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Higher semiadditive algebraic K-theory and redshift

Shay Ben-Moshe and Tomer M. Schlank

Abstract

We define higher semiadditive algebraic K-theory, a variant of algebraic K-theory
that takes into account higher semiadditive structure, as enjoyed for example by the
K(n)- and T(n)-local categories. We prove that it satisfies a form of the redshift
conjecture. Namely, that if R is a ring spectrum of height ≤ n, then its semiaddi-
tive K-theory is of height ≤ n + 1. Under further hypothesis on R, which are satisfied
for example by the Lubin–Tate spectrum En, we show that its semiadditive alge-
braic K-theory is of height exactly n + 1. Finally, we connect semiadditive K-theory
to T(n + 1)-localized K-theory, showing that they coincide for any p-invertible ring
spectrum and for the completed Johnson–Wilson spectrum Ê(n).

1. Introduction

1.1 Overview
1.1.1 Descent and redshift. Algebraic K-theory K: Catst → Sp is a rich invariant of sta-

ble ∞-categories and thus of rings and ring spectra. Ausoni and Rognes [AR02, AR08]
suggested a fascinating program concerning the interaction between algebraic K-theory and
the chromatic filtration on spectra, now known as the redshift philosophy. Namely, that
algebraic K-theory increases the chromatic height of ring spectra by 1. They demonstrated
this phenomenon at height 1, and conjectured that it persists to arbitrary heights. Another
interesting aspect of algebraic K-theory is its descent properties. For example, it is known
by [TT90] that it satisfies Nisnevich descent for ordinary rings, while it fails to satisfy
étale descent due to its failure to satisfy Galois descent. The recent breakthroughs of
[CMNN20, LMMT20] have shown that chromatically localized K-theory does satisfy Galois
descent under certain hypotheses, which was used to prove the following part of the redshift
conjecture.

Theorem 1.1 [CMNN20, Theorem A]. Let R ∈ CAlg(Sp) and n ≥ 0. If LT(n)R = 0, then
LT(n+1)K(R) = 0.

In addition, Hahn and Wilson [HW22] and Yuan [Yua21] give the first examples of non-
vanishing of T(n + 1)-localized K-theory for ring spectra of chromatic height n, at arbitrary
heights n ≥ 0. Building on this, Burklund, Yuan, and the second author [BSY22] have recently
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proved the non-vanishing of T(n + 1)-localized K-theory for all commutative ring spectra of
chromatic height n.

1.1.2 Higher semiadditivity. Hopkins and Lurie [HL13, Theorem 5.2.1] and Carmeli,
Yanovski, and the second author [CSY22, Theorem A] proved that the chromatically local-
ized ∞-categories SpK(n) and SpT(n) (respectively) are ∞-semiadditive. Namely, that there is a
canonical natural equivalence between limits and colimits indexed by π-finite spaces (i.e. spaces
with finitely many connected components and finitely many non-zero homotopy groups all of
which are finite). In this paper, we will only make use of p-typical higher semiadditivity, that
is, relaxing the condition to π-finite p-spaces (i.e. π-finite spaces whose homotopy groups are all
p-groups), which we thus simply call higher semiadditivity.

Harpaz [Har20] studied the connection between ∞-semiadditivity and ∞-commutative
monoids. Recall that a (0-)commutative monoid is, roughly speaking, the structure of summa-
tion of finite families of elements (in a coherently associative and commutative way). Similarly, a
(p-typical) ∞-commutative monoid is, roughly speaking, the structure of ‘integration’ of fami-
lies of elements indexed by a π-finite p-space (in a coherently associative and commutative way).
More precisely, given an ∞-category C, the ∞-category of (p-typical) ∞-commutative monoids in
C is defined to be CMon(p)

∞ (C) = Funseg(Span(S(p)
π-fin)

op, C), the full subcategory of those functors
from spans of π-finite p-spaces that satisfy the ∞-Segal condition. In [Har20, Corollary 5.19] and
[CSY21a, Proposition 5.3.1] it is shown that the property of being a (p-typically) ∞-semiadditive
presentable ∞-category is classified by the mode CMon(p)

∞ (S) of ∞-commutative monoids in
spaces.1 That is, a presentable ∞-category C is ∞-semiadditive if and only if it admits a (nec-
essarily unique) module structure over CMon(p)

∞ (S) in PrL. Furthermore, any object X ∈ C in
an ∞-semiadditive presentable ∞-category C is canonically endowed with the structure of an
∞-commutative monoid, that is, there is an equivalence C ∼−→ CMon(p)

∞ (C).
Using this ∞-commutative monoid structure, [CSY21a, Definition 3.1.6] introduces the semi-

additive height of an object X ∈ C, denoted by ht(X). The notion of semiadditive height,
which is defined in arbitrary ∞-semiadditive ∞-categories, is related to the chromatic height.
For example, all objects of SpK(n) and SpT(n) are of semiadditive height n by [CSY21a,
Theorem 4.4.5].

A particularly interesting example of an ∞-semiadditive presentable ∞-category, which is
studied in [CSY21a], is the mode classifying the property of being a p-local stable ∞-semiadditive
presentable ∞-category, צ = CMon(p)

∞ (Sp(p)), consisting of (p-typical) ∞-commutative monoids
in p-local spectra (see Definition 4.11). By construction, there is a canonical map of modes
(−)gpc : CMon(p)

∞ (S) → ,צ which we call the group-completion. In addition, there is a canonical
map of modes Lצ

T(n) : צ → SpT(n), which by [CSY21a, Corollary 5.5.14] is a smashing localization,
and in particular has a fully faithful right adjoint.

Another important example of an ∞-semiadditive presentable ∞-category is Catπ-fin, con-
sisting of ∞-categories admitting colimits over all π-finite p-spaces (see [Har20, Theorem 5.23]
and [CSY21a, Proposition 2.2.7]). As an ∞-semiadditive ∞-category, its objects, which are them-
selves ∞-categories, can have a semiadditive height. In addition, there is an interplay between
the semiadditive height of objects in an ∞-semiadditive ∞-category and the semiadditive height
of the ∞-category itself as an object of Catπ-fin, which we view as the crucial step at which
redshift happens.

1 The cited papers work in the non p-typical case, but the same proofs work for the p-typical case.
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Theorem 1.2 (Semiadditive redshift [CSY21a, Theorem B]). Let C be an ∞-semiadditive
∞-category, then ht(X) ≤ n for all X ∈ C if and only if ht(C) ≤ n + 1 as an object of
Catπ-fin.

1.1.3 Higher semiadditive algebraic K-theory of categories. In this paper we study the con-
fluence of the above ideas. As Catπ-fin is itself ∞-semiadditive, the ∞-categories therein admit
a canonical structure of ∞-commutative monoids, called the ∞-cocartesian structure, via the

equivalence Catstπ-fin

(−)�−−−→ CMon(p)
∞ (Catstπ-fin), where the integration of a family of objects is

given by their colimit. We observe that the S•-construction preserves limits, thus it preserves
∞-commutative monoid structure. This observation along with the group-completion functor
described above lead us to the main definition of the present paper. By analogy with the definition
of ordinary algebraic K-theory, in Definition 6.5 we define ∞-semiadditive algebraic K-theory
K[∞] : Catstπ-fin → צ as the composition

Catstπ-fin

(−)�−−−→ CMon(p)
∞ (Catstπ-fin)

S•−→ CMon(p)
∞ (S)Δ

op (−)gpc

−−−−→ Δopצ |−|−−→ צ Ω−→ .צ

It is immediate from this definition that K[∞] is ∞-semiadditive, i.e. preserves (co)limits indexed
by π-finite p-spaces.

We give a second construction of K[∞] which connects it to ordinary algebraic K-theory. We
show that K[∞](C) is obtained by taking the ∞-cocartesian structure on C, applying ordinary
algebraic K-theory level-wise, and forcing the result to satisfy the ∞-Segal condition. More
precisely, we define the functor K[∞] : Catstπ-fin → Fun(Span(S(p)

π-fin)
op, Sp(p)) by the composition

Catstπ-fin

(−)�−−−→ CMon(p)
∞ (Catstπ-fin) ⊂ Fun

(
Span(S(p)

π-fin)
op, Catstπ-fin

) K◦−−−−→ Fun
(
Span(S(p)

π-fin)
op, Sp(p)

)
,

and construct a natural transformation K[∞] ⇒ K[∞]. Then, in Corollary 6.10 we show that after

reflecting to the subcategory צ ⊂ Fun(Span(S(p)
π-fin)

op, Sp(p)) of functors satisfying the ∞-Segal
condition, the map becomes an equivalence LsegK[∞](C) ∼−→ K[∞](C) ∈ .צ Note that evaluation

of the original map at ∗ ∈ S
(p)
π-fin gives a comparison map K(C) → K[∞](C) ∈ Sp(p).

Using the second construction of K[∞] and the lax symmetric monoidal structure on ordinary
algebraic K-theory, in Theorem 6.18 we endow K[∞] with a lax symmetric monoidal structure.
To that end, we prove certain results about Day convolution and its connection to the mode
symmetric monoidal structure on CMon(p)

∞ (S) (see Theorem 4.26).
Similar constructions can be carried in the (p-typically) m-semiadditive context, for any

0 ≤ m ≤ ∞. We define an m-semiadditive version of algebraic K-theory K[m] : Catstm-fin → [m]צ

from the ∞-category of stable ∞-categories admitting colimits indexed by m-finite p-spaces
to the universal p-local stable (p-typically) m-semiadditive presentable ∞-category. The case
m = ∞ is K[∞] : Catstπ-fin → צ mentioned above. The case m = 0 reproduces the p-localization of
ordinary algebraic K-theory by Example 6.6. The case m = 1 is closely related to equivariant
algebraic K-theory. In equivariant algebraic K-theory, given finite groups H < G, there is a
corresponding transfer map. Assuming H and G are p-groups, BH → BG is a map of 1-finite
p-spaces, which gives an integration operation on K[1](C) for C ∈ Catst1-fin, arising from the left Kan
extension CBH → CBG, which reproduces the transfer map on equivariant algebraic K-theory.
Thus, K[1] is essentially obtained from equivariant algebraic K-theory by forcing the 1-Segal
condition.
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1.1.4 Higher semiadditive algebraic K-theory of algebras. The above discussion gives the
definition of the ∞-semiadditive algebraic K-theory of ∞-categories in Catstπ-fin. One rich source
of such ∞-categories is the ∞-category LModR for an algebra R ∈ Alg(צ). However, even though
this ∞-category is stable and has all colimits indexed by π-finite p-spaces, it is too large. In order
to avoid the Eilenberg swindle, one has to pass to a smaller ∞-category, which still enjoys these
properties. We show that passing to the left dualizable modules gives LModldbl

R ∈ Catstπ-fin, leading
us to define

K[∞](R) = K[∞](LModldbl
R ).

Recall that Lצ
T(n) : צ → SpT(n) is a smashing localization, so that if R ∈ SpT(n), then the

∞-categories of modules in צ and in SpT(n) coincide. We generalize the passage from all mod-
ules to the left dualizable modules, and make it into a lax symmetric monoidal functor, via
the theory of atomic objects, as explained later in the introduction. This allows us to endow
K[∞] : Alg(צ) → צ with a lax symmetric monoidal structure.

1.1.5 Redshift. Recall that K[∞] is an ∞-semiadditive functor. As ∞-semiadditive functors
can only decrease semiadditive height, we immediately get that if C ∈ Catstπ-fin has ht(C) ≤ n
as an object of Catstπ-fin, then ht(K[∞](C)) ≤ n (see Proposition 7.7). Evidently, this does not
exhibit the increase in height postulated by the redshift philosophy. Instead, the increase in
height happens at the stage of categorification, turning from considering the height of objects to
the height of their ∞-category, as in Theorem 1.2. Using Theorem 1.2 and Proposition 7.7 we
deduce our first main result.

Theorem A (Theorem 7.12). Let R ∈ Alg(צ) have ht(R) ≤ n and let m > n, then

ht(K[m](R)) ≤ n + 1.

To give a lower bound on the height, we make use of the higher height analogues of cyclotomic
extensions defined in [CSY21b, Definition 4.7]. Recall that for R ∈ Alg(צ) of ht(R) = n, there
is a ((Z/p)×-equivariant) splitting of algebras R[BnCp] ∼= R × R[ω(n)

p ], where R[ω(n)
p ] is called

the (height n) p-cyclotomic extension of R, which generalizes ordinary cyclotomic extensions at
height 0 (i.e. for algebras over the rationals). We say that R has (height n) pth roots of unity if the
cyclotomic extension splits as a product R[ω(n)

p ] ∼= ∏
(Z/p)× R (see Definition 7.17). For example,

by [CSY21b, Proposition 5.1], the Lubin–Tate spectrum En has (height n) pth roots of unity. For
such R, we get an equivalence of R-modules R[BnCp] ∼= Rp, from which we immediately deduce
the following strengthening of Theorem A.

Theorem B (Theorem 7.25). Let R ∈ Alg(צ) of ht(R) = n have (height n) pth roots of unity
and let m > n, then

ht(K[m](R)) = n + 1.

In particular, ht(K[m](En)) = n + 1.

A natural question left open is the following.

Question 1.3. Can the assumption of having (height n) pth roots of unity be dropped? Namely,
is it true that if R ∈ Alg(צ) is of height n, then K[m](R) is of height exactly n + 1?

1.1.6 Relationship to chromatically localized K-theory. As we have seen in Theorems A and B,
K[m] satisfies a form of the redshift conjecture with respect to semiadditive height. A natural next
direction is connecting these results to ordinary algebraic K-theory and the chromatic height.
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Let R ∈ Alg(SpT(n)). The inclusion SpT(n+1) ⊂ Sp admits a left adjoint LT(n+1) : Sp → SpT(n+1).
Since K(R) ∈ Sp, we can consider LT(n+1)K(R) ∈ SpT(n+1). Similarly, there is an inclusion

SpT(n+1) ⊂ ,[m]צ which admits a left adjoint Lצ[m]

T(n+1) : [m]צ → SpT(n+1). Since K[m](R) ∈ ,[m]צ

we can consider Lצ[m]

T(n+1)K
[m](R) ∈ SpT(n+1). The comparison map between ordinary algebraic

K-theory and higher semiadditive algebraic K-theory yields a comparison map2

LT(n+1)K(R) → Lצ[m]

T(n+1)K
[m](R) ∈ SpT(n+1).

This raises two independent questions.

(1) Does K[m](R) land in SpT(n+1) ⊂ ?[m]צ
(2) Is the comparison map an equivalence?

A positive answer to both questions will imply that K[m](R) ∼= LT(n+1)K(R) (see
Conjecture 1.4). The first question is closely related to the Quillen–Lichtenbaum conjecture for
R, in the guise of having a non-zero finite spectrum X such that K(R) ⊗ X is bounded above,
as we show in Proposition 8.4. The second question is equivalent to LT(n+1)K[m](R) satisfying
the m-Segal condition. More informally, having descent properties for chromatically localized
K-theory.

Using the Galois descent results for T(n + 1)-localized K-theory of [CMNN20], this sec-
ond question is answered in the affirmative for m = 1 in Proposition 8.6. In our work with
Carmeli and Yanovski [BCSY23] we show that the descent result for chromatically localized
K-theory generalizes from finite p-groups to arbitrary π-finite p-spaces. This would give a positive
answer to the second question for every m ≥ 1.

Next, we focus on the case of height 0, answering both question in the affirmative in complete
generality. Using the Quillen–Lichtenbaum property of S[p−1] together with Galois descent we
obtain the following.

Theorem C (Theorem 8.10). Let R ∈ Alg(Sp[p−1]) and let m ≥ 1, then

K[m](R) ∼= LT(1)K(R).

In particular, K[m](Q) ∼= KUp.

Finally, we study the completed Johnson–Wilson spectrum Ê(n) at height n ≥ 1. In [HW22],
Hahn and Wilson produced an E3-algebra structure on BP〈n〉, for which they have proven
a version of the Quillen–Lichtenbaum conjecture. This structure also endows Ê(n) with an E3-
algebra structure. Using their Quillen–Lichtenbaum result, along with a comparison of two direct
computations of the higher commutative monoid structure on K[m](Ê(n)), we obtain the following
strengthening of Theorem B for Ê(n)-algebras. We would like to thank the anonymous referee
for suggesting crucial parts of the proof of this result.

Theorem D (Theorem 8.23). Let R ∈ Alg(LMod
Ê(n)

) where Ê(n) is endowed with the

Hahn–Wilson E3-algebra structure, and let m ≥ 1, then

K[m](R) ∈ SpT(n+1).

Using Galois descent for chromatically localized K-theory from [CMNN20] as mentioned
above, we immediately get the following result at m = 1.

2 Note that the source of the comparison map is simply Lצ[m0]

T(n+1)K
[m0](R) for m0 = 0. Namely, the comparison

map is the comparison map of two different levels of semiadditivity.

241

https://doi.org/10.1112/S0010437X23007595 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007595


S. Ben-Moshe and T. M. Schlank

Theorem E (Corollary 8.24). Let R ∈ Alg(LMod
Ê(n)

) where Ê(n) is endowed with the

Hahn–Wilson E3-algebra structure, then

K[1](R) ∼= LT(n+1)K(R).

In particular, K[1](Ê(n)) ∼= LT(n+1)K(Ê(n)).

As mentioned above, our work with Carmeli and Yanovski [BCSY23] implies that Theorem E
generalizes to m-semiadditive K-theory for any m ≥ 1. This generalization, along with
Theorem C answering the case of height 0, lead us to conjecture the following.

Conjecture 1.4. For any R ∈ Alg(SpT(n)) and m ≥ 1 we have

K[m](R) ∼= LT(n+1)K(R).

We would like to highlight two interesting phenomena exemplified by Theorems C and E.
First, higher semiadditive algebraic K-theory lands in the highest non-zero height predicted by
the redshift conjecture, without forcing it be in a pure height from the outside. Second, algebraic
K-theory can be modified to have a higher commutative monoid structure in two ways: either by
chromatically localizing it from the outside, or by internally remembering the higher commutative
monoid structure on the input ∞-category. These results show that these two a priori distinct
objects coincide, at least in some cases. This identification gives different approaches to study
the higher commutative monoid structure, similarly to the proof of Theorem D itself.

1.1.7 Atomic objects and a monoidal natural Yoneda. Recall that in the construction of
the higher semiadditive algebraic K-theory of R ∈ Alg(צ) described above, we passed to the
left dualizable objects. In order to study the functoriality of this construction in R, as well as
to generalize the construction to stable ∞-semiadditive presentable ∞-categories other than
∞-categories of modules, we define and study M-atomic objects for any mode M (see
Definition 2.3). One of our main results is that M-atomic objects indeed coincide with
left dualizable objects in left modules, i.e. LModat

R = LModldbl
R for any R ∈ Alg(M) (see

Proposition 2.54). Another direction of generalization is the case M = Sp, where Sp-atomic
objects coincide with compact objects. We also show that for any absolute limit of M, the
M-atomic objects are closed under Iop-shaped colimits (see Proposition 2.24). These two results
are then applied in Proposition 4.15 to show that for R ∈ Alg(צ), we have LModldbl

R ∈ Catstm-fin,
so that it can be used as an input to higher semiadditive algebraic K-theory.

Another key result is the strong connection between the functor PM taking M-valued
presheaves and the functor taking M-atomic objects. Let ModiL

M denote the subcategory of PrL

consisting of ∞-categories in the mode M and internally left adjoint functors (that is, left adjoint
functors whose right adjoint admits a further right adjoint), which inherits a symmetric monoidal
structure from PrL. We then have the following.

Theorem F (Theorem 2.46). There is a symmetric monoidal adjunction

PM: Cat � ModiL
M: (−)M-at,

i.e. PM is symmetric monoidal with a lax symmetric monoidal right adjoint (−)M-at.

Building on the work of Glasman [Gla16] and Haugseng, Hebestreit, Linskens, and
Nuiten [HHLN20, Theorem 8.1] on the Yoneda embedding, the adjunction is constructed
such that the unit is (the factorization through the M-atomic objects of) the Yoneda map
�

M: C0 → PM(C0), reproducing the ordinary Yoneda embedding for M = S. As an immediate
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consequence, we obtain a monoidal and natural version of the Yoneda map for any operad O,
which may be of independent interest.

