{j_{r}}, x_{k} ; x_{i}\right)^{-1} \\
& =\left(x_{j_{2}}, \ldots, x_{j_{r}} ; x_{i}\right)\left(x_{j_{1}} ; x_{k}\right)\left(x_{k} ; x_{i}\right)\left(x_{j_{1}} ; x_{i}\right) \\
& \times\left(x_{j_{2}}, \ldots, x_{j_{r}} ; x_{k}\right)\left(x_{j_{1}}, \ldots, x_{j_{r}}, x_{k} ; x_{i}\right)^{-1}
\end{aligned}
$$

(using Z3)

$$
\begin{aligned}
& =\left(x_{j_{i}} ; x_{k}\right)\left(x_{j_{2}}, \ldots, x_{j_{r}}, x_{k} ; x_{i}\right)\left(x_{j_{2}}, \ldots, x_{j_{r}} ; x_{k}\right) \\
& \times\left(x_{j_{2}}, \ldots, x_{j_{r}}, x_{k} ; x_{i}\right)^{-1}
\end{aligned}
$$

and it follows, by induction on r, that

$$
L=\left(x_{j_{1}}, \ldots, x_{j_{r}} ; x_{k}\right)
$$

in $\langle S, Z\rangle$, as required. Thus the theorem is established.
Remark 1. Let Γ be the set of all n-tuples of F_{n}, and let $\alpha \in$ Aut F_{n}. The Nielsen transformation $\bar{\alpha}$ corresponding to α is defined to be the element of the symmetric group $S(\Gamma)$ on Γ given by

$$
\bar{\alpha}\left\{u_{1}, \ldots, u_{n}\right\}=\left\{w_{1}\left(u_{1}, \ldots, u_{n}\right), \ldots, w_{n}\left(u_{1}, \ldots, u_{n}\right)\right\}
$$

where

$$
\left(x_{i}\right) \alpha=w_{i}\left(x_{1}, \ldots, x_{n}\right)(1 \leqq i \leqq n) .
$$

It is then easy to check that $\overline{\alpha \beta}=\bar{\alpha} \bar{\beta}$, and that we obtain an isomorphism of Aut F_{n} with a subgroup of $S(\Gamma)$ (note that we apply elements of $S(\Gamma)$ on the left, and elements of Aut F_{n} on the right, unlike the convention of [3] pp. 129-131, where an anti-isomorphism is obtained). This isomorphism then induces an isomorphism from H to the group H_{1}.

References

1. S. P. Humphries, On weakly distinguished bases and free generating sets of free groups, Quart. J. Math. Oxford (2) 36 (1985), 215-219.
2. R. Lyndon and P. E. Schupp, Combinatorial group theory (Springer, 1977).
3. W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory (Wiley, 1966).
4. J. McCool, A presentation for the automorphism group of a free group of finite rank, J. Lond. Math. Soc. (2) 8 (1974), 259-266.
5. -_Some finitely presented subgroups of the automorphism group of a free group, J. of Alg. 35 (1975), 205-213.

University of Toronto, Toronto, Ontario

[^0]: Received July 25, 1985. This research was supported by a grant from the Natural Science and Engineering Research Council of Canada.

