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Resonant gas oscillations in a closed straight tube contain shocks for frequencies near
the linear resonant frequency. As the tube geometry changes from straight to a cone with
slope a, the shock strength decreases until, for large enough a, the motion is continuous.
The analytical result for small a follows from a nonlinearization of the linear resonant
response, while the result for large a is a dominant single mode approximation. The
connection between these two forms is analysed numerically. The shocked solutions
change to multimode continuous solutions as @ increases to cross the curve a; = 12.8M'/3,
where M < 1 is the Mach number of the input. Then the amplitudes of the higher modes
decrease as a continues to increase until, having crossed a,, = 30M 1/3 the single mode
solution emerges.

Key words: gas dynamics, compressible flows

1. Introduction

Two experiments almost sixty years apart illustrate the effect of tube geometry on small
amplitude resonant forced oscillations of a compressible gas in a closed tube. Lettau (1939)
found that, for a straight tube, even for small excitation amplitudes, shock waves are a
feature of the motion. In contrast, Lawrenson et al. (1998) showed that, by changing
the shape of the tube, the resonant oscillations could reach much higher pressures
while remaining shockless. This is the basis for resonant macrosonic synthesis (RMS).
The significance of RMS is that continuous waveforms can be synthesized to allow a
large amount of energy to be added to the wave and extremely high pressures achieved
while avoiding acoustic saturation due to shocks. Lawrenson et al. (1998) considered
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several tube shapes, including a cone resonator with (dimensionless) cross-sectional area
s(x) = (1 +ax)?, 0 < x < 1, for a = 8, where a is the slope of the radius. Hence, for a
straight tube a = 0 shocks are a feature of the flow, while for a cone with a = §, there
are no shocks. The purpose of this paper is to find the value of the slope parameter a
at which the transition between continuous and shocked solutions occurs, and how the
continuous solutions then evolve from a multimode to a single mode solution. To do so
we first derive a new, more accurate, equation for small slopes, which is a generalization
of the nonlinear geometric acoustics equation, by the nonlinearization of the linear
resonance equation. The problem is completed by using a numerical technique to link
the approximate small slope solutions to the solutions generated by the numerics for larger
slopes.

1.1. Closed straight tube

The basic problem of resonant forced oscillations of a gas in a closed straight tube
is classical. The experimental set-up is a piston with maximum displacement § at one
end of the tube oscillating at frequency &; the other end of the tube is closed. The
motion is determined by two dimensionless parameters: the amplitude parameter, € = §/L,
where L is the tube length, and the frequency parameter, @ = ®L/cg, where cq is the
ambient sound speed. The dimensionless Mach number of the piston motionis M = 2mew.
Neglecting any damping, the solution to the linear problem is unbounded when the
round trip travel time of a wave in the tube equals a multiple of the piston period , so
2L/co = n/w, for integer n. This defines the resonant frequencies as w, = n/2 and the
fundamental resonance is when w = 1/2. We note that w, = nw; so that the eigenvalues
are commensurate when a = 0.

There are many examples of experimental results for gas oscillations in straight
tubes, including Lettau (1939) (¢ = 0.0028), Saenger & Hudson (1960) (¢ = 0.0019) and
Sturtevant (1974) (¢ = 0.0147). All report that the gas motion for frequencies in a band
around the fundamental frequency is finite, but contains shocks. The shocks have constant
strength and travel at the constant adiabatic sound speed. This is confirmed in the analytical
work of Betchov (1958), Gorkov (1963), Chester (1964) and Seymour & Mortell (1973).
For an input Mach number M < 1, the magnitude of the resulting nonlinear motion at a
linear resonant frequency is significantly higher, at order O(M'/?), than the input at O(M).
Note that we are using the notation Z = O(M) if Z/M is finite as M — 0, and Z = o(M)
if Z/M — 0as M — O.