Theorem G (Corollary 2.47). The Yoneda map �
M: C0 → PM(C0) is O-monoidal and natural

in C0 ∈ AlgO(Cat).

1.2 Organization
In § 2, we develop the notion of M-atomic objects in a presentable ∞-category in the mode M.
We study the connection between M-atomic objects and M-valued presheaves, and leverage
this connection to endow the functor taking the M-atomic objects with a lax symmetric
monoidal structure. As a byproduct, we obtain a monoidal natural version of the Yoneda
map.

In § 3, we recall the universal property of the Day convolution, and study its functoriality in
the source and the target.

In § 4, we recall some facts about (p-typical) (pre-)m-commutative monoids, and study their
multiplicative structure. We observe that the ∞-category of m-commutative monoids can natu-
rally be endowed with two symmetric monoidal structures, and we show that these two structures
coincide.

In § 5, we recall the definition of the higher cocartesian structure, and show that it satisfies
certain expected properties. In particular, we show that tensoring a family of objects is indeed
given by their colimit.

In § 6, we define m-semiadditive algebraic K-theory using the tools developed in the pre-
vious sections, and study its properties. We construct it in two different ways, first using the
S•-construction, and second by exhibiting it as the universal way to make ordinary algebraic
K-theory into an m-semiadditive functor. We leverage the second definition of m-semiadditive
algebraic K-theory to endow it with a lax symmetric monoidal structure.

In § 7, we study the interplay between m-semiadditive algebraic K-theory and semiadditive
height. In particular, we show that it can increase the height of rings at most by one. Furthermore,
we show that if the ring has (height n) pth roots of unity, then the height of its m-semiadditive
algebraic K-theory is exactly n + 1.

In § 8, we study the connection between higher semiadditive algebraic K-theory and chro-
matically localized K-theory. We apply the Quillen–Lichtenbaum conjecture and the Galois
descent result for chromatically localized K-theory, to show that the higher semiadditive algebraic
K-theory of p-invertible algebras coincides with their T(1)-localized algebraic K-theory. Finally,
we use the Quillen–Lichtenbaum result for BP〈n〉 to show that the higher semiadditive algebraic
K-theory of Ê(n)-algebras lands in T(n + 1)-local spectra, and that specifically their
1-semiadditive algebraic K-theory coincides with their T(1)-localized algebraic K-theory.

1.3 Conventions
Throughout the paper, we work in the framework of ∞-categories, mostly following the notation
of [Lur09, Lur17]. For brevity, we use the word category to mean an ∞-category. We also generally
follow the notation and terminology of [CSY21a] related to higher semiadditivity, but we diverge
by working exclusively in the p-typical case.

(1) We denote the space of morphisms between two objects X, Y ∈ C by homC(X, Y ) and omit
C when it is clear from the context. If C is D-enriched (e.g. in a mode D = M, or closed
symmetric monoidal D = C), we denote by homD

C (X, Y ) the D-object of morphisms and
omit C when it is clear from the context.
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(2) We say that a space A ∈ S is:
(a) a p-space, if all the homotopy groups of A are p-groups;
(b) m-finite for m ≥ −2, if m = −2 and A is contractible, or m ≥ −1, the set π0A is finite

and all the fibers of the diagonal map Δ: A → A × A are (m − 1)-finite;3

(c) π-finite or ∞-finite, if it is m-finite for some integer m ≥ −2.
(3) For −2 ≤ m ≤ ∞, we denote by S

(p)
m ⊂ S the full subcategory spanned by all m-finite

p-spaces.
(4) We say that a category C is ( p-typically) m-semiadditive if all m-finite p-spaces A ∈ S

(p)
m are

C-ambidextrous.
(5) We denote by Catst ⊂ Cat the subcategory spanned by all stable categories and exact

functors.
(6) For a collection K of indexing categories, we let CatK ⊂ Cat be the subcategory spanned by

all categories admitting all colimits indexed by I ∈ K and functors preserving them.
(7) For −2 ≤ m ≤ ∞, we define Catm-fin = CatK for K = S

(p)
m , and we let Catstm-fin ⊂ Catm-fin

be the subcategory of those categories which are additionally stable and functors which are
additionally exact.

2. Atomic objects

Let M be a mode, that is, an idempotent algebra in PrL (see [CSY21a, § 5] for generalities on
modes). In this section we study M-atomic objects (see Definition 2.3), a finiteness property of
objects in categories C ∈ ModM in the mode M, which generalizes both compactness (for the
case M = Sp, see Proposition 2.8) and dualizability of modules (for the case C = LModR(M),
see Proposition 2.54). The results of this section are subsequently used in Definition 6.20 to
define the higher semiadditive algebraic K-theory of algebras in [m]צ (see Definition 4.11), and
in particular for algebras in SpT(n), including its lax symmetric monoidal structure.

In § 2.1 we give the definition of atomic objects (see Definition 2.3) and study their basic
properties. We show that taking atomic objects is functorial in internally left adjoint functors
(see Definition 2.12). Analogously to the condition of being compactly generated, we study the
condition of being generated under colimits and the action of M from the M-atomic objects, which
we call being M-molecular (see Definition 2.10), and we explain its relationship to internally
left adjoint functors. Lastly, in Proposition 2.24 we show that for any absolute limit I of M

(see Definition 2.18), the atomic objects are closed under Iop-shaped colimits. This yields a
functor (−)at : ModiL

M → CatK where K is any small collection of opposites of absolute limits
of M.

In §§ 2.2 and 2.3 we study the connection between M-atomic objects and M-valued presheaves
(see Definition 2.27), and the multiplicative structure of both functors. The main result of this
section is Theorem 2.46, exhibiting a symmetric monoidal adjunction

PM
K : CatK � ModiL

M: (−)at.

Moreover, the unit of this adjunction is the Yoneda map, and as an immediate consequence,
Corollary 2.47 shows that �M

K : C0 → PM
K(C0) is O-monoidal and natural in C0 ∈ AlgO(CatK),

which may be of independent interest.
Lastly, in § 2.4 we study atomic objects in categories of left modules. In Proposition 2.54 we

show that atomic objects and left dualizable left modules coincide, i.e. LModat
R = LModldbl

R .

3 For m ≥ 0, this is equivalent to A having finitely many components, each of them m-truncated with finite
homotopy groups.
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Remark 2.1. Many of the results of this section can be generalized to modules in PrL over any
presentably monoidal category V ∈ Alg(PrL) and V-linear functors. Parts of these generalizations
were carried out by the first author in [Ben23], building on the works of [GH15, Hin20, Hin23,
Hei23]. The main feature of modes is that being an M-module is a property rather than extra
structure, and that any left adjoint functor is automatically M-linear. As such, working over a
mode simplifies the definitions and proofs, and avoids using enriched category theory. Since this
suffices for our applications in the rest of the paper, we have restricted to this case.

2.1 Atomics and internally left adjoints
Lemma 2.2. Let F : C � D : G be an adjunction with C, D ∈ ModM. Let X ∈ C and Y ∈ D, then
there is an equivalence homM(FX, Y ) ∼= homM(X, GY ) lifting the equivalence hom(FX, Y ) ∼=
hom(X, GY ).

Proof. We prove this using the Yoneda lemma. Let m ∈ M. Recall that F : C → D is a map in
ModM, so that it commutes with m ⊗−, so we conclude that

hom(m, homM(FX, Y )) ∼= hom(m ⊗ FX, Y )
∼= hom(F (m ⊗ X), Y )
∼= hom(m ⊗ X, GY )

∼= hom(m, homM(X, GY )).

The fact that it is a lift of the S-enriched hom is the case m = 1M. �
Definition 2.3. Let C ∈ ModM. An object X ∈ C is called M-atomic, if homM(X,−) : C → M

commutes with colimits. We denote by CM-at ⊆ C the full subcategory of the M-atomic objects.
When the mode is clear from the context, it is dropped from the notation.

Remark 2.4. The definition of atomic objects will be made functorial in Definition 2.17.

Remark 2.5. If X ∈ C is atomic, then homM(X,−) is a left adjoint functor, thus a morphism
in ModM, so that it also commutes with the action of M. That is, for any m ∈ M we have
homM(X,−⊗ m) ∼= homM(X,−) ⊗ m.

Example 2.6. The unit 1M ∈ M is atomic because the functor homM(1M,−) : M → M is the
identity functor and in particular commutes with colimits.

Proposition 2.7. The only S-atomic object in S is the point ∗.
Proof. Let X ∈ Sat be atomic, then for any Y ∈ S we have

hom(X, Y ) ∼= hom(X, colim
Y

∗) ∼= colim
Y

hom(X, ∗) ∼= colim
Y

∗ ∼= Y.

Thus, X corepresents the identity functor id : S → S, namely X = ∗. �
Proposition 2.8. Let C ∈ ModSp be a presentable stable category, then the Sp-atomics are the
compact objects, i.e. CSp-at = Cω.

Proof. Let X ∈ C. First assume that X is atomic. Recall that Ω∞ : Sp → S commutes with
filtered colimits, so that hom(X,−) ∼= Ω∞ homSp(X,−) commutes with filtered colimits, i.e.
it is compact.

Now assume that X is compact. Recall that for any n ∈ Z, the functor Σn : Sp →
Sp commutes with all limits and colimits and in particular with filtered colimits, thus
hom(X, Σn−) ∼= Ω∞Σn homSp(X,−) also commutes with filtered colimits. In addition, the
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functors Ω∞Σn : Sp → S are jointly conservative, implying that homSp(X,−) commutes with
filtered colimits. Furthermore, it commutes with finite limits, thus by stability also with all finite
colimits, which together with filtered colimits generate all colimits. �
Proposition 2.9. Let C ∈ ModM, then Cat ∈ Cat is a small category.

Proof. Let κ be a regular cardinal such that the unit 1M ∈ M is κ-compact. We show that
Cat ⊆ Cκ, that is the atomics are κ-compact. Let X ∈ C be an atomic object, so in particular
homM(X,−) commutes with κ-filtered colimits. Since 1M is κ-compact, hom(1M,−) commutes
with κ-filtered colimits, implying that the composition hom(X,−) ∼= hom(1M, homM(X,−))
commutes with κ-filtered colimits. �
Definition 2.10. Let C ∈ ModM. We say that a collection of atomic objects B ⊆ Cat are
M-atomic generators, if C is generated from B under colimits and the action of M.4 If such B
exists, we say that C is M-molecular.5 If the mode is clear from the context, we call C molecular
and say that B are atomic generators.

Example 2.11. Every mode M is itself M-molecular, because the unit 1M is atomic and any
object m can be written as m ⊗ 1M.6

Definition 2.12. Let C, D ∈ PrL. We say that a functor F : C → D is internally left adjoint if
it is left adjoint in PrL, namely if it is a left adjoint functor and its right adjoint G : D → C is
itself a left adjoint. We denote by FuniL(C, D) ⊆ FunL(C, D) the full subcategory of internally
left adjoint functors. We let ModiL

M be the wide subcategory of ModM with the same objects,
and morphisms the internally left adjoint functors.

Proposition 2.13. Let C, D ∈ ModM, and let F : C → D be an internally left adjoint functor,
then it sends atomic objects to atomic objects.

Proof. By assumption the right adjoint G : D → C is itself a left adjoint, thus preserves
colimits. Let X ∈ Cat be an atomic object, then using Lemma 2.2 homM(FX,−) ∼=
homM(X, G−), which is the composition of G and homM(X,−), both of which preserve colimits,
so that FX is atomic. �
Proposition 2.14. Let C, D ∈ ModM, and let F : C → D be a left adjoint functor. If C is molec-
ular and F sends a collection of atomic generators B ⊂ C to atomic objects in D, then F is
internally left adjoint.

Proof. We wish to show that G, the right adjoint of F , is itself a left adjoint, namely that
it preserves colimits. Let Yi : I → D be a diagram, and we wish to show that G(colim Yi) ∼=
colimGYi. By the Yoneda lemma, this is equivalent to checking that for every X ∈ C we have

hom(X, G(colim Yi)) ∼= hom(X, colimGYi).

Since hom(−,−) ∼= hom(1M, homM(−,−)), it suffices to check that for every X ∈ C we have

homM(X, G(colim Yi)) ∼= homM(X, colimGYi).

4 In a previous version of this paper, B ⊆ Cat was called a collection of atomic generators if they generate C under
colimits (without the action of M). It was later noticed that our proofs work under the new, weaker, assumption.
5 As a result of the weakening of the condition of being atomic generators, the condition of being molecular is
correspondingly weaker.
6 In the previous version it was posed as a question whether every mode is molecular. With the new definition of
atomic generators, this always holds. However, the question whether every mode is generated from atomic objects
under colimits (without the action of M) is still open.
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Let A denote the collection of X ∈ C for which this condition holds, and we shall show that
A = C.

First, for every X ∈ B, we know that

homM(X, G(colim
I

Yi)) ∼= homM(FX, colim
I

Yi)

∼= colim
I

homM(FX, Yi)

∼= colim
I

homM(X, GYi)

∼= homM(X, colim
I

GYi),

where the first and third steps follow from Lemma 2.2, the second step follows from the assump-
tion that FX is atomic since X ∈ B and F sends B to atomic objects, and the fourth step follows
from the fact X is atomic. Therefore, B ⊆ A.

Second, for every X ∈ A and m ∈ M, we know that homM(m ⊗ X,−) ∼= homM(m,
homM(X,−)) so that m ⊗ X ∈ A, i.e. A is closed under the action of M.

Third, for every diagram Xj : J → C landing in A, we know that homM(colimJ Xj ,−) ∼=
limJop homM(Xj ,−) so that colimJ Xj ∈ A, i.e. A is closed under colimits.

We have shown that B ⊆ A and that A is closed under the action of M and colimits, and by
assumption B are atomic generators, thus A = C as needed. �

Recall that for C ∈ ModM we have an equivalence FunL(M, C) ∼−→ C given by evaluation
at 1M. Its inverse sends X ∈ C to the functor −⊗ X : M → C (part of the data admitting C as
an M-module). Furthermore, the right adjoint of −⊗ X : M → C is homM(X,−) : C → M.

Proposition 2.15. Let C ∈ ModM, then the equivalence FunL(M, C) ∼−→ C restricts to an
equivalence FuniL(M, C) ∼−→ Cat. In addition, if X ∈ C and m ∈ M are atomic, then so is
m ⊗ X ∈ C.

Proof. First, by Proposition 2.13 and the fact that the 1M is atomic, the functor indeed lands in
the full subcategory Cat. In particular, it is also fully faithful as the restriction of an equiv-
alence to two full subcategories. We need to show that it is essentially surjective, i.e. that
if X ∈ Cat then −⊗ X : M → C is internally left adjoint. This holds since its right adjoint is
homM(X,−) : C → M, which by assumption preserves colimits.

For the last part, as −⊗ X : M → C is internally left adjoint, Proposition 2.13 implies that
it sends atomic objects to atomic objects. �

Remark 2.16. In Corollary 2.48 we extend the last part of the proposition to show that, in fact,
Cat is a module over Mat.

In light of this proposition, we construct the functor of taking atomics functorially. We also
recall from Proposition 2.9 that Cat is a small category.

Definition 2.17. We define the functor (−)at : ModiL
M → Cat by (−)at = FuniL(M,−).

Definition 2.18. Let I be an indexing category. We say that I is an absolute limit of M if for
any C ∈ ModM, I-shaped limits in C commute with colimits.

Remark 2.19. The term absolute limit is usually used in the context of enriched categories, saying
that I is an absolute limit of V ∈ Mon(Cat) if any V-enriched functor commutes with I-shaped
limits. We will not use this condition in this paper, but for the convenience of the reader we
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remark on the connection between this condition and the one appearing in Definition 2.18 when
V is a mode.

Assume that I is an absolute limit in the ordinary sense, namely that V-enriched func-
tors commute with I-shaped limits. Let C ∈ ModV. For any indexing category J consider
colimJ : CJ → C. This functor commutes with colimits, and since V is a mode, it is a morphism
in ModV, so, as referred to in Remark 2.1, it is canonically V-enriched, and therefore commutes
with I-shaped limits. This holds for any J , meaning that I-shaped limits in C commute with
colimits, reproducing Definition 2.18.

The implication in the other direction should follow from a working theory of enriched left
Kan extensions and their compatibility with the enriched Yoneda embedding, which we are
unaware of a reference for.

Lemma 2.20. If I is an absolute limit of M and M → N is map of modes, then I is an absolute
limit of N as well.

Proof. This is immediate from the fact that ModN ⊆ ModM. �
Lemma 2.21. Let I be an absolute limit of M, and C ∈ ModM. Then m ⊗− : C → C commutes
with I-shaped limits, for any m ∈ M.

Proof. By assumption, limI : CI → C commutes with colimits. Therefore, it is a map in ModM,
so that it also commutes m ⊗− : C → C for any m ∈ M. �
Proposition 2.22. Let I be an absolute limit of M, then for any C ∈ ModM, the atomics
Cat ⊂ C are closed under Iop-shaped colimits.

Proof. Let Xi : Iop → C be a diagram landing in the atomics. Recall that homM(−,−) : Cop ×
C → M commutes with limits in the first coordinate, thus homM(colimIop Xi,−) is equivalent to

C
Δ−→ CIop (homM(Xi,−))I−−−−−−−−−−→ MI limI−−→ M.

The functor Δ commutes with colimits since colimits in functor categories are computed level-
wise. Since each Xi is atomic, each homM(Xi,−) commutes with colimits, and as colimits in
functor categories are computed level-wise, we get that (homM(Xi,−))I commutes with colimits.
By assumption, I is an absolute limit of M, thus limI commutes with colimits. This shows
that homM(colimIop Xi,−) commutes with colimits, i.e. that colimIop Xi is indeed atomic. �
Remark 2.23. Let F : C → D be an internally left adjoint functor, and let I be an absolute limit
of M. Then F preserves colimits, and the atomics are closed under Iop-shaped colimits, so that
the induced functor between the atomics preserves Iop-shaped colimits.

The following claim immediately follows.

Proposition 2.24. Let K ⊂ {Iop | I absolute limit of M} be a collection of opposites of abso-
lute limits of M, then the functor of taking atomics (−)at : ModiL

M → Cat factors through
CatK.

Proposition 2.25. Let M be a stable mode, then all finite categories are absolute limits.
Furthermore, for any C ∈ ModM, CM-at is a stable subcategory of C.

Proof. Recall that C itself is stable, so the first part follows from the commutativity of finite
limits and colimits in stable categories. For the second part, first note that the zero object is
obviously atomic. As finite limits are absolute, the atomics are closed under finite colimits, so it
suffices to show that the atomics are also closed under desuspensions. Let X ∈ CM-at, then indeed
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homM(Σ−1X,−) ∼= Σ homM(X,−) is colimit preserving, because X is atomic and Σ: M → M is
colimit preserving. �

Proposition 2.26. Let F : M → N be a smashing localization of modes (see [CSY21a,
Definition 5.1.2]), and let C ∈ ModN. Then the N-atomics coincide with the M-atomics, that
is CN-at = CM-at.

Proof. By [CSY21a, Proposition 5.2.15], the localization is smashing if and only if the right
adjoint of F : M → N is itself a left adjoint (i.e. if F is internally left adjoint). This allows us
to treat N as a full subcategory of M closed under both limits and colimits. Now, [CSY21a,
Proposition 5.2.10] shows that N classifies the property of being in the mode M such that
all M-enriched hom’s land in N, i.e. homM(X,−) = homN(X,−), thus by the closure of N ⊆ M

under colimits, homM(X,−) : C → M commutes with colimits if and only if homN(X,−) : C → N

does. �

2.2 Atomics and presheaves
Throughout this subsection, let K ⊂ {Iop | I absolute limit of M} be some small collection of
opposites of absolute limits of M (not necessarily all of them, for instance, K is allowed to be
empty). We also let Kop = {I | Iop ∈ K} be the collection of all of the opposite categories.

Definition 2.27. For C0 ∈ Cat, we define the category of M-valued presheaves by PM(C0) =
Fun(Cop

0 , M). If C0 ∈ CatK, we let PM
K(C0) = FunKop

(Cop
0 , M) be the full subcategory of PM(C0)

on those functors that preserve all limits indexed by I ∈ Kop, namely functors F : C
op
0 → M that

send Iop-shaped colimits in C0 to I-shaped limits in M.

Remark 2.28. The definition will be made functorial in Definition 2.34.

For the case M = S, [GHN17, Lemma 10.6] shows that PK(C0) is presentable. From this we
deduce the following.

Proposition 2.29. There is an equivalence PM
K(C0) ∼= PK(C0) ⊗ M, and in particular it is

presentable and in the mode M.

Proof. Indeed, we have an equivalence

PK(C0) ⊗ M ∼= FunR(PK(C0)op, M)

∼= FunL(PK(C0), Mop)op

∼= FunK(C0, M
op)op

∼= FunKop
(Cop

0 , M)

= PM
K(C0),

where the first equality is [Lur17, Proposition 4.8.1.17], the second is passing to the opposite,
the third is the universal property of PK given in [Lur09, Corollary 5.3.6.10], the fourth is by
passing to the opposite, and the last is by definition. �

Lemma 2.30. Let C0 ∈ CatK, then PM
K(C0) ⊆ PM(C0) is closed under limits and colimits, thus

the inclusion has both adjoints.

Proof. Let Fj : J → PM(C0) be a diagram landing in PM
K(C0). We need to show that colimJ Fj

and limJ Fj are again in PM
K(C0), i.e. that they commute with all limits indexed by I ∈ Kop.

Let Xi : Iop → C0 be a diagram. Using the fact that colimits and limits in functor categories are
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computed level-wise, and that I is an absolute limit, we get

colim
J

Fj(colim
Iop

Xi) ∼= colim
J

lim
I

Fj(Xi) ∼= lim
I

colim
J

Fj(Xi).

Similarly limJ Fj ∈ PM
K(C0), since limits commute with limits. �

Definition 2.31. Let C0 ∈ CatK. We denote by LK : PM(C0) → PM
K(C0) the (internally) left

adjoint of the inclusion PM
K(C0) ⊆ PM(C0).

Lemma 2.32. For f : C0 → D0, a morphism in CatK, the restriction of f∗ : PM(D0) → PM(C0)
to PM

K(D0) lands in PM
K(C0).

Proof. Recall that f∗ is given by pre-composition with fop : C
op
0 → D

op
0 , which preserves limits

indexed by I ∈ Kop, as the opposite of a morphism in CatK. �

Lemma 2.33. For f : C0 → D0 a morphism in CatK, the functor f∗ : PM
K(D0) → PM

K(C0)
preserves all limits and colimits and thus has a right adjoint f∗ and a left adjoint f!.

Proof. By Lemma 2.30, PM
K(C0) is closed under limits and colimits in PM(C0), which are thus

computed level-wise, and similarly for D0. Therefore, we get

f∗(colim
I

Fi)(c) = (colim
I

Fi)(fc) ∼= colim
I

Fi(fc) = colim
I

f∗Fi(c) ∼= (colim
I

f∗Fi)(c),

showing that f∗ commutes with colimits, and similarly for limits. �

Lemma 2.32 shows that the functor Fun((−)op, M) : Catop
K → Ĉat, sending C0 to PM(C0) and

f to f∗, has a subfunctor FunKop
((−)op, M) : Catop

K → Ĉat sending C0 to PM
K(C0) and f to f∗.

By Proposition 2.29, the categories PM
K(C0) are in the mode M, and by Lemma 2.33, the

morphism f∗ is a right adjoint, so that the functor factors as FunKop
((−)op, M) : Catop

K → PrR.

Definition 2.34. We define the functor PM
K : CatK → ModM by passing to the left adjoints in

FunKop
((−)op, M) : Catop

K → PrR, that is the functor sending C0 to PM
K(C0) and f : C0 → D0 to

f! : PM
K(C0) → PM

K(D0).

Proposition 2.35. The functor PM
K : CatK → ModM lands in ModiL

M.

Proof. Lemma 2.33 shows that f! : PM
K(C0) → PM

K(D0) is internally left adjoint. �

Proposition 2.36. There is a natural transformation LK : PM ⇒ PM
K of functors CatK →

ModM, making the construction of Definition 2.31 natural.

Proof. Since FunKop
((−)op, M) : Catop

K → PrR is a subfunctor of Fun((−)op, M) : Catop
K → PrR,

there is a natural transformation from the former to the latter given by the inclusion. Applying
[Lur17, Corollary 4.7.4.18 (3)] for S = Catop

K (and considering our functors as landing in Ĉat)
shows that by passing to the left adjoints in the target and in the natural transformation, we
obtain a natural transformation LK : PM ⇒ PM

K . Indeed, LK was defined in Definition 2.31 as
the left adjoint of the inclusion. �

Definition 2.37. We define the Yoneda map �M
K : C0 → PM

K(C0) as the composition

C0
�−→ P(C0) → P(C0) ⊗ M ∼= PM(C0)

LK−−→ PM
K(C0),

where � is the ordinary Yoneda embedding, and the second map is given by tensoring with the
unit map S → M.
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Remark 2.38. Generally, the Yoneda map �M
K : C0 → PM

K(C0) is not fully faithful. For exam-
ple, in the case where K = ∅ and C0 = ∗, the map is �M

K : ∗ → M, which induces hom(∗, ∗) →
hom(1M,1M) that is usually not an equivalence.

Proposition 2.39. The Yoneda map can be upgraded to a natural transformation �
M
K : ιK ⇒

PM
K from the inclusion ιK : CatK → Cat → Ĉat to CatK

PM
K−−→ PrL → Ĉat.

Proof. The natural transformation is obtained by the following diagram.

Here � : ι ⇒ P is the ordinary Yoneda natural transformation constructed in [HHLN20,
Theorem 8.1], the natural transformation u : id ⇒ −⊗ M is the unit map of the free-forgetful
adjunction −⊗ M : PrL � ModM: (−) given by tensoring with S → M, and LK : PM ⇒ PM

K is
the natural transformation of Proposition 2.36. �
Proposition 2.40. For X ∈ C0 and F ∈ PM

K(C0) we have homM(�M
K(X), F ) ∼= F (X).

Proof. We first reduce to the case where K = ∅. Since LK : PM(C0) → PM
K(C0) is the left adjoint

of the inclusion, using Lemma 2.2 we get

homM(�M
K(X), F ) ∼= homM(LK�

M(X), F ) ∼= homM(�M(X), F ).

We finish the proof by showing that the latter is equivalent to F (X), using the Yoneda lemma
in the category M. Indeed, let m ∈ M be any object, then

hom(m, homM(�M(X), F )) ∼= hom(m ⊗�M(X), F )

∼= hom(�M(X), homM(m, F ))
∼= hom(�(X), hom(m, F ))
∼= hom(m, F )(X)
∼= hom(m, F (X)),

where the first and second step use the exponential adjunction, the third uses the free-forgetful
adjunction C → C ⊗ M, the fourth uses the ordinary Yoneda lemma for C0 and the last step uses
that the action of M is level-wise. �
Corollary 2.41. The Yoneda map �

M
K : C0 → PM

K(C0) lands in the atomics.

Proof. By Lemma 2.30, PM
K(C0) is closed under colimits and limits in PM(C0), which are there-

fore computed level-wise, so that homM(�M
K(X), F ) ∼= F (X) commutes with all colimits in the

F -coordinate. �
We use the same notation �M

K : C0 → PM
K(C0)at to denote the factorization. Recall from

Proposition 2.39 that the Yoneda map gives a natural transformation �M
K : ιK ⇒ PM

K of func-
tors CatK → Ĉat. Since taking the atomics lands in CatK by Proposition 2.24, together with
Corollary 2.41, we obtain a natural transformation �M

K : id ⇒ PM(−)at of functors CatK →
CatK.
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Proposition 2.42. For any C0 ∈ CatK the category PM
K(C0) is molecular, with atomic

generators �
M
K(X) for X ∈ C0.

Proof. We first show the result for PM(C0), i.e. for the case K = ∅. Recall that PM(C0) ∼= P(C0) ⊗
M is generated under colimits from the image of P(C0) × M, i.e. from objects of the form F ⊗ m.
Second, P(C0) is generated under colimits from objects of the form �(X) for X ∈ C. Therefore,
PM(C0) is generated under colimits and the action of M from objects of the form �M(X) for
X ∈ C, which are indeed atomic by Corollary 2.41.

For the general case, recall that LK : PM(C0) → PM
K(C0) is an internally left adjoint functor

so it sends atomic objects to atomic objects by Proposition 2.13, thus �M
K(X) is atomic for any

X ∈ C. Since it preserves colimits and the action of M, and�M(X) generate PM(C0) under these
operations, their images �M

K(X) generate the essential image of LK under these operations.
In addition, LK is essentially surjective, so that �M

K(X) are atomic generators of PM
K(C0) as

needed. �
Proposition 2.43. There is an adjunction

PM
K : CatK � ModiL

M: (−)at

with unit �
M
K : id ⇒ PM

K(−)at.

Proof. To check that the data in the theorem supports an adjunction, it suffices to check that
for any C0 ∈ CatK and D ∈ ModiL

M, the canonical map

FuniL(PM
K(C0), D) → FunK(PM

K(C0)at, Dat)
−◦�M

K−−−−→ FunK(C0, D
at) (1)

is an equivalence (in fact, it suffices to show this for the hom spaces, rather than the functor
categories, but we show that the stronger statement holds). Note that

FunL(PM
K(C0), D) ∼= FunL(PK(C0), D) ∼= FunK(C0, D). (2)

Furthermore, both the first and last categories in (1) are full subcategories of the first and last
categories in (2), showing that the composition in (1) is also fully faithful.

To finish the argument, we need to show that (1) is essentially surjective. To that end, let
F : C0 → Dat be a functor preserving Iop-shaped colimits for Iop ∈ K. We can post-compose it
with the inclusion Dat → D, and using (2) we get a left adjoint functor F̃ : PM

K(C0) → D, and
we need to show that it is in fact internally left adjoint. By construction, for any X ∈ C0 we
have that F̃ (�M

K(X)) ∼= F (X) ∈ Dat is atomic. Proposition 2.42 shows that these are atomic
generators for PM

K(C0), so Proposition 2.14 shows that F̃ is indeed internally left adjoint. �

2.3 Tensor product of atomics
Proposition 2.44. The symmetric monoidal structure on ModM restricts to a symmetric
monoidal structure on the subcategory ModiL

M.

Proof. Since ModiL
M is a wide subcategory of ModM, all we need to show is that if Li : Ci → Di,

i = 1, 2, are in ModiL
M, then so is L1 ⊗ L2 : C1 ⊗ C2 → D1 ⊗ D2. Let Ri be the right adjoints

of Li, which by assumption are themselves left adjoints. Because they are left adjoints, we
can tensor them to obtain another left adjoint functor R1 ⊗ R2 : D1 ⊗ D2 → C1 ⊗ C2. It is then
straightforward to check that tensoring the unit and counit of Li � Ri exhibit an adjunction
L1 ⊗ L2 � R1 ⊗ R2, showing that L1 ⊗ L2 is an internally left adjoint functor. �

We recall that the category CatK has a symmetric monoidal structure, developed in [Lur17,
§ 4.8.1].
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Corollary 2.45. The functor PM
K : CatK → ModiL

M of Proposition 2.35 is symmetric monoidal.

Proof. Since the symmetric monoidal structure on ModiL
M is inherited from ModM, it suffices to

show that PM
K : CatK → ModM is symmetric monoidal. Indeed, [Lur17, Remark 4.8.1.8] shows

that PK : CatK → PrL is symmetric monoidal, −⊗ M : PrL → ModM is symmetric monoidal,
and by Proposition 2.29, PK⊗M ∼= PM

K . �
Applying [Lur17, Corollary 7.3.2.7], we immediately obtain the following.

Theorem 2.46. The adjunction PM
K : CatK � ModiL

M: (−)at of Proposition 2.43 is symmetric
monoidal, i.e. PM

K is symmetric monoidal with a lax symmetric monoidal right adjoint (−)at.

Note that for any operad O we get an induced adjunction

PM
K : AlgO(CatK) � AlgO(ModiL

M) : (−)at

whose unit is an enhancement of the Yoneda map (landing in the atomics) to O-algebras. Further-
more, for any C ∈ AlgO(ModiL

M) we see that Cat ⊂ C is, in fact, an O-monoidal subcategory. We
therefore get the following corollary, which generalizes [Gla16, § 3] and [Lur17, Corollary 4.8.1.12]
from the case of M = S, K = ∅ and O = E∞ and makes them natural.

Corollary 2.47. The Yoneda natural transformation lifts to a natural transformation
�

M
K : ιK ⇒ PM

K(−) of functors AlgO(CatK) → AlgO(Ĉat). That is, the Yoneda map �
M
K : C0 →

PM
K(C0) is O-monoidal and natural in C0 ∈ AlgO(CatK), and factors through the atomics

PM
K(C0)at.

Recall that in Proposition 2.15 we showed that if X ∈ Cat and m ∈ Mat, then m ⊗ X ∈ Cat.
Using Theorem 2.46, we strengthen this into a module structure, using the fact that any lax
symmetric monoidal functor lands in modules over the image of the unit.

Corollary 2.48. The functor of atomic objects factors as a lax symmetric monoidal functor
(−)at : ModiL

M → ModMat(CatK).

We also mention the following easy corollary of Proposition 2.44.

Lemma 2.49. Let L : M1 → M2 be a smashing localization of modes and let N be another mode
Then, L ⊗ idN : M1 ⊗ N → M2 ⊗ N is also a smashing localization of modes.

Proof. First, by [CSY21a, Lemma 5.2.1], the functor L ⊗ idN is a localization as well. By
[CSY21a, Proposition 5.2.15], a localization of modes is smashing if and only if it is an internally
left adjoint functor in PrL. Thus, L is internally left adjoint, and by Proposition 2.44 we conclude
that L ⊗ idN is also internally left adjoint, so that it is also a smashing localization. �

2.4 Atomic modules
In the remainder of the section we show that the atomic objects in LModR for R ∈ Alg(M)
are the left dualizable left modules (in the sense of [Lur17, Definition 4.6.2.3]), summarized in
Corollary 2.56. We begin by collecting certain basic facts about the category of left modules
from [Lur17, § 4.8.5].

Theorem 2.50. There is a symmetric monoidal functor LMod(−) : Alg(M) → ModiL
M, sending

R to LModR and f : R → S to f! : LModR → LModS .

Proof. Let K denote the collection of all (small) categories, then by [Lur17, Remark 4.8.5.17]
there is a symmetric monoidal functor LMod(−) : Alg(M) → ModM(ĈatK). As in [Lur17,
Notation 4.8.5.10], LModR is presentable and f! is left adjoint to f∗. Furthermore,
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[Lur17, Corollary 4.2.3.7 (2)] shows that the right adjoint f∗ of f! is itself a left adjoint, so that
the functor lands in ModiL

M. As the symmetric monoidal structure on ModiL
M is restricted from

ModM(ĈatK), the factorization LMod(−) : Alg(M) → ModiL
M is indeed symmetric monoidal. �

We now recall the following result about left dualizability and adjunctions.

Proposition 2.51. Let X ∈ LModR, Y ∈ RModR. Then Y is left dual to X if and only if there
is an adjunction

X ⊗1M
− : M � LModR : Y ⊗R −.

Proof. We explain how this follows from [Lur17, Proposition 4.6.2.18], with C = M, A = Rrev

and the roles of X and Y reversed (see also [Lur17, Remark 4.6.3.16]).
For the first direction, assume that there is an adjunction and let η : idM ⇒ Y ⊗R X ⊗1M

−
be the unit. By the adjunction, we know that for each P ∈ M and Q ∈ LModR the composition

hom(X ⊗1M
P, Q) → hom(Y ⊗R X ⊗1M

P, Y ⊗R Q)
−◦ηP−−−→ hom(P, Y ⊗R Q)

is an equivalence. Since both functors in the adjunction preserve colimits, and the categories are
in the mode M, the adjunction is M-linear. Therefore, the two maps

ηP : P → Y ⊗R X ⊗1M
P, η1M

⊗1M
idP : P → Y ⊗R X ⊗1M

P

coincide. This shows that c = η1M
satisfies condition (∗) of the cited proposition.

Similarly, for the other direction, if Y is left dual to X then the coevaluation map c : 1M →
Y ⊗R X gives an (M-linear) natural transformation c ⊗1M

− : idM ⇒ Y ⊗R X ⊗1M
−, which is

a unit of an adjunction by condition (∗) of the cited proposition. �

Lemma 2.52. Let R ∈ Alg(M), then R ∈ LModR is atomic; R ⊗ m is also atomic for any
m ∈ Mat.

Proof. Consider [Lur17, Corollary 4.2.3.7 (2)] where both C and M in the reference’s notation are
our M, A = 1C and B = R. Then, the functor LModB → LModA is homM(R,−) : LModR → M,
which therefore commutes with all colimits, showing that R is atomic. The second part follows
from Proposition 2.15. �

Proposition 2.53. Let R ∈ Alg(M). Then LModR is molecular with R as an atomic generator.

Proof. The previous lemma shows that R is indeed atomic, and we need to show that it generates
LModR under colimits and the action of M. Specifically, we will show that LModR is generated
under colimits from R ⊗ m for m ∈ M. By [Yan22, Corollary 2.5], this is equivalent to showing
that hom(R ⊗ m,−) : LModR → S are jointly conservative. Note that R ⊗− : M → LModR is
the left adjoint of (−) : LModR → M, so that hom(R ⊗ m,−) ∼= hom(m, (−)). These functors
are indeed jointly conservative since (−) : LModR → M is conservative, and hom(m,−) : M → S

over all m ∈ M are jointly conservative. �

Let X ∈ LModR, and consider the functor homM(X,−) : LModR → M. Note that
homM(X, R) is equipped with a canonical right R-module structure which we denote by
X∨ ∈ RModR. In addition, there is a canonical map X∨ ⊗R − → homM(X,−).

Proposition 2.54. We have LModldbl
R = LModat

R , that is, the left dualizable objects are atomic.

Proof. Recall that for X ∈ LModR, the functor X ⊗1M
− : M → LModR is left adjoint to

homM(X,−).
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If X is left dualizable, then X ⊗1M
− is left adjoint to Y ⊗R − for some Y ∈ RModR by

Proposition 2.51. By the uniqueness of adjoints we get that homM(X,−) ∼= Y ⊗R −. Since
Y ⊗R − commutes with colimits, we get that X is atomic.

Now assume that X is atomic. The two functors homM(X,−) and X∨ ⊗R − are colimit
preserving, i.e. morphisms in ModM, thus also commute with tensor from M. Proposition 2.53
shows that LModR is generated from R by these operations, and by the construction of X∨, they
agree on R, so the canonical map between the two is an equivalence. This shows that X ⊗1M

−
is left adjoint to homM(X,−) ∼= X∨ ⊗R −, concluding by Proposition 2.51. �

Remark 2.55. If R ∈ CAlg(M), then left and right R-modules coincide, and the category of
modules ModR is equipped with a symmetric monoidal structure for which dualizable modules
coincide with left dualizable modules, thus also with atomic objects, that is Moddbl

R = Modat
R .

Combining Theorem 2.46, Theorem 2.50, and Proposition 2.54 we obtain the following main
result.

Corollary 2.56. There is a lax symmetric monoidal functor LModat
(−) : Alg(M) → CatK, and

LModat
R = LModldbl

R .

As a byproduct, we also obtain the following result.

Lemma 2.57. Let F : M → N be a map of modes, then it sends M-atomic objects to N-atomic
objects.

Proof. By Proposition 2.54, the M-atomic objects in M are the dualizable objects. Since F is
symmetric monoidal it sends dualizable objects to dualizable objects. Thus, the M-atomic objects
are sent to dualizable objects in N. Again by Proposition 2.54, the dualizable objects in N are
N-atomic. �

3. Day convolution

The Day convolution on functor categories was developed in [Gla16, Lur17]. In this section we
prove results about the Day convolution, specifically its functoriality in the source and target.
The results of this section are used in Theorem 4.26 to show that the mode symmetric monoidal
structure on higher commutative monoids coincides with the localization of the Day convolution.
This is subsequently used in Theorem 6.18 to endow higher semiadditive algebraic K-theory with
a lax symmetric monoidal structure.

We begin by recalling the universal property of the Day convolution.

Theorem 3.1 [Lur17, Remark 2.2.6.8]. Let I,C be symmetric monoidal categories, and assume
that C has all colimits and that its tensor product preserves colimits in each coordinate
separately. Then, there is a symmetric monoidal structure on Fun(I,C), called the Day con-
volution denoted by �, satisfying the following universal property: There is an equivalence of
functors CMon(Cat) → Cat

Funlax(−× I,C) ∼−→ Funlax(−, Fun(I,C)),

which lifts the equivalence of functors Cat → Cat

Fun(−× I,C) ∼−→ Fun(−, Fun(I,C)).

Example 3.2. Let I be a symmetric monoidal category. Then Iop is also endowed with a sym-
metric monoidal structure, and S can be endowed with the cartesian structure, yielding the Day
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convolution on P(I) = Fun(Iop, S). By [Lur17, Remark 4.8.1.13], this agrees with the symmetric
monoidal structure on P(I) of [Lur17, Remark 4.8.1.8] used in the proof of Corollary 2.45.

Proposition 3.3. Let I,C, and D be symmetric monoidal categories, and assume that C and D

have all colimits and that their tensor product preserve colimits in each coordinate. Let F : C → D

be a functor and let F̃ : Fun(I,C) → Fun(I,D) be the functor induced by post-composition. If
F is lax symmetric monoidal, then so is F̃ . If F is colimit preserving, then so is F̃ . If F is both
colimit preserving and symmetric monoidal, then so is F̃ .

Proof. We begin with the first part. The identity functor of Fun(I,C) is (lax) symmetric
monoidal, therefore by the universal property of the Day convolution, the corresponding functor
Fun(I,C) × I → C is also lax symmetric monoidal. Post-composition of this functor with the
lax symmetric monoidal functor F gives a lax symmetric monoidal functor Fun(I,C) × I → D.
Using the universal property again, we get that F̃ : Fun(I,C) → Fun(I,D) is also lax symmetric
monoidal.

For the second part, if F is colimit preserving, then since colimits in functor categories are
computed level-wise, F̃ is colimit preserving.

Lastly, we assume that F is both colimit preserving and symmetric monoidal. We already
know from the second part that F̃ is colimit preserving. We show that the lax symmetric
monoidal structure from the first part is, in fact, symmetric monoidal. Recall that by [Lur17,
Example 2.2.6.17], the Day convolution of X, Y ∈ Fun(I,C) is given on objects by

(X � Y )(i) ∼= colim
i1⊗i2→i

X(i1) ⊗ Y (i2).

The lax symmetric monoidal structure of F̃ is then given by the canonical map:

(F̃X � F̃ Y )(i) ∼= colim
i1⊗i2→i

FX(i1) ⊗ FY (i2)

(1)−−→ colim
i1⊗i2→i

F (X(i1) ⊗ Y (i2))

(2)−−→ F
(

colim
i1⊗i2→i

X(i1) ⊗ Y (i2)
)

∼= (F̃ (X � Y ))(i),

where map (1) uses the fact F is lax symmetric monoidal, and (2) is the assembly map. Since F is
symmetric monoidal (1) is an equivalence, and since F is colimit preserving (2) is an equivalence,
showing that F̃ is, in fact, symmetric monoidal. �

Our next goal is to study the behavior of the Day convolution under the change of the source
I, namely given a symmetric monoidal functor p : I → J , what can we say about p! : Fun(I,C) →
Fun(J,C) and p∗ : Fun(J,C) → Fun(I,C).

We wish to thank Lior Yanovski for suggesting the following argument to prove
Proposition 3.6.

Lemma 3.4. Let C = S equipped with the cartesian structure, then p! : Fun(I, S) → Fun(J, S) is
symmetric monoidal.

Proof. This is [Lur17, Remark 4.8.1.8] applied to pop : Iop → Jop. �

Lemma 3.5. Let K be a symmetric monoidal category, and let C = Fun(K, S) equipped with
the Day convolution, then p! : Fun(I,C) → Fun(J,C) is symmetric monoidal.
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Proof. By applying the universal property of the Day convolution twice, we know that there is
an equivalence of functors:

Funlax(−× I × K, S) ∼−→ Funlax(−× I, Fun(K, S)) ∼−→ Funlax(−, Fun(I, Fun(K, S))).

Using the same reasoning with the roles of I and K reversed, and the equivalence I × K ∼=
K × I, the universal property of the Day convolution implies that there is a symmetric monoidal
equivalence:

Fun(K, Fun(I, S)) ∼−→ Fun(I, Fun(K, S)).

Similarly, we have an equivalence with J in place of I.
Lemma 3.4 constructs a symmetric monoidal functor p! : Fun(I, S) → Fun(J, S). Since this

functor is also colimit preserving, by Proposition 3.3, post-composition with it gives a symmetric
monoidal functor

Fun(K, Fun(I, S)) → Fun(K, Fun(J, S)),

which under the equivalences above gives the desired map p! : Fun(I,C) → Fun(J,C). �
Proposition 3.6. Let C ∈ CAlg(PrL), then p! : Fun(I,C) → Fun(J,C) is symmetric monoidal.

Proof. By [NS17, Proposition 2.2], there is a symmetric monoidal reflective localization C̃ →
C, for some C̃ = Fun(K, S). Then Fun(I, C̃) → Fun(I,C) given by post-composition is also a
reflective localization, and by Proposition 3.3 it is also symmetric monoidal, and the same holds
with J in place of I.

By Lemma 3.5, we have a symmetric monoidal functor p! : Fun(I, C̃) → Fun(J, C̃).
Composing this with the symmetric monoidal localization Fun(J, C̃) → Fun(J,C), we get a
symmetric monoidal functor Fun(I, C̃) → Fun(J,C). This functor factors through the symmet-
ric monoidal localization Fun(I, C̃) → Fun(I,C), yielding the symmetric monoidal structure on
p! : Fun(I,C) → Fun(J,C). �

Applying this to the special case where p is the unit map ∗ → I we obtain the following.

Corollary 3.7. There is a map F : C → Fun(I,C) in CAlg(PrL).

Furthermore, applying [Lur17, Corollary 7.3.2.7] to the adjunction p∗ � p! we obtain the
following.

Corollary 3.8. Let C ∈ CAlg(PrL), then p∗ : Fun(J,C) → Fun(I,C) is lax symmetric
monoidal.

Remark 3.9. One can directly use the universal property of the Day convolution to show that
p∗ is lax symmetric monoidal, even only assuming that p is lax symmetric monoidal. In fact,
one can use the main result of [HHLN23] to construct an oplax symmetric monoidal structure
on p! in this way while only assuming that p is lax symmetric monoidal, and prove that it is
symmetric monoidal in case p is. However, we have not shown that the lax symmetric monoidal
structure on p∗ obtained in the above corollary coincides with that obtained directly from the
universal property of the Day convolution.

Proposition 3.10. Let I ∈ CAlg(Cat) ∼= CMon(Cat) and C ∈ CAlg(PrL). Then the equivalence
Fun(I, S) ⊗ C ∼−→ Fun(I,C) is symmetric monoidal.

Proof. Since the tensor product is the coproduct in CAlg(PrL), to upgrade the equivalence into a
symmetric monoidal functor, it suffices to upgrade the functors Fun(I, S) → Fun(I,C) and C →
Fun(I,C) to symmetric monoidal functors. Indeed, by Proposition 3.3 post-composition with the
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unit map S → C yields a symmetric monoidal functor Fun(I, S) → Fun(I,C), and Corollary 3.7
shows that C → Fun(I,C) is symmetric monoidal. �

4. Higher commutative monoids

In this section we recall the notion of (p-typical) m-commutative monoids as developed in
[Har20] and [CSY21a] (see Definition 4.2), and their relationship to higher semiadditivity (see
Theorem 4.9), which feature prominently in the definition of higher semiadditive algebraic
K-theory in Definition 6.5. A key result of this section is Theorem 4.26, which shows that for
C ∈ CAlg(PrL), the symmetric monoidal structures on CMon(p)

m (C) coming from the mode struc-
ture on CMon(p)

m (S) and from the Day convolution coincide. This result is used in Theorem 6.18
to endow higher semiadditive algebraic K-theory with a lax symmetric monoidal structure.

4.1 Definition and properties
Definition 4.1. Let C ∈ PrL be a presentable category. We define the category of ( p-typical)
pre-m-commutative monoids in C by PCMon(p)

m (C) = Fun(Span(S(p)
m )op, C). We define the

underlying object functor (−) : PCMon(p)
m (C) → C by pre-composition with ∗ → Span(S(p)

m )op,
i.e. X = X(∗).
Definition 4.2. We say that a pre-m-commutative monoid X ∈ PCMon(p)

m (C) is a ( p-typical)
m-commutative monoid if it satisfies the m-Segal condition, i.e. the assembly map X(A) →
limA X is an equivalence for any m-finite p-space A. Their category is the full subcategory
CMon(p)

m (C) = Funseg(Span(S(p)
m )op, C) ⊆ PCMon(p)

m (C).

Remark 4.3. The m-Segal condition for X is equivalent to X preserving limits indexed by
A ∈ S

(p)
m .

Proposition 4.4. The restriction of the underlying functor (−) : CMon(p)
m (C) → C is

conservative.

Proof. Follows immediately from the m-Segal condition. �

Lemma 4.5. Let C ∈ PrL be a κ-presentable category. Then, μ-filtered colimits commute with
μ-small limits in C, for any μ ≥ κ.

Proof. First, the case C = S is [Lur09, Proposition 5.3.3.3]. Second, the case C = P(C0) follows
from the previous case, since limits and colimits are computed level-wise in functor categories.
Lastly, for the general case we have that C ∼= Indκ(Cκ). By [Lur09, Proposition 5.3.5.3], C ⊆ P(Cκ)
is closed under κ-filtered colimits. In addition, [Lur09, Corollary 5.3.5.4 (3)] shows that it is also
closed under limits, since limits commute with limits. To conclude, C is closed under μ-filtered
colimits and μ-small limits in P(Cκ) for any μ ≥ κ, and by the second case the result holds for
P(Cκ) for any μ. �

Proposition 4.6. The inclusion CMon(p)
m (C) ⊆ PCMon(p)

m (C) preserves all limits and

CMon(p)
m (C) is presentable.

Proof. We essentially repeat the proof in [Har20, Lemma 5.17]. Recall that CMon(p)
m (C) is the full

subcategory of PCMon(p)
m (C) on those functors that preserve limits index by A ∈ S

(p)
m . As limits

commute with limits, and limits are computed level-wise in PCMon(p)
m (C), we get that CMon(p)

m (C)
is closed under limits. Let κ be any cardinal such that C is κ-presentable and all A ∈ S

(p)
m are
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κ-small, then by Lemma 4.5, limits indexed by A ∈ S
(p)
m commute with κ-filtered colimits in C.

Again, as colimits are computed level-wise in PCMon(p)
m (C), we get that CMon(p)

m (C) is closed
under κ-filtered colimits. It follows that CMon(p)

m (C) is presentable by the reflection principle
of [RS21]. Alternatively, the presentability follows from [CH21, Lemma 2.11(iv)]. �

Definition 4.7. Let C ∈ PrL. We denote by Lseg : PCMon(p)
m (C) → CMon(p)

m (C) the left adjoint
of the inclusion CMon(p)

m (C) ⊆ PCMon(p)
m (C).

Given a functor F : C → D we get an induced functor F : PCMon(p)
m (C) → PCMon(p)

m (D) by
post-composing level-wise with F .

Proposition 4.8. If F : C → D commutes with limits indexed by any m-finite p-space A, then

the restriction of F : PCMon(p)
m (C) → PCMon(p)

m (D) to CMon(p)
m (C) lands in CMon(p)

m (D), yielding

a functor F : CMon(p)
m (C) → CMon(p)

m (D).

Proof. Follows immediately from the characterization given in Remark 4.3 and the fact that F
commutes with these limits. �

4.2 Higher commutative monoids and semiadditivity
The underlying object functor (−) : CMon(p)

m (S) → S has a left adjoint F seg : S → CMon(p)
m (S).

The fact that this endows CMon(p)
m (S) with the structure of a mode was first proved in [Har20,

Corollary 5.19] (for m < ∞), and subsequently developed in [CSY21a, Proposition 5.3.1].

Theorem 4.9 [CSY21a, Proposition 5.3.1]. The category CMon(p)
m (S) is a mode, that is, it

is an idempotent presentable symmetric monoidal category. As such, it classifies the property
of being (p-typically) m-semiadditive. Furthermore, for any C ∈ PrL there is an equivalence

CMon(p)
m (C) ∼= CMon(p)

m (S) ⊗ C, and tensoring the unit map S → CMon(p)
m (S) with C yields a left

adjoint functor F seg : C → CMon(p)
m (C).

Remark 4.10. The cited papers prove the result in the non-p-typical case, i.e. for all m-finite
spaces, but the same proofs work for the p-typical case.

Following [CSY21a, Definition 5.3.3], we make the following definition.

Definition 4.11. We define [m]צ = CMon(p)
m (Sp(p)) ∼= CMon(p)

m (S) ⊗ Sp(p). This is the mode
which classifies the property of being a p-local stable and ( p-typically) m-semiadditive pre-
sentable category. There is a canonical map of modes, which we call the group completion
(−)gpc : CMon(p)

m (S) → .[m]צ

Example 4.12. The case m = 0 reproduces [0]צ ∼= Sp(p) and the group completion is the map

(−)gpc : CMon(S) → CMongl(S) ∼= Sp≥0 ↪→ Sp(p).

We recall the following.

Proposition 4.13. The inclusions Catm-fin → Cat, Catst → Cat and Catstm-fin → Catm-fin create
all limits.

Proof. The first part is [Lur09, Corollary 5.3.6.10] for K = ∅ and K′ = S
(p)
m . The second part is

[Lur17, Theorem 1.1.4.4]. The third part follows from the combination of the first two. �
Combining Propositions 4.8 and 4.13, we get the following.
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Corollary 4.14. The inclusions Catstm-fin → Catm-fin and Catm-fin → Cat induce inclusions

CMon(p)
m (Catstm-fin) → CMon(p)

m (Catm-fin) and CMon(p)
m (Catm-fin) → CMon(p)

m (Cat).

Proposition 4.15. Let M = CMon(p)
m (Sp), then for any C ∈ ModM, the category Cat is sta-

ble and m-semiadditive. Furthermore, the functor taking the atomics gives a lax symmetric
monoidal functor (−)at : ModiL

M → Catstm-fin. The same holds for the mode [m]צ ∼= M ⊗ Sp(p), and

the corresponding functor (−)at : ModiL
[m]צ → Catstm-fin is the restriction of the previous functor.

Proof. We first show that for any C ∈ ModM, Cat is stable and m-semiadditive. Recall from
[HL13, Proposition 4.3.9] that for any C in the mode CMon(p)

m (S) and m-finite p-space A,
A-shaped limits in C commute with all colimits, showing that all m-finite p-space A are abso-
lute limits in CMon(p)

m (S), and by Lemma 2.20 also in M. Since Cat is a full subcategory of the
m-semiadditive category C, and is closed under all colimits indexed by any m-finite p-space A,
it is, in fact, m-semiadditive by [CSY21a, Proposition 2.1.4(4)]. The stability statement follows
from Proposition 2.25.

In particular, this shows that K, the collection of all finite categories and m-finite p-spaces,
is a collection of absolute limits of M. Theorem 2.46 then shows that there is a lax sym-
metric monoidal functor (−)at : ModiL

M → CatK. Recall that there is a fully faithful functor
(−)⊗ : CMon(Cat)lax → Op from the category of symmetric monoidal categories and lax sym-
metric monoidal functors to operads. Note that Catstm-fin ⊂ CatK is the full subcategory on those
categories which are in addition stable, but it is not a sub-symmetric monoidal category, since
the unit of CatK is not stable. However, it is true that the tensor product of a family of cate-
gories in either category is the same, in particular Catst,⊗m-fin is a sub-operad of Cat⊗K. Therefore,
we get that the map of operads (−)at : ModiL,⊗

M → Cat⊗K factors through the operad Catst,⊗m-fin,
which corresponds to the desired lax symmetric monoidal functor (−)at : ModiL

M → Catstm-fin.
Note that [m]צ ∼= M ⊗ Sp(p) is a smashing localization of M. The argument above works

for [m]צ in place of M. Furthermore, by Proposition 2.26, the atomic objects with respect to
either one are the same, showing that (−)at : ModiL

[m]צ → Catstm-fin is indeed the restriction of
(−)at : ModiL

M → Catstm-fin. We also note that the lax symmetric monoidal structure on the latter
restricts to the lax symmetric monoidal structure on the former. To see that, observe that
the symmetric monoidal left adjoint of the latter PK

[m]צ
: Catstm-fin → ModiL

[m]צ factors as the

composition of the symmetric monoidal functors Catstm-fin

PM
K−−→ ModiL

M
→−−−−−[m]צ⊗− ModiL

[m]צ , so the
lax symmetric monoidal right adjoint factors accordingly. �

4.3 Tensor product of higher commutative monoids
Let C ∈ CAlg(PrL) be a presentably symmetric monoidal category. In this subsection, we endow
CMon(p)

m (C) with two symmetric monoidal structures, and show that they coincide. The first,
which we call the mode symmetric monoidal structure (see Definition 4.16), comes from the
fact that CMon(p)

m (S) is a mode. The second, which we call the localized Day convolution (see
Definition 4.25), is obtained by localizing the Day convolution on PCMon(p)

m (C). Finally, in
Theorem 4.26 we show that the two structures coincide.

Recall that by Theorem 4.9, CMon(p)
m (S) is a mode and, in particular, it is equipped with a

symmetric monoidal structure.

Definition 4.16. Let C ∈ CAlg(PrL) be a presentably symmetric monoidal category. The equiv-
alence CMon(p)

m (C) ∼= CMon(p)
m (S) ⊗ C of Theorem 4.9 endows CMon(p)

m (C) with a presentably
symmetric monoidal structure which we call the mode symmetric monoidal structure and
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denote by ⊗. Furthermore, by construction, F seg : C → CMon(p)
m (C) is endowed with a symmetric

monoidal structure.

In a different direction, consider the category Span(S(p)
m ). Since S

(p)
m is closed under products,

it has a cartesian monoidal structure. By [Hau17, Theorem 1.2(iv)], its span category Span(S(p)
m )

is endowed with a symmetric monoidal structure given on objects by their cartesian product
in S

(p)
m . Therefore, the opposite category Span(S(p)

m )op is also endowed with a symmetric monoidal
structure.

Remark 4.17. The symmetric monoidal structure on Span(S(p)
m ) that we use is not the cartesian

or cocartesian structure. In fact, the cartesian and cocartesian structures coincide (since products
and coproducts coincide in Span(S(p)

m ), being a semiadditive category), and are given on objects
by the disjoint union of spaces, whereas the symmetric monoidal structure we use is given on
objects by the product of spaces.

Definition 4.18. Let C ∈ CAlg(PrL) be a presentably symmetric monoidal category. We endow
PCMon(p)

m (C) = Fun(Span(S(p)
m )op, C) with the Day convolution of Theorem 3.1, which we denote

by �. By Corollary 3.7, we have a symmetric monoidal functor F : C → PCMon(p)
m (C).

Our next goal, achieved in Proposition 4.24, is to show that the Day convolution is com-
patible with the reflective localization Lseg : PCMon(p)

m (C) → CMon(p)
m (C), endowing it with a

localized symmetric monoidal structure. Recall from [Lur17, Example 2.2.1.7] that for a sym-
metric monoidal category D, we say that a reflective localization L : D → D0 is compatible with
the symmetric monoidal structure, if and only if for any L-equivalence X → Y ∈ D and Z ∈ D,
the morphism X ⊗ Z → Y ⊗ Z ∈ D is an L-equivalence.

Remark 4.19. By the Yoneda lemma, a map X → Y is an L-equivalence if and only if for any
T ∈ D0 the induced map hom(Y, T ) → hom(X, T ) is an equivalence.

Lemma 4.20. Let D and L be as above, and assume further that the symmetric monoidal
structure on D is closed. Then, the reflective localization is compatible with the symmetric
monoidal structure if and only if for any L-equivalence X → Y ∈ D and T ∈ D0 the induced
map on internal homs homD(Y, T ) → homD(X, T ) is an equivalence.

Proof. Fix a map X → Y ∈ D. By the Yoneda lemma, homD(Y, T ) → homD(X, T ) is an equiv-
alence for any T ∈ D0, if and only if the map hom(Z, homD(Y, T )) → hom(Z, homD(X, T ))
is an equivalence for any Z ∈ D, T ∈ D0. By adjunction, the latter holds if and only if
hom(Y ⊗ Z, T ) → hom(X ⊗ Z, T ) is an equivalence for any Z ∈ D, T ∈ D0. By the Yoneda
lemma, this holds if and only if X ⊗ Z → Y ⊗ Z is an L-equivalence for any Z ∈ D. �
Lemma 4.21. Let D, D0, E ∈ CAlg(PrL) and let L : D → D0 be a reflective localization which is
compatible with symmetric monoidal structure. Then L ⊗ id : D ⊗ E → D0 ⊗ E is also a reflective
localization compatible with the symmetric monoidal structure on D ⊗ E.

Proof. We let L′ = L ⊗ id. First note that L′ is indeed a reflective localization by [CSY21a,
Lemma 5.2.1]. Using [Lur17, Proposition 2.2.1.9] we endow D0 with the localized symmetric
monoidal structure, making L into a symmetric monoidal functor. Since ⊗ is the coproduct of
CAlg(PrL), this makes the categories and the map L′ : D ⊗ E → D0 ⊗ E symmetric monoidal.
Now let X → Y ∈ D ⊗ E be an L′-equivalence. For any Z ∈ D ⊗ E, we have

L′(X ⊗ Z → Y ⊗ Z) ∼= (L′X ∼−→ L′Y ) ⊗ (L′Z id−→ L′Z),

which is an equivalence. �
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Note that by the Yoneda lemma, for any A ∈ S
(p)
m , the object �(A) ∈ PCMon(p)

m (S) corep-
resents the evaluation at A functor PCMon(p)

m (S) → S given by X �→ X(A). We also note that
these functors over all A ∈ S

(p)
m are jointly conservative.

Lemma 4.22. Let X ∈ PCMon(p)
m (S), and A ∈ S

(p)
m , then

homPCMon
(p)
m (S)(�(A), X) ∼= X(A ×−).

In particular, if X ∈ CMon(S), then so is homPCMon
(p)
m (S)(�(A), X).

Proof. By [Lur17, Corollary 4.8.1.12], the Yoneda embedding � : Span(S(p)
m ) → PCMon(p)

m (S) is
symmetric monoidal, so that �(A) ⊗�(−) ∼=�(A ×−). Therefore, we get

homPCMon
(p)
m (S)(�(A), X)(−) ∼= hom(�(−), homPCMon

(p)
m (S)(�(A), X))

∼= hom(�(A) ⊗�(−), X)
∼= hom(�(A ×−), X)
∼= X(A ×−).

For the second part, note that X(A ×−) is the pre-composition of X with
A ×− : Span(S(p)

m )op → Span(S(p)
m )op which preserves limits indexed by B ∈ S

(p)
m . By Remark 4.3,

the m-Segal condition is equivalent to preservation of limits indexed by B ∈ S
(p)
m , so the result

follows. �
Lemma 4.23. The reflective localization Lseg : PCMon(p)

m (S) → CMon(p)
m (S) is compatible with

the Day convolution.

Proof. By Lemma 4.20, it suffices to show that for any CMon(p)
m (S)-equivalence X → Y and T ∈

CMon(p)
m (S) the induced map homPCMon

(p)
m (S)(Y, T ) → homPCMon

(p)
m (S)(X, T ) is an equivalence.

Since the evaluations at A ∈ S
(p)
m are jointly conservative, it suffices to show that for any A ∈ S

(p)
m

the map hom(�(A), homPCMon
(p)
m (S)(Y, T )) → hom(�(A), homPCMon

(p)
m (S)(X, T )) is an equiva-

lence. By adjunction, this is equivalent to showing that hom(Y, homPCMon
(p)
m (S)(�(A), T )) →

hom(X, homPCMon
(p)
m (S)(�(A), T )) is an equivalence. By assumption X → Y is an CMon(p)

m (S)-
equivalence and T ∈ CMon(p)

m (S), so the result follow from the second part of Lemma 4.22. �

Proposition 4.24. The reflective localization Lseg : PCMon(p)
m (C) → CMon(p)

m (C) is compatible
with the Day convolution.

Proof. Consider the following commutative diagram in PrL.

The bottom map is an equivalence by Theorem 4.9. The top map is a symmetric monoidal equiv-
alence by Proposition 3.10. By Lemma 4.23, Lseg : PCMon(p)

m (S) → CMon(p)
m (S) is compatible

with the Day convolution, so by Lemma 4.21 the left map is also compatible with the symmetric
monoidal structure. Therefore, the right map is also compatible with the Day convolution. �
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Definition 4.25. Using [Lur17, Proposition 2.2.1.9], we endow CMon(p)
m (C) ⊆ PCMon(p)

m (C)
with the induced symmetric monoidal structure, which we call the localized Day convolution and
denote by �̂. This makes the functor Lseg : PCMon(p)

m (C) → CMon(p)
m (C) symmetric monoidal

(with respect to the localized Day convolution), thus by [Lur17, Corollary 7.3.2.7] the right
adjoint CMon(p)

m (C) ⊆ PCMon(p)
m (C) is lax symmetric monoidal.

The main result of this subsection is the following.

Theorem 4.26. Let C ∈ CAlg(PrL), then the mode symmetric monoidal structure and the

localized Day convolution on CMon(p)
m (C) coincide, making the following diagram in CAlg(PrL)

commute.

We begin by proving the result for C = S.

Lemma 4.27. The localized Day convolution and the mode symmetric monoidal structure on

CMon(p)
m (S) coincide, and LsegF ∼= F seg.

Proof. The right adjoint of F seg is the underlying object functor (−) : CMon(p)
m (S) → S, which

by adjunction is represented by F seg(∗) ∼= 1⊗. By [Lur17, Corollary 4.8.1.12], the Yoneda
embedding � : Span(S(p)

m ) → PCMon(p)
m (S) is symmetric monoidal, and in particular the unit

of PCMon(p)
m (S) is 1� ∼=�(∗). Using the Yoneda lemma we get

hom
CMon

(p)
m (S)

(1�̂, X) ∼= hom
CMon

(p)
m (S)

(Lseg1�, X)

∼= hom
PCMon

(p)
m (S)

(1�, X)

∼= hom
PCMon

(p)
m (S)

(�(∗), X)

∼= X.

Therefore, 1�̂ also represents (−), so that 1�̂ ∼= 1⊗. Since CMon(p)
m (S) is a mode, it has a unique

presentably symmetric monoidal structure with the given unit as in [CSY21a, Proposition 5.1.6],
so that localized Day convolution and the mode symmetric monoidal structure on CMon(p)

m (S)
coincide. Since there is a unique map of modes S → CMon(p)

m (S), the functors LsegF and F seg

coincide. �

Proof of Theorem 4.26. Consider the following diagram in CAlg(PrL) where we endow
CMon(p)

m (C) with the localized Day convolution structure (and the rest of the categories are
endowed with a single symmetric monoidal structure, as we have shown that the two structures
on CMon(p)

m (S) coincide).
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The bottom map is an equivalence by Theorem 4.9, and we wish to upgrade it to a symmetric
monoidal equivalence.

The top map is a symmetric monoidal equivalence by Proposition 3.10. As in the proof of
Proposition 4.24, both the left and the right maps are symmetric monoidal. This shows that the
bottom map is the localization of the top map, and thus inherits the structure of a symmetric
monoidal equivalence. �

5. Higher cocartesian structure

Endowing a category C ∈ Cat with a symmetric monoidal structure is the same as providing a
lift C⊗ ∈ CMon(Cat). If C has finite coproducts, it has a cocartesian structure C� given by the
coproduct. An Eckmann–Hilton-style argument characterizes it as the unique symmetric
monoidal structure that commutes with coproducts (in all coordinates together), namely
satisfying

(X ⊗ Y ) � (Z ⊗ W ) ∼= (X � Z) ⊗ (Y � W ).

Building on [Har20, Theorem 5.23], in this section we define the (p-typical) m-cocartesian
structure as an m-commutative monoid structure, and in Theorem 5.3 we show that it enjoys
the expected properties, which in particular gives a construction of the ordinary cocartesian
structure. The results of this section feature in the definition of higher semiadditive algebraic
K-theory in Definition 6.5, by preserving the m-commutative monoid structure afforded by the
m-cocartesian structure.

Definition 5.1. The category of categories with a (p-typical) m-symmetric monoidal struc-
ture is CMon(p)

m (Cat). That is, an m-symmetric monoidal structure on C ∈ Cat is a lift C⊗ ∈
CMon(p)

m (Cat).

In [Har20, Theorem 5.23] and [CSY21a, Proposition 2.2.7] it is shown that the category
Catm-fin of categories admitting colimits indexed by m-finite p-spaces is itself an (p-typically)
m-semiadditive category for any −2 ≤ m ≤ ∞ (the proofs in the cited papers are not in the
p-typical case, but the same proofs work in the p-typical case). In other words, the underlying
functor

(−) : CMon(p)
m (Catm-fin) → Catm-fin

is an equivalence. We denote its inverse by (−)�m : Catm-fin
∼−→ CMon(p)

m (Catm-fin). We recall
from Corollary 4.14 that there is an inclusion CMon(p)

m (Catm-fin) → CMon(p)
m (Cat).

Definition 5.2. For every C ∈ Catm-fin, we call C�m ∈ CMon(p)
m (Cat) the m-cocartesian struc-

ture on C. When m is clear from the context, we shall write C� for C�m .

Our next goal is to justify this name. In particular, we will show that for every m-finite
p-space A, the map CA → C induced by evaluating C� at A → ∗ is given by taking the colimit
over A. More precisely, for any C ∈ Cat, let C∗ ∈ Fun((S(p)

m )op, Cat) be the functor Fun(−, C),
given by sending m-finite p-space A to CA and q : A → B to q∗ : CB → CA. If we assume that
C ∈ Catm-fin, then q∗ : CB → CA has a left adjoint q! : CA → CB. By passing to the left adjoints,
we obtain a functor C! ∈ Fun(S(p)

m , Cat). The main result of this section is then as follows.

Theorem 5.3. The restriction of C� ∈ CMon(p)
m (Cat) along the right-way maps S

(p)
m →

Span(S(p)
m ) is C∗, and similarly along the wrong-way maps (S(p)

m )op → Span(S(p)
m ) is C!.
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To prove this, we first note that not only each q∗ has a left adjoint q!, but they also satisfy
the Beck–Chevalley condition. This means that C∗ is in fact in FunBC((S(p)

m )op, Cat) (where
FunBC are functors such that each morphism is mapped to a right adjoint, such that the
Beck–Chevalley condition is satisfied). We will use Barwick’s unfurling construction [Bar17,
Definition 11.3]. Barwick works in a more general context, allowing to prescribe only certain
right- and wrong-way morphisms, but we shall not use this generality. After straightening, the
unfurling construction for (S(p)

m )op takes a functor F ∈ FunBC((S(p)
m )op, Cat), and produces a new

functor Υ(F ) ∈ Fun(Span(S(p)
m )op, Cat), and enjoys the following properties.

Theorem 5.4 [Bar17, Proposition 11.6 and Theorem 12.2]. For any F ∈ FunBC((S(p)
m )op, Cat),

the restriction of Υ(F ) along the right-way maps S
(p)
m → Span(S(p)

m ) is F , and similarly along the

wrong-way (S(p)
m )op → Span(S(p)

m ) is the functor sending the morphisms to the left adjoints.

Using this result, we our now in position to prove Theorem 5.3.

Proof of Theorem 5.3. By Barwick’s theorem, Υ(C∗) has the properties we ought to prove for
C�, so it suffices to show that C� ∼= Υ(C∗). Furthermore, recall that the underlying functor
(−) : CMon(p)

m (Catm-fin) → Catm-fin is an equivalence, so each C ∈ Catm-fin has a unique lift

to CMon(p)
m (Catm-fin). Therefore, it suffices to show that Υ(C∗) ∈ Fun(Span(S(p)

m )op, Cat) is in
CMon(p)

m (Catm-fin), i.e. that it satisfies the m-Segal condition and that it takes values in Catm-fin.
First, by construction, C∗ satisfies the m-Segal condition. Since the restriction of Υ(C∗)

along (S(p)
m )op → Span(S(p)

m ) is C∗, it follows that it satisfies the m-Segal condition as well, thus
Υ(C∗) ∈ CMon(p)

m (Cat).
Second, we need to show that Υ(C∗) lands in Catm-fin. By assumption C ∈ Catm-fin, thus

the same holds for CA for all m-finite p-space A. For morphisms, we need to show they are
sent to functors that commute with colimits indexed by any m-finite p-space A. Any morphism
in Span(S(p)

m ) is the composition of a right-way and a wrong-way map, so we can check these
separately. So let q : A → B be a morphism of m-finite p-spaces. Since q! is a left adjoint, it
commutes with colimits indexed by any m-finite p-space A, so it is a morphism in Catm-fin. Since
colimits in functor categories are computed level-wise, the functor q∗ commutes with them, so it
is also a morphism in Catm-fin. �

Remark 5.5. In light of Barwick’s construction, one could define the m-cocartesian structure
simply by C� = Υ(C∗). The reason why we define it via the equivalence (−)� : Catm-fin

∼−→
CMon(p)

m (Catm-fin) is twofold. First, this construction characterizes C� in a universal way.
Second, Barwick’s unfurling construction, although much more general than our definition, is not
shown to be functorial in F , which will be used crucially for C� in our definition of semiadditive
algebraic K-theory.

Theorem 5.6. The restriction of (−)� : Catm-fin
∼−→ CMon(p)

m (Catm-fin) to Catstm-fin lands in

CMon(p)
m (Catstm-fin), and induces an equivalence (−)� : Catstm-fin

∼−→ CMon(p)
m (Catstm-fin).

Proof. Let C ∈ Catstm-fin. We know that C� ∈ CMon(p)
m (Catm-fin). By Proposition 4.13, for any

m-finite p-space A, CA is computed the same in Cat, Catm-fin, and Catstm-fin, and in par-
ticular it is stable. Furthermore, for any q : A → B, both q! and q∗ are exact. Thus, C� ∈
Fun(Span(S(p)

m )op, Catstm-fin). Again by Proposition 4.13, it satisfies the m-Segal condition so that
C� ∈ CMon(p)

m (Catstm-fin).
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For a functor F : C → D in Catstm-fin, we have an induced functor C� → D� in
CMon(p)

m (Catm-fin). At every point it is given by F ◦ − : CA → DA, which is exact, thus a map
in Catstm-fin. This finishes the first part, showing that (−)� lands in CMon(p)

m (Catstm-fin).
By Corollary 4.14, the inclusion Catstm-fin → Catm-fin induces an inclusion CMon(p)

m (Catstm-fin) →
CMon(p)

m (Catm-fin). The maps (−) : CMon(p)
m (Catm-fin) � Catm-fin : (−)�, which are inverses to

each other, restrict to maps between the subcategories, which are therefore inverses to each other
as well. �

6. Semiadditive algebraic K-theory

In this section we define an m-semiadditive version of algebraic K-theory. We begin by recalling
the construction of ordinary algebraic K-theory, and present it in a way which is amenable to
generalizations. We then generalize the definition to construct m-semiadditive algebraic K-theory
in Definition 6.5, and connect it to ordinary algebraic K-theory in Corollary 6.10. We leverage
this connection in Theorem 6.18 to endow the functor of m-semiadditive algebraic K-theory with
a lax symmetric monoidal structure. This is later used to prove Theorems 8.10 and 8.23, two of
the main results of this paper.

6.1 Ordinary algebraic K-theory
We recall the definition of the S•-construction for stable categories and exact functors. One
defines the functor S• : Catst → SΔop

by letting SnC be the subspace of those functors X : [n][1] →
C that satisfy:

(1) Xii = 0;
(2) for all i ≤ j ≤ k the following is a bicartesian square

that is, Xij → Xik → Xjk is a (co)fiber sequence.

The algebraic K-theory space functor K: Catst → S is then defined as the composition
K(C) = Ω|S•C|. One then proceeds to lift to (connective) spectra, e.g. by means of iterated
S•-construction. We will give an equivalent construction of the spectrum structure, which will
be easier to generalize. To that end, we show the following.

Lemma 6.1. The functor S• : Catst → SΔop
commutes with limits.

Proof. For each n, the functor Sn : Catst → S is equivalent to hom([n − 1],−), and in particular
it commutes with limits. Since limits in the functor category SΔop

are computed level-wise, this
implies that S• commutes with limits as well. �

This together with Proposition 4.8 implies that we get an induced functor
S• : CMon(Catst) → CMon(S)Δ

op

. Employing Theorem 5.6, we give the following definition.

Definition 6.2. We define algebraic K-theory K: Catst → Sp by K(C) = Ω|(S•(C�))gpc|, that
is, as the following composition

Catst
(−)�−−−→ CMon(Catst) S•−→ CMon(S)Δ

op (−)gpc

−−−−→ SpΔop |−|−−→ Sp Ω−→ Sp.
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Lemma 6.3. The composition of K: Catst → Sp with Ω∞ : Sp → S is K.

Proof. First note that (−)gpc : CMon(S) → Sp is a left adjoint, and therefore commutes with the
colimit | − |, and that Ω((−)gpc) ∼= Ω as functors CMon(S) → Sp. This shows that our definition
of algebraic K-theory is equivalent to the composition

Catst
(−)�−−−→ CMon(Catst) S•−→ CMon(S)Δ

op |−|−−→ CMon(S) Ω−→ Sp.

Consider the following diagram.

Square (1) commutes because (−)� and (−) are inverses by Theorem 5.6. Square (2) commutes
by the definition of the extension of S• to CMon(). Square (3) commutes since the underly-
ing commutes with geometric realizations. Square (4) commutes because Ω is a limit and the
underlying is a right adjoint functor. Finally, the top-right composition is Ω∞K, whereas the
left-bottom composition is K. �

We now claim that the above definition of the spectrum structure coincides with the standard
one. Note that, by construction, K in fact lands in connective spectra.

Proposition 6.4. There is a unique lift of K: Catst → S to K: Catst → Sp≥0.

Proof. The universal property of commutative monoids given in [Har20, Corollary 5.15] implies
that if D has finite products and C is semiadditive, then Fun×(C, D) ∼= Fun×(C, CMon(D)). Since
CMongl(D) ⊆ CMon(D) is a full subcategory closed under products,

Fun×(C, CMongl(D)) ⊆ Fun×(C, CMon(D))

is a full subcategory. Therefore, the forgetful

Fun×(C, CMongl(D)) → Fun×(C, D)

is fully faithful, meaning that product preserving functors C → D have unique or no lifts to
CMongl(D). In particular, for D = S, using the equivalence CMongl(S) ∼= Sp≥0, we get that the
forgetful

Fun×(C, Sp≥0) → Fun×(C, S)

is fully faithful.
Applying this to the case C = Catst, the result follows since K has a lift, which is therefore

unique. �

6.2 Definition of semiadditive algebraic K-theory
We restrict the S•-construction to Catstm-fin, and use the same notation, i.e. S• : Catstm-fin → SΔop

.
Proposition 4.13 shows that Catstm-fin → Catst preserve limits, thus by Lemma 6.1, the restriction
S• : Catstm-fin → SΔop

preserves limits as well, so using Proposition 4.8 again we get an induced
functor S• : CMon(p)

m (Catstm-fin) → CMon(p)
m (S)Δ

op

. Employing Theorem 5.6, we give the following
definition.
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Definition 6.5. We define m-semiadditive algebraic K-theory K[m] : Catstm-fin → [m]צ by
K[m](C) = Ω|(S•(C�))gpc|, that is, as the following composition

Catstm-fin

(−)�−−−→ CMon(p)
m (Catstm-fin)

S•−→ CMon(p)
m (S)Δ

op (−)gpc

−−−−→ Δ([m]צ)
op |−|−−→ [m]צ Ω−→ .[m]צ

Example 6.6. Proposition 6.4 shows that the case m = 0 recovers the p-localization of the
ordinary K-theory of stable categories.

Proposition 6.7. The functor K[m] : Catstm-fin → [m]צ is an m-semiadditive functor, i.e. com-
mutes with all limits indexed by an m-finite p-space. In particular, K[m](CA) ∼= K[m](C)A for any
m-finite p-space A.

Proof. The functor K[m] : Catstm-fin → [m]צ is defined as the composition of functors between
m-semiadditive categories ([CSY21a, Proposition 2.1.4(1) and (2)] imply the m-semiadditivity of
CMon(p)

m (S)Δ
op

and Δ([m]צ)
op

). All of the functors either preserve all limits (in the case of (−)�,
S• and Ω) or preserve all colimits (in the case of (−)gpc and | − |). In particular, they are all
m-semiadditive functors, thus the composition is an m-semiadditive functor as well. �

6.3 Relationship to ordinary algebraic K-theory
Proposition 6.7 shows that K[m] is an m-semiadditive functor and, in particular, satisfies
K[m](CA) ∼= K[m](C)A for any m-finite p-space A. One may wonder if K[m] can be obtained by
forcing ordinary algebraic K-theory to satisfy this condition. In this subsection we show a more
general result of this sort. To be more specific, let m0 ≤ m, then Definition 6.8 introduces a func-
tor K[m0]

[m] , which associates to C ∈ Catstm-fin the pre-m-commutative monoid given on objects by

A �→ K[m0](CA). The main result of this subsection is Theorem 6.9, which shows that forcing the
m-Segal condition on K[m0]

[m] is indeed K[m]. In particular, the case m0 = 0 yields an alternative
definition of m-semiadditive algebraic K-theory, by forcing A �→ K(CA) to satisfy the m-Segal
condition.

Consider the inclusion i : CMon(p)
m (Catstm-fin) ⊆ PCMon(p)

m (Catstm-fin) → PCMon(p)
m (Catstm0-fin).

Using this we are lead to the main definition.

Definition 6.8. We define the functor K[m0]
[m] : Catstm-fin → PCMon(p)

m ([m0]צ) by the following
composition:

Catstm-fin

(−)�−−−→ CMon(p)
m (Catstm-fin)

i−→ PCMon(p)
m (Catstm0-fin)

K[m0]◦−−−−−−→ PCMon(p)
m .([m0]צ)

We recall that for any D we have an equivalence CMon(p)
m (D) ∼= CMon(p)

m (CMon(p)
m0(D))

(which is given by sending X ∈ CMon(p)
m (D) to the iterated commutative monoid given on

objects by A �→ (B �→ X(A × B))). In particular, we can consider it as a full subcategory
CMon(p)

m (D) ⊆ PCMon(p)
m (CMon(p)

m0(D)), and this inclusion has a left adjoint Lseg.
Applying the above for D = Sp(p) shows that we have an inclusion of a full subcategory

[m]צ ⊆ PCMon(p)
m ([m0]צ) with a left adjoint Lseg. This allows us consider K[m] : Catstm-fin → [m]צ

as a functor to PCMon(p)
m .([m0]צ)

Theorem 6.9. There is a natural equivalence LsegK[m0]
[m]

∼−→ K[m] of functors Catstm-fin → .[m]צ
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Proof. We show that the square

commutes by admitting it as a (horizontal) composition of commutative squares, following the
definition of the two functors.

Both functors start with Catstm-fin

(−)�−−−→ CMon(p)
m (Catstm-fin).

Consider the following square.

The lift of S• to (pre-)m-commutative monoids is given by post-composition. From this descrip-
tion, the upper composition in fact lands in CMon(p)

m (CMon(p)
m0(S)Δ

op

), so Lseg acts on the image
as the identity, making the square commute.

The following square commutes because all maps are left adjoints and the square of right
adjoints commutes because they are all forgetfuls.

The following square commutes because Lseg is a left adjoint, thus commutes with colimits.

Lastly, Lseg is an exact functor between stable categories, thus it commutes with finite limits,
so the following square commutes.

�

In particular, restricting to the case m0 = 0, we get that the functor K[m] given by A �→ K(CA)
satisfies the following:

Corollary 6.10. There is a natural equivalence LsegK[m]
∼−→ K[m] of functors Catstm-fin → .[m]צ

In particular, if K[m](C) : Span(S(p)
m )op → Sp(p) satisfies the m-Segal condition, then K[m](C) ∼=

K[m](C).
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Corollary 6.11. There is a natural transformation K → K[m] of functors Catstm-fin → Sp(p).

Proof. By adjunction, the equivalence LsegK[m]
∼−→ K[m] of Corollary 6.10 corresponds to a natu-

ral transformation K[m] → K[m] of functors Catstm-fin → PCMon(p)
m (Sp(p)), where the target lands

in .[m]צ Evaluating the pre-m-commutative monoids at the point gives the desired natural
transformation. �

Recall that SpT(n) is ∞-semiadditive. In particular, SpT(n)
∼= CMon(p)

m (SpT(n)). In addition,

there is a canonical map of modes Lצ[m]

T(n) : [m]צ → SpT(n). Recall from [CSY21a, Corollary 5.5.14]
that Lצ

T(n) : צ → SpT(n) is a smashing localization, here we prove a slight generalization.

Lemma 6.12. For any m ≥ 1 and n ≥ 0, the functor Lצ[m]

T(n) : [m]צ → SpT(n) is a smashing
localization of modes.

Proof. Recall that Lf
n : Sp → Lf

nSp is a smashing localization. Tensoring with the stable mode
,[m]צ by Lemma 2.49 we get that [m]צ → [m]צ ⊗ Lf

nSp is a smashing localization of modes. Now,
by [CSY21a, Theorem G] we know that [m]צ ⊗ Lf

nSp ∼= SpT(0) × · · · × SpT(n), and the projection

to a factor is a smashing localization of modes as well. Therefore, the composition Lצ[m]

T(n) : [m]צ →
SpT(n) is also smashing localization of modes. �

Proposition 6.13. The following square commutes.

Proof. First recall that by definition [m]צ = CMon(p)
m (Sp(p)), and as explained above, SpT(n)

∼=
CMon(p)

m (SpT(n)). All of the morphisms in the square in the statement are left adjoints. Using
the two identifications and passing to the right adjoints we obtain the following square.

This square commutes as all morphisms are inclusions, thus the original square of left adjoints
commutes as well. �

Corollary 6.14. There is an equivalence LsegLT(n)K[m]
∼−→ Lצ[m]

T(n)K
[m]. In particular, if

LT(n)K[m](C) satisfies the m-Segal condition, then LT(n)K(C) ∼= Lצ[m]

T(n)K
[m](C).

Proof. The first part follows immediately from Corollary 6.10 and Proposition 6.13. For the
second part, if LT(n)K[m](C) satisfies the m-Segal condition, then by the first part there is

an equivalence LT(n)K[m](C) ∼= Lצ[m]

T(n)K
[m](C). The equivalence CMon(p)

m (SpT(n)) ∼= SpT(n), given
by taking the underlying object, identifies LT(n)K[m](C) with LT(n)K(C), showing that indeed
LT(n)K(C) ∼= Lצ[m]

T(n)K
[m](C). �
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Corollary 6.15. There is a natural transformation LT(n)K → Lצ[m]

T(n)K
[m] of functors

Catstm-fin → SpT(n).

Proof. Similarly to Corollary 6.11, by adjunction, the equivalence LsegLT(n)K[m]
∼−→ Lצ[m]

T(n)K
[m]

of Corollary 6.14 corresponds to a natural transformation LT(n)K[m] → Lצ[m]

T(n)K
[m] of functors

Catstm-fin → PCMon(p)
m (SpT(n)), where the target lands in CMon(p)

m (SpT(n)) ∼= SpT(n). Evaluating
the pre-m-commutative monoids at the point gives the desired natural transformation. �

6.4 Multiplicative structure
Using Corollary 6.10 we leverage the lax symmetric monoidal structure on algebraic K-theory
developed in [BGT14, Corollary 1.6] and [Bar15, Proposition 3.8] to construct a lax symmetric
monoidal structure on m-semiadditive algebraic K-theory.

Recall that for any collection of indexing categories K, CatK has a symmetric monoidal
structure constructed in [Lur17, § 4.8.1]. If K contains all finite categories, then CatstK is the
full subcategory on those categories that are in addition stable, which is also endowed with a
symmetric monoidal structure (but is not a sub-symmetric monoidal category of CatK, whose
unit is not stable).

Lemma 6.16. The inclusion Catstm-fin → Catst is lax symmetric monoidal.

Proof. We argue similarly to the proof of Proposition 4.15. Recall again that there is a fully
faithful functor (−)⊗ : CMon(Cat)lax → Op from the category of symmetric monoidal categories
and lax symmetric monoidal functors to operads. For any collection of indexing categories K the
operad Catst,⊗K is a sub-operad of Cat⊗K.

The category Catstm-fin is the case where K is the collection of all finite categories and m-finite
p-spaces, and Catst is the case where K′ the collection of all finite categories. The same proof
of [Lur17, Corollary 4.8.1.4] shows that the inclusion CatK → CatK′ is lax symmetric monoidal.
We thus get a map of operads Cat⊗K → Cat⊗K′ . The restriction of this map to Catst,⊗m-fin lands
in Catst,⊗, so we get a map of operads Catst,⊗m-fin → Catst,⊗, that is, a lax symmetric monoidal
functor Catstm-fin → Catst. �

Proposition 6.17. The functor K[m] : Catstm-fin → PCMon(p)
m (Sp(p)) is lax symmetric monoidal.

Proof. Recall that K[m] is given by the composition

Catstm-fin

(−)�−−−→ CMon(p)
m (Catstm-fin)

⊆ PCMon(p)
m (Catstm-fin)

→ PCMon(p)
m (Catst)

K◦−−−−→ PCMon(p)
m (Sp(p)).

The first functor is symmetric monoidal by Theorem 4.26, which also shows that the second
map is lax symmetric monoidal as the right adjoint of the symmetric monoidal functor Lseg.
The third and fourth maps are post-composition with the lax symmetric monoidal functors
Catstm-fin → Catst and K, which are therefore also lax symmetric monoidal by Proposition 3.3. �
Theorem 6.18. The functor K[m] : Catstm-fin → [m]צ is lax symmetric monoidal.

Proof. Recall from Corollary 6.10 that K[m] ∼= LsegK[m]. Proposition 6.17 shows that K[m] is lax
symmetric monoidal, and Lseg is symmetric monoidal by Theorem 4.26. �
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By construction, the lax symmetric monoidal structure on K[m] is compatible with that of
K[m], so we immediately obtain the following.

Corollary 6.19. The natural transformations K → K[m] and LT(n)K → Lצ[m]

T(n)K
[m] from

Corollary 6.11 and Corollary 6.15 (respectively) are symmetric monoidal.

Recall from Theorem 2.50 that there is a lax symmetric monoidal functor
LMod(−) : Alg(צ[m]) → ModiL

[m]צ . In addition, Proposition 4.15 gives a lax symmetric monoidal
functor (−)at : ModiL

[m]צ → Catstm-fin. Composing all of the above we arrive at the following
definition.

Definition 6.20. We define the lax symmetric monoidal functor K[m] : Alg(צ[m]) → [m]צ by
K[m](R) = K[m](LModat

R ), i.e. the composition

Alg(צ[m])
LMod(−)−−−−−→ Modצ[m]

(−)at−−−→ Catstm-fin
K[m]−−−→ .[m]צ

Remark 6.21. Recall from Proposition 2.54 that the atomics coincide with the left dualizable
modules, therefore K[m](R) = K[m](LModldbl

R ).

Remark 6.22. Note that if R ∈ Alg(SpT(n)) and m ≥ n, then since SpT(n) is a smashing local-
ization of [m]צ by Lemma 6.12, we know that LModR(צ[m]) ∼= LModR(SpT(n)), and the atomics
are the left dualizable objects. Therefore, we get that K[m](R) ∼= K[m](LModR(SpT(n))ldbl).

Remark 6.23. As K[m] : Alg(צ[m]) → [m]צ is lax symmetric monoidal, we conclude that it sends
O ⊗ E1-algebras in [m]צ to O-algebras in [m]צ for any operad O. In particular, for the case O = En,
we get that K[m] sends En+1-algebras to En-algebras, and for O = E∞ we get K[m] : CAlg(צ[m]) →
CAlg(צ[m]). As in Remark 2.55, in this case K[m](R) = K[m](Moddbl

R ).

7. Redshift

Recall that the redshift philosophy predicts that algebraic K-theory increases height by 1. In this
section we prove some results concerning the interplay between semiadditive height and higher
semiadditive algebraic K-theory.

An immediate application of the redshift result of [CSY21a, Theorem B], gives an upper
bound, showing that if R ∈ Alg(צ[m]) has semiadditive height ≤ n for some finite n < m, then
K[m](R) has semiadditive height ≤ n + 1 (see Theorem 7.12). Furthermore, in Theorem 7.25
we show that if R has semiadditive height exactly n, and has (height n) pth roots of unity
(see Definition 7.17), then K[m](R) has semiadditive height exactly n + 1, i.e. lands in .n+1צ In
particular, the Lubin–Tate spectrum En has this property, so we conclude that K[m](En) ∈ n+1צ

(see Corollary 7.26).

7.1 Semiadditive height
We begin by recalling the notion of (semiadditive) height from [CSY21a, Definition 3.1.6]
and making a few observations which will be used to study the interaction between height
and semiadditive algebraic K-theory. We recall from [CSY21a, Definition 3.1.3] that for every
m-semiadditive category D, and finite n ≤ m, there is a natural transformation of the identity
p(n) : idD ⇒ idD, also denoted by |BnCp|, which is given on an object Y ∈ D by

p(n) : Y
Δ−→ Y BnCp Nm−1−−−−→ BnCp ⊗ Y

∇−→ Y,
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using the fact that the norm map is an equivalence. Alternatively, as D is m-semiadditive, its
objects have a canonical m-commutative monoid structure in D, so that the map is given by
q!q

∗ where q : BnCp → ∗ is the unique map.

Definition 7.1 [CSY21a, Definition 3.1.6]. Let Y ∈ D, then its semiadditive height is defined
as follows:

(1) ht(Y ) ≤ n if p(n) : Y → Y is invertible;
(2) ht(Y ) > n if Y is p(n)-complete (i.e. for every Z ∈ D with p(n) : Z → Z invertible,

hom(Z, Y ) = ∗);
(3) ht(Y ) = n if ht(Y ) ≤ n and ht(Y ) > n − 1.

We denote by D≤n the full subcategory of objects Y ∈ D with ht(Y ) ≤ n, and similarly D>n for
objects of height > n and Dn for object of height exactly n.

Proposition 7.2 [CSY21a, Theorem A]. Let D be an m-semiadditive category which admits
all limits and colimits indexed by π-finite p-spaces, and let n ≤ m be a finite number, then D≤n

is ∞-semiadditive.

Proposition 7.3 [CSY21a, Proposition 3.1.13]. Let F : D → E be an m-semiadditive functor,
between m-semiadditive categories, and let n ≤ m be a finite number. Then F sends p(n) of
D to p(n) of E. In particular, if ht(Y ) ≤ n, then ht(FY ) ≤ n, that is, it induces a functor
F : D≤n → E≤n.

Corollary 7.4. Let D and E be m-semiadditive categories, F : D � E : G an adjunction, and
n ≤ m a finite number. Then the adjunction restricts to an adjunction F : D≤n � E≤n : G.
Furthermore, if D and E admit all limits and colimits indexed by π-finite p-spaces, then the
restricted functors are ∞-semiadditive.

Proof. Since G and F preserves limits and colimits respectively, they are m-semiadditive. By
Proposition 7.3, their restrictions to objects of height ≤ n land in objects of height ≤ n. Since
by Proposition 7.2 D≤n and E≤n are ∞-semiadditive, and the restricted functors preserve limits
or colimits, they are in fact ∞-semiadditive. �

Proposition 7.5. Let n ≤ m be a finite number, then the mode [m]צ
≤n

∼= n≥צ is independent of
m, and is the mode classifying the property of being stable p-local ∞-semiadditive and having
all objects of height ≤ n. Furthermore, it decomposes as a product

n≥צ
∼= 0צ × · · · × ,nצ

where kצ is the mode classifying the property of being stable p-local ∞-semiadditive and having
all objects of height exactly n.

Proof. If n < m, then this follows immediately from [CSY21a, Theorem 4.2.7 and Theorem 5.3.6].
If n = m, then the same results show that

[m]צ ∼= 0צ × · · · × n−1צ × [m]צ
>n−1.

By [CSY21a, Proposition 4.2.1], [m]צ
>n−1 is a recollement of nצ and [m]צ

>n , but [m]צ)
>n)≤n = 0, so the

result follows upon taking objects of height ≤ n. �
Consider the case D = Catstm-fin. In this case, the objects are themselves categories C ∈ D on

which p(n) acts, and can have heights ht(C) as objects of Catstm-fin.

Proposition 7.6. Let C ∈ Catstm-fin. For any m-finite p-space A, the map |A| : C → C is given
by |A|(X) ∼= colimA X. In particular, p(n)(X) ∼= colimBnCp X.
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Proof. Recall that if we consider the objects of Catstm-fin as equipped with the canonical CMon(p)
m ()

structure, then p(n)
∼= q!q

∗ where q : A → ∗ is the unique map. Theorems 5.3 and 5.6 then
show that q∗ : C → CA is taking the constant diagram and that q! : CA → C is computing the
colimit. �

7.2 Upper bound
Proposition 7.7. Let C ∈ Catstm-fin and assume that ht(C) ≤ n as an object of Catstm-fin for some
finite n ≤ m, then ht(K[m](C)) ≤ n. That is, K[m] restricts to a functor K[m] : Catstm-fin,≤n → .n≥צ

Proof. We have that K[m] is m-semiadditive by Proposition 6.7, so the result follows from
Proposition 7.3. �

By Proposition 7.2, Catstm-fin,≤n and n≥צ are ∞-semiadditive.

Proposition 7.8. We have that K[m] : Catstm-fin,≤n → n≥צ is ∞-semiadditive. Furthermore, let

n ≤ m0 ≤ m with n a finite number, then K[m] : Catstm-fin,≤n → n≥צ and the restriction of K[m0]

to the (not full) subcategory Catstm-fin,≤n coincide.

Proof. By construction, K[m] : Catstm-fin → [m]צ is a composition of left and right adjoints between
m-semiadditive categories (as used in the proof of Proposition 6.7), all of which admit all limits
and colimits (as all categories are presentable). By Corollary 7.4, K[m] : Catstm-fin,≤n → n≥צ is the
composition the adjoints restricted to objects of height ≤ n, which are ∞-semiadditive functors.

For the second part, note that K[m0] : Catstm-fin,≤n → n≥צ is also ∞-semiadditive and, in

particular, m-semiadditive. Recall from Theorem 6.9 that there is an equivalence LsegK[m0]
[m]

∼−→
K[m], so when K[m0]

[m] is restricted to Catstm-fin,≤n it already satisfies the m-Segal condition and is,

thus, equivalent to K[m]. �

We recall the following redshift result, which we view as the step along the construction at
which redshift happens.

Theorem 7.9 (Semiadditive redshift [CSY21a, Theorem B]). Let C ∈ Catm-fin be an
m-semiadditive category and let n < m be a finite number. Then, ht(X) ≤ n for all X ∈ C if
and only if ht(C) ≤ n + 1 as an object of Catm-fin.

Corollary 7.10. Let C ∈ Modצ≤n
⊂ Modצ[m] for some finite number n < m, then Cat ∈

Catstm-fin is an m-semiadditive category and has ht(Cat) ≤ n + 1 as an object of Catstm-fin.

Proof. It is in Catstm-fin and m-semiadditive by Proposition 4.15. By Proposition 7.5, n≥צ classifies
the property of having all objects of height ≤ n, so together with Theorem 7.9, this implies that
ht(Cat) ≤ n + 1 as an object of Catstm-fin. �

Remark 7.11. The mode n≥צ is a smashing localization of [m]צ by [CSY21a, Theorem 4.2.7].
By Proposition 2.26 we get that atomics in C ∈ Modצ≤n

with respect to either mode coincide.
In addition, for R ∈ Alg(צ≤n) left modules over R in either mode agree.

Theorem 7.12. Let C ∈ Modצ≤n
⊂ Modצ[m] for some finite number n < m, then K[m](Cat) ∈

.n+1≥צ In particular, if R ∈ Alg(צ≤n), then K[m](R) ∈ .n+1≥צ

Proof. Combine Corollary 7.10 and Proposition 7.7. �
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Proposition 7.7 shows that pn : K[m](C) → K[m](C) is invertible, but in fact we can prove the
following stronger result if we assume that C is m-semiadditive. Note that as we know now that
K[m](C) ∈ ,n≥צ it is an object of an ∞-semiadditive category, so that p(k) is defined for all k.

Proposition 7.13. Let C ∈ Catstm-fin be an m-semiadditive category with ht(C) ≤ n + 1 as an
object of Catstm-fin for some finite n < m. Then p(k) : K[m](C) → K[m](C) is the identity for every

k ≥ n + 1. In particular, for C ∈ Modצ≤n
, the map p(k) : K[m](Cat) → K[m](Cat) is the identity for

every k ≥ n + 1.

Proof. Recall from Theorem 7.9 that for every X ∈ C we have ht(X) ≤ n, i.e. |BnCp| : X →
X is invertible. Applying [CSY21a, Proposition 2.4.7(1)] to the case A = Bn+1Cp shows

that colimBn+1Cp
X

∇−→ X is an equivalence. By Proposition 7.6, p(n+1) : C → C is given by
p(n+1)(X) ∼= colimBn+1Cp

X, which by the above is X itself, i.e. p(n+1) is the identity. By [CSY21a,
Proposition 2.4.7], if p(k) is invertible, then p(k+1) is also invertible and is its inverse, finishing
by induction. For the second part apply Corollary 7.10. �

7.3 Lower bound
Proposition 7.14. Let C ∈ Catstm-fin be an m-semiadditive category with ht(C) ≤ n + 1 as an
object of Catstm-fin for some finite n < m. Then K[m](C) ∈ .n+1≥•≥1צ In particular, for C ∈ Modצ≤n

we have that K[m](Cat) ∈ .n+1≥•≥1צ

Proof. Recall from Proposition 7.7 that K[m](C) ∈ ,n+1≥צ and that n+1≥צ is ∞-semiadditive.
We thus need to show that L0K[m](C) = 0 where L0 : n+1≥צ → 0צ is the projection. By
Proposition 7.3, the map L0 preserves p(k), so by Proposition 7.13 we know that p(k) acts
as the identity on L0K[m](C) for every k ≥ n + 1. Since L0K[m](C) is of height ≤ 0, it is
p(0) = p-invertible, and [CSY21a, Proposition 2.4.7] then shows inductively that p(2k)

∼= p for any
k ≥ 0. Choose some k such that 2k ≥ n + 1, then we get that p ∼= p(2k)

∼= 1, so that p − 1 is the
zero morphism on L0K[m](C). However, since 0צ is p-local, this morphism is invertible, thus
L0K[m](C) = 0. For the second part apply Corollary 7.10. �

Let 1 be the unit of ,nצ and consider 1[BnCp] = colimBnCp 1 ∈ CAlg(צn) (which carries an
action of (Z/p)× ∼= Aut(Cp)). We then have the following result.

Proposition 7.15. Let C ∈ Modצn , then p(n) : Cat → Cat is given by 1[BnCp] ⊗−.

Proof. Recall that the action of nצ on C commutes with colimits. Then, by Proposition 7.6,

p(n)(−) ∼= colim
BnCp

(−) ∼= colim
BnCp

(1 ⊗−) ∼= (colim
BnCp

1) ⊗− = 1[BnCp] ⊗−. �

Motivated by this result, we further study the action of 1[BnCp]. To that end, we recall the
following.

Definition 7.16 [CSY21b, Proposition 4.5 and Definition 4.7]. The ring 1[BnCp] splits
((Z/p)×-equivariantly) as a product in CAlg(צn)

1[BnCp] ∼= 1 × 1[ω(n)
p ],

where 1[ω(n)
p ] ∈ CAlg(צn) is called the (height n) pth cyclotomic extension of 1. For any R ∈

Alg(צn), we define the R-algebra R[ω(n)
p ] = 1[ω(n)

p ] ⊗ R.
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Definition 7.17. We say that a category C ∈ Modצn has (height n) pth roots of unity if
1[ω(n)

p ] ⊗− is equivalent to
∏

(Z/p)× − as functors C → C. Similarly, we say that R ∈ Alg(צn)

has (height n) pth roots of unity if R[ω(n)
p ] is equivalent to

∏
(Z/p)× R as an R-algebra.

Remark 7.18. It makes sense to require the equivalence to be (Z/p)×-equivariant, but we will
not use this assumption.

Remark 7.19. For R ∈ Alg(SpT(n)), it is always true that the (height n) pth cyclotomic extension

R[ω(n)
p ] has (height n) pth roots of unity. Indeed, [CSY21b, Proposition 5.2] shows that R[ω(n)

p ] is
a Galois extension of R, which immediately implies the condition of having (height n) pth roots
of unity. However, it is not true in general for R ∈ Alg(צn), by a counterexample constructed by
Allen Yuan.

Example 7.20 [CSY21b, Proposition 5.1]. The Lubin–Tate spectrum En ∈ CAlg(SpK(n)) has
(height n) pth roots of unity.

Example 7.21. At the prime p = 2, any C = LModR for R ∈ SpT(n), and, more generally, C ∈
ModSpT(n)

, has (height n) pth roots of unity. This is true because [CSY21b, Proposition 5.2]

shows that ST(n)[ω
(n)
p ] is a (Z/p)×-Galois extension of ST(n). Since p = 2, it is a Galois extension

of order p − 1 = 1, i.e. ST(n)[ω
(n)
p ] ∼= ST(n), so the condition is automatic.

Lemma 7.22. Let C be a monoidal category, R ∈ Alg(C) and n a natural number. Consider Rn

as an algebra under R via the diagonal map Δ: R → Rn. Then the composition of the extension

of scalars and the restriction of scalars LModR
Δ!−→ LModRn

Δ∗−−→ LModR is equivalent to the
functor (−)n : LModR → LModR.

Proof. Consider the ith projection πi : Rn → R. The extension of scalars along it gives a functor
LModRn → LModR. The n functors together give an equivalence LModRn

∼−→ LModn
R. Since

R
Δ−→ Rn πi−→ R is the identity, so are (πiΔ)! and (πiΔ)∗. Therefore, LModR

Δ!−→ LModRn
∼−→

LModn
R is the diagonal, and LModn

R
∼−→ LModRn → LModR is the multiplication of modules, so

we conclude that their composition is indeed (−)n : LModR → LModR. �
Proposition 7.23. Let R ∈ Alg(צn) have (height n) pth roots of unity, then LModR ∈ Modצn

has (height n) pth roots of unity.

Proof. First note that the map 1[ω(n)
p ] ⊗− : nצ → nצ is equivalent to the composition of the

extension of scalars and restriction of scalars along 1 → 1[ω(n)
p ]. Since by definition R[ω(n)

p ] =
1[ω(n)

p ] ⊗ R, we get an R-algebra map R → R[ω(n)
p ]. Then, the composition of the extension

of scalars and restriction of scalars along this map gives a functor LModR → LModR, which
is equivalent to the action of 1[ω(n)

p ] on LModR. By assumption, R[ω(n)
p ] ∼= ∏

(Z/p)× R as an

R-algebra, so the previous lemma implies that 1[ω(n)
p ] ⊗− is equivalent to

∏
(Z/p)× −. �

Proposition 7.24. Let C ∈ Modצn have (height n) pth roots of unity, then p(n) : Cat → Cat is
equivalent to p : Cat → Cat.

Proof. Recall that the action of nצ on C commutes with colimits, so that 1[BnCp] ⊗− : C →
C commutes with colimits. In addition, nצ is semiadditive, so finite products and coproducts
coincide, so that 1[BnCp] ⊗− : C → C also commutes with finite products, and the same holds for
the restriction to the atomics 1[BnCp] ⊗− : Cat → Cat. By Proposition 7.15, p(n)

∼= 1[BnCp] ⊗−
on Cat. Now, using Definition 7.16 and the assumption that C has pth roots of unity, we get an
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equivalence of functors Cat → Cat

p(n)(−) ∼= 1[BnCp] ⊗− ∼= (1 × 1[ω(n)
p ]) ⊗− ∼= (1 ×

∏
(Z/p)×

1) ⊗− ∼=
∏
p

1 ⊗− ∼=
∏
p

(−). �

Theorem 7.25. Let C ∈ Modצn have (height n) pth roots, and n < m a finite number, then
K[m](Cat) ∈ .n+1צ In particular, if R ∈ Alg(צn) has (height n) pth roots of unity, then K[m](R) ∈
.n+1צ

Proof. Proposition 7.14 shows that K[m](Cat) ∈ .n+1≥•≥1צ In particular, it is of height > 0, i.e.
p(0) = p-complete. By Proposition 7.24, p(n)

∼= p, so that it is also p(n)-complete, that is, of height
> n. The last part follows from Proposition 7.23. �

Corollary 7.26. Let n < m be a finite number, then K[m](En) ∈ CAlg(צn+1).

Proof. Follows from Example 7.20 and Theorem 7.25. �

8. Relationship to chromatically localized K-theory

In § 7, we have shown that higher semiadditive algebraic K-theory interacts well with semiad-
ditive height. For example, ht(K[m](En)) = n + 1 when m > n by Corollary 7.26. Note that the
assumption m > n is necessary to even define semiadditive height n + 1. In this section we study
the connection between higher semiadditive algebraic K-theory and chromatic localizations of
ordinary algebraic K-theory by other means, while also dropping the assumption m > n.

Let R ∈ Alg(SpT(n)). The inclusion SpT(n+1) ⊂ Sp admits a left adjoint LT(n+1) : Sp →
SpT(n+1). Since K(R) ∈ Sp, we can consider LT(n+1)K(R) ∈ SpT(n+1). Similarly, by Lemma 6.12,

there is an inclusion SpT(n+1) ⊂ [m]צ for any m ≥ 1, which admits a left adjoint Lצ[m]

T(n+1) : [m]צ →
SpT(n+1). Note that, in some senses, Lצ[m]

T(n+1) is better behaved than LT(n+1), as it is

a smashing localization. Since K[m](R) ∈ ,[m]צ we can consider Lצ[m]

T(n+1)K
[m](R) ∈ SpT(n+1).

By Corollary 6.15, there is a natural comparison map

LT(n+1)K(R) → Lצ[m]

T(n+1)K
[m](R) ∈ SpT(n+1).

This raises two independent questions.

(1) Does K[m](R) land in SpT(n+1) ⊂ ?[m]צ
(2) Is the comparison map an equivalence?

A positive answer to both questions will imply that K[m](R) ∼= LT(n+1)K(R), see Conjecture 1.4.
In Proposition 8.4 we show that the first question is closely related to the Quillen–Lichtenbaum
conjecture for R, in the guise of having a non-zero finite spectrum X such that K(R) ⊗ X is
bounded above. By Corollary 6.14, the second question is equivalent to LT(n+1)K[m](R) satis-
fying the m-Segal condition. More informally, having descent properties for T(n + 1)-localized
K-theory.

Using the Galois descent results for T(n + 1)-localized K-theory of [CMNN20], the second
question is answered in the affirmative for m = 1 in Proposition 8.6.

We then study the case where R has height 0. The main result is Theorem 8.10, showing
that for any p-invertible algebra R ∈ Alg(Sp[p−1]) and m ≥ 1, there is an equivalence

K[m](R) ∼= LT(1)K(R) ∈ SpT(1).
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This is first proved for R = S[p−1] by employing the Quillen–Lichtenbaum property of S[p−1]
together with Proposition 8.6 mentioned above. The general case then follows via the lax
symmetric monoidal structure on K[m].

Finally, we study the completed Johnson–Wilson spectrum Ê(n) at height n ≥ 1, endowed
with the Hahn–Wilson [HW22] E3-algebra structure (see Theorem 8.12) and, more generally,
any R ∈ Alg(LMod

Ê(n)
). In Theorem 8.23 we show that

K[m](R) ∈ SpT(n+1)

for any m ≥ 1, strengthening Theorem 7.25 for Ê(n)-algebras. In the case m = 1, Proposition 8.6
implies that

K[1](R) ∼= LT(n+1)K(R) ∈ SpT(n+1).

To prove Theorem 8.23, we first use the Quillen–Lichtenbaum result for BP〈n〉 of [HW22] and the
lax symmetric monoidal structure on K[m] to show that K[m](Ê(n)) ∈ SpT(0) × · · · × SpT(n+1).
We would like to thank the anonymous referee for suggesting this argument. Then, we compute
the cardinality of the classifying space of the k-fold wreath product of Cp at each chromatic
height in two different ways. We observe that they are compatible only in chromatic height
n + 1, concluding that K[m](Ê(n)) ∈ SpT(n+1). Using the lax symmetric monoidal structure on

K[m], this is generalized to any Ê(n)-algebra.
Throughout this section F (n) denotes a type-n finite spectrum (for example, the generalized

Moore spectrum S/(pi0 , vi1
1 , . . . , v

in−1

n−1 )). Without loss of generality, we may assume that F (n) is
an algebra, i.e. F (n) ∈ Alg(Sp), by replacing it by F (n) ⊗ DF (n) ∼= End(F (n)).

8.1 General results
We begin this subsection by recalling and slightly generalizing some results from [CSY22]
and [CSY21a] that will be used in the rest of the section.

Lemma 8.1. Let C be a symmetric monoidal stable p-local 1-semiadditive category, and let
R ∈ CAlg(C). If 1 ∈ π0R = homhC(1C, R) is a torsion element, then R = 0.

Proof. This is essentially [CSY22, Corollary 4.3.5], we repeat the argument for the convenience
of the reader. By [CSY22, Theorem 4.3.2], the ring π0R admits an additive p-derivation. By
assumption, π0R is p-local. Since 1 ∈ π0R is torsion, [CSY22, Proposition 4.1.10] shows that it
is also nilpotent, which means that 1 = 0 ∈ π0R. Therefore, R = 0. �

Fix m ≥ 1. Recall from [CSY21a, Theorem 4.2.7] that [m]צ ∼= 0צ × [m]צ
>0 . Also, by [CSY21a,

Example 5.3.7], 0צ
∼= SpT(0)

∼= SpQ. The collection of objects X ∈ [m]צ
>0 such that X ⊗ F (n + 2) =

0 form a full subcategory, which is equivalent to [m]צ
>0 ⊗ Lf

n+1Sp ∼= SpT(1) × · · · × SpT(n+1) by
[CSY21a, Corollary 5.5.7] and [CSY21a, Theorem G]. We thus have the following result.

Lemma 8.2. Let X ∈ [m]צ
>0 , then X ∈ SpT(1) × · · · × SpT(n+1) if and only if X ⊗ F (n + 2) = 0.

Recall from [CSY21a, Proposition 5.3.9] that, similarly to the K(n)- and T(n)-localizations,
the map of modes Sp → nצ vanishes on all bounded above spectra when n ≥ 1. Here we prove a
slight generalization of this result.

Lemma 8.3. Let m ≥ 1, then the map of modes G>0 : Sp → [m]צ
>0 vanishes on all bounded above

spectra.
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Proof. We follow closely the argument of [CSY21a, Proposition 5.3.9], diverging only the case
of Fp. The class of spectra on which G>0 vanishes is closed under colimits and desuspensions
in Sp. Hence, by a standard devissage argument, it suffices to show that G>0 vanishes on Q
and F� for all primes �. First, Q and F� for � �= p are p-divisible. Since G>0 is 0-semiadditive,
G>0(Q) and G>0(F�) are p-divisible as well, but all objects of [m]צ

>0 are p-complete, and so
G>0(Q) = G>0(F�) = 0.

It remains to show that G>0(Fp) = 0. Since Fp ∈ CAlg(Sp) is an E∞-algebra, and G>0 is a
map of modes, G>0(Fp) ∈ CAlg(צ[m]

>0 ) is an E∞-algebra as well. Similarly, since p = 0 in Fp, the
same holds in π0G>0(Fp). Thus, by Lemma 8.1 with C = [m]צ

>0 and R = G>0(Fp), we know that
G>0(Fp) = 0 which concludes the proof. �

We now move on to proving the two main results of this subsection.

Proposition 8.4. Let C ∈ Alg(Catstm-fin) be an m-semiadditive category for some m ≥ 1.
Assume that there exists a category C0 ∈ Alg(Catst), a left C0-module structure C ∈
LModC0(Catst), and that K(C0) ⊗ F (n + 2) is bounded above. Then K[m](C) ∈ SpT(0) × SpT(1) ×
· · · × SpT(n+1).

Remark 8.5. Note that C0 need not be m-semiadditive or even have m-finite colimits. Moreover,
we require no compatibility between the algebra structure on C and its C0-module structure.

Proof. Recall the decomposition [m]צ ∼= SpT(0) × [m]צ
>0 . By Lemma 8.2, it remains to show that

the factor in [m]צ
>0 satisfies K[m](C)>0 ⊗ F (n + 2) = 0. Let G : Sp → [m]צ denote the map of modes,

the adjoint of the underlying functor (−). We also denote by G>0 : Sp → [m]צ
>0 the composition

with the projection to [m]צ
>0 .

By assumption, K(C0) ⊗ F (n + 2) ∈ Sp is bounded above, so that G>0(K(C0) ⊗ F (n + 2)) =
0 ∈ [m]צ

>0 by Lemma 8.3. The composition G>0(K(−) ⊗ F (n + 2)) is lax monoidal, since K is
lax (symmetric) monoidal by Theorem 6.18, F (n + 2) ∈ Alg(Sp) is taken to be an algebra, and
G>0 is a map of modes. By assumption C is a left module over C0, thus we get that G>0(K(C) ⊗
F (n + 2)) is a left module over G>0(K(C0) ⊗ F (n + 2)) = 0 and, thus, G>0(K(C) ⊗ F (n + 2)) = 0
as well.

Recall from Corollary 6.19 that since C is an algebra, we get an algebra map K(C) →
K[m](C) ∈ Alg(Sp). By the adjunction G � (−) and composing with the projection to [m]צ

>0 , we

get an algebra map G>0(K(C)) → K[m](C)>0 ∈ Alg(צ[m]
>0 ). Since the functor G>0 is a functor

between stable modes, it commutes with the action of Sp. Therefore, tensoring the map with the
algebra F (n + 2) yields G>0(K(C) ⊗ F (n + 2)) → K[m](C)>0 ⊗ F (n + 2) ∈ Alg(צ[m]

>0 ). We have
shown that the source is 0, and since this is an algebra map, so is the target, which concludes
the proof. �

In the next proposition we would like to use [CMNN20, Theorem C], which applies to
Lf

nS-linear stable categories. We recall that an Lf
nS-linear stable category is, by definition, a

module over Perf(Lf
nS) = Moddbl

Lf
nS

in Catst. Note that since Lf
nSp is a smashing localization

of Sp we have that Mod
Lf

nS
= Lf

nSp. In particular, for R ∈ Alg(SpT(n)), we have that LModat
R

is Lf
nS-linear, since LModR ∈ ModSpT(n)

⊂ Mod
Lf

nSp
and left dualizable modules coincide with

atomics by Proposition 2.54. Thus, LModat
R is an example for C in the following proposition.
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Proposition 8.6. Let C ∈ Catst1-fin be Lf
nS-linear for some n > 0 (i.e. it admits a Perf(Lf

nS)-
module structure in Catst), then

L[1]צ

T(n+1)K
[1](C) ∼= LT(n+1)K(C).

In particular, if K[1](C) ∈ SpT(n+1) ⊂ ,[1]צ then K[1](C) ∼= LT(n+1)K(C).

Proof. By Corollary 6.14 it suffices to show that LT(n+1)K[1](C) satisfies the 1-Segal condition,
that is, for any 1-finite p-space A, the canonical map

LT(n+1)K(lim
A

C) → lim
A

LT(n+1)K(C)

is an equivalence. As both sides take coproducts in A to direct sums, we may assume that A is
connected, i.e. A = BG for a finite p-group G. This is exactly [CMNN20, Theorem C]. �

8.2 Height 0
We recall a form of the Quillen–Lichtenbaum conjecture for S[p−1].

Proposition 8.7. We have that F (2) ⊗ K(S[p−1]) is bounded above.

Proof. By [CM21, Theorems 1.1 and 1.2],

K(S[p−1]) → Lf
1K(S[p−1]) ×

Lf
1TC(S[p−1])

TC(S[p−1])

is an isomorphism on high enough p-local homotopy groups. Tensoring with a finite spectrum
preserves the property of a map being an isomorphism on high enough homotopy groups, and
p = 0 in F (2), so it suffices to show that the right-hand side vanishes after tensoring with F (2).
The tensor product of spectra commutes with finite limits, so it suffices to show that each term
on the right-hand side vanishes after tensoring with F (2).

By definition, any Lf
1 -local spectrum vanishes after tensoring with F (2), which shows that

both Lf
1K(S[p−1]) and Lf

1TC(S[p−1]) vanish after tensoring with F (2).
Now, [NS18, Definition II.1.8] exhibits the functor TC: Alg(Sp) → Sp as the composition

Alg(Sp) THH−−−→ CycSp TC−−→ Sp.

Since THH(S[p−1]) ∼= S[p−1], and the second functor is exact, we get that TC(S[p−1]) is
p-invertible. Therefore, TC(S[p−1])/p = 0, and in particular it vanishes after tensoring
with F (2). �

Proposition 8.8. The category ModS[p−1](Sp) ∼= Sp[p−1] is a mode, classifying the property
of being a stable p-invertible presentable category. It is (p-typically) ∞-semiadditive, and a

smashing localization of both Sp and of CMon(p)
m (Sp). In addition, for any m ≥ 0, there is a lax

symmetric functor (−)at : ModiL
Sp[p−1] → Catstm-fin, and Cat = Cω.

Proof. The fact that Sp[p−1] is a mode, classifying the property of being stable p-invertible
presentable category, follows from [CSY21a, Propositions 5.2.17 and 5.2.10]. The fact that it
is p-typically ∞-semiadditive follows from [CSY21a, Proposition 2.3.4], which is essentially the
same fact that SpQ is ∞-semiadditive. It is a smashing localization of both Sp and of CMon(p)

m (Sp)
because it can be obtained from both by inverting p.

The fact that it is a smashing localization together with Proposition 2.26 show that
for C ∈ ModSp[p−1] the Sp[p−1]-atomics, the Sp-atomics and the CMon(p)

m (Sp)-atomics all
coincide. In addition, Proposition 2.8 shows that Sp-atomics are the same as compact objects.
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Finally, the functor (−)at : ModiL
Sp[p−1] → Catstm-fin is the restriction of (−)at : ModiL

CMon
(p)
m (Sp)

→
Catstm-fin from Proposition 4.15. �
Corollary 8.9. Let C ∈ ModSp[p−1] and m ≥ 1, then K[m](Cω) ∈ SpT(1).

Proof. First consider the universal case C = Sp[p−1]. Proposition 8.7 shows that K(S[p−1]) is
bounded above after tensoring with F (2), so by Proposition 8.4 K[m](S[p−1]) ∈ SpT(0) × SpT(1).
Similarly to the proof of Corollary 7.10, Sp[p−1]ω is ∞-semiadditive by Proposition 4.15, and all of
its objects have semiadditive height 0, thus by Proposition 7.14 we get that ht(K[m](S[p−1])) > 0,
so that indeed K[m](S[p−1]) ∈ SpT(1).

We now prove the general case. Recall that by Proposition 8.8 and Theorem 6.18 K[m]((−)at)
is a composition of lax symmetric monoidal functors, and by Proposition 8.8, atomic objects
coincide with compact objects. Since every C ∈ ModSp[p−1] is by definition a module over Sp[p−1],
we get that K[m](Cω) is a module over K[m](S[p−1]) in .[m]צ As we have shown that K[m](S[p−1]) ∈
SpT(1), and SpT(1) is a smashing localization of [m]צ by Lemma 6.12, we conclude that K[m](Cω) ∈
SpT(1) as well. �
Theorem 8.10. Let C ∈ ModSp[p−1] and m ≥ 1, then

K[m](Cω) ∼= LT(1)K(Cω).

In particular, for any R ∈ Alg(Sp[p−1]) we have K[m](R) ∼= LT(1)K(R).

Proof. By Proposition 7.8, K[m](Cω) is independent of m ≥ 1, so we may assume that
m = 1. Therefore, the result follows immediately from the combination of Corollary 8.9 and
Proposition 8.6. �
Example 8.11. For any 1 ≤ m ≤ ∞, there is an equivalence K[m](Q) ∼= KUp.

Proof. The combination of [Sus84, Corollary 4.7] and [Sus83, Main Theorem] shows that there is
an equivalence K(Q)p

∼= K(C)p
∼= kup. As KUp is T(1)-local, and T(1)-localization is insensitive

to connective covers, LT(1)kup
∼= KUp, which shows that LT(1)K(Q) ∼= KUp, and the result follows

by Theorem 8.10. �

8.3 Height n ≥ 1
Fix some finite height 1 ≤ n < ∞. We let Ê(n) ∈ SpT(n) denote the completed Johnson–Wilson

spectrum at height n, namely Ê(n) ∼= LT(n)E(n) ∼= LT(n)BP〈n〉 (note that K(n)- and T(n)-
localization coincide for MU-modules by [Hov95, Corollary 1.10]). The main input to this
subsection is the following result.

Theorem 8.12 [HW22, Corollary of Theorem B]. There exists an E3-BP-algebra structure on
BP〈n〉 such that

K(BP〈n〉)(p) → Lf
n+1K(BP〈n〉)(p)

induces an isomorphism on π∗ for ∗ � 0.

Henceforth, we shall consider BP〈n〉 as an E3-algebra with the structure from Theorem 8.12,
which also endows the localization Ê(n) with a compatible E3-algebra structure. An immediate
corollary of this result is the following.

Corollary 8.13. The spectrum K(BP〈n〉) ⊗ F (n + 2) is bounded above, where F (n + 2) is a
type-(n + 2) finite spectrum.
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Lemma 8.14. Let m ≥ 1, then K[m](Ê(n)) ∈ SpT(0) × · · · × SpT(n+1).

Proof. We shall employ Proposition 8.4. Consider the symmetric monoidal functor LT(n) : Sp →
SpT(n). We get an induced E2-monoidal functor on modules

LModBP〈n〉(Sp) → LMod
Ê(n)

(SpT(n)),

which, in turn, induces an E2-monoidal functor on left dualizable objects

LModBP〈n〉(Sp)ldbl → LMod
Ê(n)

(SpT(n))
ldbl.

The latter map exhibits the target as a module over the source. By Corollary 8.13,
we know that K(LModBP〈n〉(Sp)ldbl) ⊗ F (n + 2) = K(BP〈n〉) ⊗ F (n + 2) is bounded above.
By Proposition 2.54 we know that

K[m](Ê(n)) = K[m](LMod
Ê(n)

(SpT(n))
at) = K[m](LMod

Ê(n)
(SpT(n))

ldbl).

The result now follows immediately from Proposition 8.4. �

Our next goal, achieved in Lemma 8.22, is to show that in fact K[m](Ê(n)) ∈ SpT(n+1). For
that, we need to show that each T(k)-local part vanishes for 0 ≤ k ≤ n, and in fact it will suffice
to show this after tensoring with the Lubin–Tate spectrum Ek. To do so, we shall compute the
action of |B(�kCp)|, where �kCp is the k-fold wreath product of Cp with itself, in two different ways.
First, in general in Ek-modules (see Proposition 8.17), and second by studying the dimension
of the Ê(n)-module Ê(n)B(�kCp) and deducing the result for the higher semiadditive algebraic
K-theory (see Proposition 8.21).

Definition 8.15. Let k ≥ 0. We denote by M̂odEk
= ModEk

(SpK(k)) the category of K(k)-local
Ek-modules.

We recall from [CSY22, Theorem 5.3.1] that M̂odEk
is ∞-semiadditive.

Definition 8.16. For a π-finite space A, we denote

|A|k = |A|
M̂odEk

∈ π0(Ek).

Also note that by [CSY22, Proposition 2.2.6, see also § 5.4], the cardinality |A|k in fact lands
in Zp ⊆ π0(Ek).

Proposition 8.17. Let k ≥ 1 and let G be a finite group. If vp(|BG|k) > 0, then vp(|BG �
Cp|k) = vp(|BG|k) − 1. Moreover, |B(�kCp)|k is invertible.

Proof. This is similar to the proof of [CSY22, Proposition 4.3.7]. Recall the additive p-derivation
δ : π0(Ek) → π0(Ek) from [CSY22, Definition 4.3.1], which by [CSY22, Theorem 4.2.12] satisfies

δ|BG|k = |BCp|k|BG|k − |BG � Cp|k.
By [CSY21a, Lemma 5.4.6], for x ∈ Zp ⊂ π0(Ek), if vp(x) > 0, then vp(δ(x)) = vp(x) − 1. Note
that vp(|BCp|k|BG|k) = vp(|BCp|k) + vp(|BG|k) ≥ vp(|BG|k). Combining the two, we get

vp(|BG � Cp|k) = vp(δ|BG|k) = vp(|BG|k) − 1.

For the second part, by [CSY22, Lemma 5.3.3], we have |BCp|k = pk−1. Thus, applying the
first part (k − 1)-times, we get vp(|B(�kCp)|k) = vp(|BCp|k) − (k − 1) = 0. �

For a finite p-group G, we consider hom(Zn
p , G), the set of n-tuples commuting elements in G.

This set is endowed with an action of GLn(Zp) by pre-composition. We shall, in particular, be
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interested in the integer

Ln(G) = |hom(Zn
p , G)/G| =

|hom(Zn+1
p , G)|

|G| ,

where the G-action in the second term is by conjugation point-wise, and the second equality is
Burnside’s lemma [HKR00, Lemma 4.13].

Proposition 8.18. Let G be a finite p-group, then

Ln(G � Cp) =
Ln(G)p + (pn+1 − 1)Ln(G)

p
.

Proof. We shall prove

|hom(Zn
p , G � Cp)| = |hom(Zn

p , G)|p + (pn − 1)|G|p−1|hom(Zn
p , G)|.

Since |G � Cp| = p|G|p, the result immediately follows (when changing n to n + 1).
In this proof, we will write elements of Cp additively, namely, identify it with Z/p. Elements

of G � Cp will be denoted by pairs (a, f) where a ∈ Cp and f : Cp → G. Elements of hom(Zn
p , Cp)

will be denoted by α = (a1, . . . , an). Similarly, elements of hom(Zn
p , G � Cp) will be denoted by

β = ((a1, f1), . . . , (an, fn)).
Consider the projection G � Cp → Cp, which by post-composition induces π : hom(Zn

p ,
G � Cp) → hom(Zn

p , Cp). By construction of the action, π is GLn(Zp)-equivariant. We let
homα(Zn

p , G � Cp) = π−1(α) denote the fiber. Observe that the GLn(Zp)-action on hom(Zn
p ,

Cp) ∼= Cn
p has two orbits: one which is the singleton α = 0, and the second of size pn − 1 contain-

ing all α �= 0. We let α1 = (1, 0, . . . , 0), an element of the second orbit. Since π is equivariant, all
of the fibers in the same orbit have the same size, so that

|hom(Zn
p , G � Cp)| = |hom0(Zn

p , G � Cp)| + (pn − 1)|homα1(Zn
p , G � Cp)|.

We shall now compute the sizes of the two fibers.
For the first fiber, observe that hom0(Zn

p , G � Cp) ⊂ hom(Zn
p , G � Cp) is the subset of those

tuples landing in Gp < G � Cp. Therefore,

|hom0(Zn
p , G � Cp)| = |hom(Zn

p , Gp)| = |hom(Zn
p , G)|p.

For the second fiber, we being with the following observations. A pair of elements
(0, f), (0, f ′) ∈ G � Cp commute if and only if f, f ′ ∈ Gp commute, i.e. if and only if f(a), f ′(a) ∈ G
commute for all a ∈ Cp. A pair of elements (1, f), (0, f ′) ∈ G � Cp commute if and only if
f(a)f ′(1 + a) = f ′(a)f(a) for all a ∈ Cp. Applying this inductively, we see that f ′ is uniquely
determined by f and f ′(0) and subject to the condition that f ′(0),

∏
f(a) ∈ G commute.

Using these observations, we can say when an n-tuple of elements in G � Cp, denoted β =
((1, f1), (0, f2), . . . , (0, fn)), pairwise commute, i.e. β ∈ homα1(Zn

p , G � Cp). The commutativity
of (1, f1) and (0, fi) (for i ≥ 2) says that fi is determined by f1 and fi(0) and forces the con-
dition that fi(0),

∏
f1(a) commute. The commutativity of (0, fi) and (0, fj) (for i, j ≥ 2) forces

the condition that fi(0) and fj(0) commute. We thus see that β is uniquely specified by f1 and
f2(0), . . . , fn(0), subject to the condition that (

∏
f1(a), f2(0), . . . , fn(0)) pairwise commute. In

other words, we have a bijection

homα1(Zn
p , G � Cp) ∼−→ Gp−1 × hom(Zn

p , G),

β �→ ((f1(0), . . . , f1(p − 2)),
(∏

f1(a), f2(0), . . . , fn(0))
)

.
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To conclude, we have shown

|hom(Zn
p , G � Cp)| = |hom0(Zn

p , G � Cp)| + (pn − 1)|homα1(Zn
p , G � Cp)|

= |hom(Zn
p , G)|p + (pn − 1)|G|p−1|hom(Zn

p , G)|,
as required. �

Proposition 8.19. For 1 ≤ k ≤ n we have vp(Ln(�kCp)) = n − (k − 1). In particular Ln(�kCp) ∈
Zp is not invertible.

Proof. First, for k = 1 we have

Ln(Cp) =
|hom(Zn+1

p , Cp)|
|Cp| = pn,

so that vp(Ln(Cp)) = n. Now assume inductively that vp(Ln(�kCp)) = n − (k − 1). Since

vp(Ln(�kCp)p) = pvp(Ln(�kCp)) > vp(Ln(�kCp)) = vp((pn+1 − 1)Ln(�kCp)),

we get that

vp(Ln(�kCp)p + (pn+1 − 1)Ln(�kCp)) = vp(Ln(�kCp)).

Thus, by Proposition 8.18, we get the required result

vp(Ln(�k+1Cp)) = vp(Ln(�kCp)) − 1 = n − ((k + 1) − 1). �

We now recall the following result.

Proposition 8.20. Let X be a space with dimFp(K(n)0(X)) = d < ∞ and K(n)1(X) = 0. Then,

Ê(n)[X] ∈ LMod
Ê(n)

is a free Ê(n)-module of dimension d and, in particular, dualizable.

Proof. This is the content of [HS99, Proposition 8.4] (see also [HL13, Proposition 3.4.3] and
[CSY22, Lemma 5.1.7]). �

Proposition 8.21. Let 1 ≤ k ≤ n and let m ≥ 1. The action of |B(�kCp)| on K[m](Ê(n)) ∈ [m]צ

is by multiplication by a non-invertible p-adic number.

Proof. By [HKR00, Theorem E], the group �kCp is good in the sense of [HKR00, Definition 7.1]
and, in particular, K(n)1(B(�kCp)) = 0. Thus, by [HKR00, Theorem B and Lemma 4.13], we know
that dimFp(K(n)0(�kCp)) = Ln(�kCp). By Proposition 8.20, we conclude that Ê(n)[B(�kCp)] is a

free Ê(n)-module of dimension Ln(�kCp). Recall from Proposition 7.6 that the action of |B(�kCp)|
on LModat

Ê(n)
as an object of Catstm-fin is by Ê(n)[B(�kCp)] ⊗ (−), namely by multiplication by

Ln(�kCp). Since K[m] is a 1-semiadditive functor by Proposition 6.7, the same holds for the
action of |B(�kCp)| on K[m](Ê(n)) by [CSY22, Corollary 3.2.7]. By Proposition 8.19, this number
is indeed a non-invertible p-adic number. �

Lemma 8.22. Let m ≥ 1, then K[m](Ê(n)) ∈ SpT(n+1).

Proof. By Lemma 8.14, we know that K[m](Ê(n)) ∈ SpT(0) × · · · × SpT(n+1). It remains
to show that the T(k)-local part, which for brevity we denote by Ak ∈ SpT(k), vanishes for every
0 ≤ k ≤ n.
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We first deal with the case 1 ≤ k ≤ n. Recall from [CSY22, Corollary 5.1.17] that the functor

Ek[−] : SpT(k) → M̂odEk

is nil-conservative in the sense of [CSY22, Definition 4.4], that is, for any A ∈ Alg(SpT(k)),
if Ek[A] = 0, then A = 0. Therefore, it suffices to check that Ek[Ak] = 0. We have shown in
Proposition 8.21 that |B(�kCp)| acts on K[m](Ê(n)) by multiplication by a non-invertible p-adic
number. Since Ek[(−)k] is a 1-semiadditive functor by Proposition 6.7, the same holds for Ek[Ak]
by [CSY22, Corollary 3.2.7]. We thus have shown that |B(�kCp)| acts on Ek[Ak] as a p-adic
number of positive valuation. Since by Proposition 8.17 |B(�kCp)|k is invertible, and M̂odEk

is
p-complete, we conclude that Ek[Ak] = 0.

We now prove the remaining case k = 0. As above, Proposition 8.21 shows that |BCp| acts on
A0 by Ln(Cp) = p. On the other hand, |BCp|0 = p−1 by [CSY22, Lemma 5.3.3]. Namely p = p−1

on the rational spectrum A0, thus A0 = 0. �
Theorem 8.23. Let R ∈ Alg(LMod

Ê(n)
) and m ≥ 1, then K[m](R) ∈ SpT(n+1).

Proof. The category LModR is a right module over LMod
Ê(n)

. Recall from Theorem 2.46 that

taking the atomics is a lax symmetric monoidal functor, and from Theorem 6.18 that K[m] is lax
symmetric monoidal. Thus, we get that K[m](R) is a right module over K[m](Ê(n)). In addition,
by Lemma 6.12, [m]צ → SpT(n+1) is a smashing localization, and since K[m](Ê(n)) lands in the
smashing localization by Lemma 8.22, so does K[m](R). �
Corollary 8.24. Let R ∈ Alg(LMod

Ê(n)
), then K[1](R) ∼= LT(n+1)K(R). In particular,

K[1](Ê(n)) ∼= LT(n+1)K(Ê(n)).

Proof. This follows immediately from the combination of Theorem 8.23 and Proposition 8.6. �
In our work with Carmeli and Yanovski [BCSY23] we show that Corollary 8.24 holds for

m-semiadditive K-theory for any m ≥ 1.
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The Čech centennial: A conference on homotopy theory, June 22–26, 1993, Northeastern
University (American Mathematical Society, 1995), 225–250.

HS99 M. Hovey and N. P. Strickland, Morava K-theories and localisation, Mem. Amer. Math. Soc.
139 (666) (1999).

LMMT20 M. Land, A. Mathew, L. Meier and G. Tamme, Purity in chromatically localized algebraic
K-theory, Preprint (2020), arXiv:2001.10425 [math.KT].

Lur09 J. Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170 (Princeton University
Press, 2009).

Lur17 J. Lurie, Higher algebra, Preprint (2017), https://www.math.ias.edu/∼lurie/papers/HA.pdf.
NS17 T. Nikolaus and S. Sagave, Presentably symmetric monoidal ∞-categories are represented by

symmetric monoidal model categories, Algebr. Geom. Topol. 17 (2017), 3189–3212.
NS18 T. Nikolaus and P. Scholze, On topological cyclic homology, Acta Math. 221 (2018), 203–409.
RS21 S. Ragimov and T. M. Schlank, The ∞-categorical reflection theorem and applications,

Preprint (2021), arXiv:2207.09244 [math.AT].
Sus83 A. Suslin, On the K-theory of algebraically closed fields, Invent. Math. 73 (1983), 241–246.
Sus84 A. A. Suslin, On the K-theory of local fields, J. Pure Appl. Algebra 34 (1984), 301–318.
TT90 R. W. Thomason and T. Trobaugh, Higher algebraic K-theory of schemes and of derived

categories, in The Grothendieck Festschrift, Vol. III, Progress in Mathematics, vol. 88
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