1.2. Closed tube with varying cross-section

For resonant flows in tubes with varying cross-section there are several analytical and
numerical investigations for both small and finite a, see Keller (1977), Chester (1991),
Ockendon et al. (1993), Chun & Kim (2000), Ellermeier (1994) and Amundsen, Mortell
& Seymour (2015). Ellermeier (1993) concluded that shocks must appear when the
cross-section is sufficiently slowly varying and the system is close to resonance. He also
noted in Ellermeier (1994), possibly for the first time, that at cubic order in the amplitude,
and when the cross-section is no longer slowly varying, the system has no shocks even
at resonance. In this case the excited mode interacts with itself at third order and the
result is a continuous output with an amplitude much greater than the shocked case. In
the context of Fourier analysis and nonlinear interactions, Whitham (1974) refers to the
self-interaction term in (15.58) of § 15.6 as the Stokes term, see Stokes (1847). Ockendon
et al. (1993) discuss the response of resonators that deviate from being cylindrical and
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show that, in general, the detuning range in which shocks are possible decreases as the
geometrical imperfection increases. They conclude that ‘shocks can only occur in the
response when either the linearized spectrum contains an infinite number of commensurate
frequencies or the amplitude of the geometric imperfection is O(M'/?) or less, where
the input is O(M)’. They also remark on the likelihood of a single mode response
when the geometric variation is large enough, agreeing with Ellermeier (1993). Thus,
in general, there is a critical cutoff value of the geometric variation separating shocked
from continuous solutions. Chester (1994) considers the effect of the cross-sectional
variation of the container on the basic solution for a tube of constant cross-section given in
Chester (1964). He also adverts to the feedback from third-order terms to the linear terms
and the consequent continuous solution across the frequency range. Seymour, Mortell
& Amundsen (2011) considered the case of resonant oscillations between concentric
spheres, and found, as a by-product, the eigenvalue equation of a gas in the frustum
of a cone. They also found (Seymour, Mortell & Amundsen 2012) an estimate for the
transition between shocked and continuous motion for the Mach number M = 0.005,
where geometry dominates. The same authors (Seymour et al. 2012) considered the case
of nonlinear resonant oscillations of a gas contained between two concentric spheres or
coaxial cylinders when shocks are present and the dominant first harmonic approximation
is not valid. A nonlinear geometric acoustics approximation predicted shocked flows that
are confirmed by numerical solutions for a range of a — the slope of a cone. In this
paper we use a different technique, nonlinearization, to generalize the above approximation
technique and present these solutions as a starting point for the numerical solutions with
increasing a.

In contrast to the theoretical work, where the validity depends on the cross-sectional
variation being o(1), Lawrenson et al. (1998) investigated experimentally, inter alia,
resonance in a conical container (frustum of a cone) when the slope a = O(1), in
fact a = 8, and found that the output was characterized by continuous large pressure
amplitudes — macrosonic standing waves. For container shapes such as a cone, a horn-cone
or a bulb, pressure amplitudes more than an order of magnitude larger than those in
an acoustically saturated straight resonator appeared in a single-mode periodic solution.
Mortell & Seymour (2004) then constructed analytically a continuous one-term, dominant
first harmonic solution for the case when a = O(1) that gave good qualitative agreement
with the experiments. In particular they showed that the output amplitude is O(M'/3) for
an input of O(M). This solution is not valid when a = o(1) and shocks form. There have
been several numerical investigations of resonance in cylindrical and conical tubes (e.g.
linskii et al. 1998; Chun & Kim 2000; Antao & Farouk 2013) but none investigate the
transition from cylinder to cone.

The general picture is that for sufficiently weak non-uniformities shock formation cannot
be prevented if the undamped system is sufficiently close to resonance. An objective here
is to find a good approximation to the resonant frustum problem for a = o(1), and use
this as a basis to numerically fill the gap between a = o(1) and a = O(1) solutions. We
investigate numerically the transition from a shocked solution to a continuous solution
as a increases. The conclusion is that shocked solutions change to multimode continuous
solutions as a crosses a; = 12.8M'/3. Then the amplitudes of the higher modes decrease
until a,, = 30M'/3 when the single mode solution emerges. The important contrast is that
when the slope of the cone is 0 < a < 1, the output is O(M'/?) and contains shocks,
whereas for a slope a > 1, the output is O(M'/3) and is continuous. We examine the
transition as a increases.
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s(x) = (1 +ax)?

Polytropic gas u(1, 1) = M sin(2riwt)

u(0,1)=0 0<M<1

Figure 1. Polytropic gas in frustum of a closed cone and forced at one end.

2. Resonance in the frustum of a cone: s(x) = (1 + ax)2

The fully nonlinear dimensionless governing equations for the motion of the gas in an
Eulerian frame are statements of conservation of mass and momentum

()% o 1 =0
sxat—l—ax(s(x) +e)u) =0,

du 3 (u (I+er! 3%u

- - A + - = U_7

ot ox \ 2 y —1 9x2
where u(x, t) is the particle velocity, e(x, t) = p(x, t)/po — 1 is the condensation, p(x, 1)
is the density and v is a dissipation constant. Here s(x) is the varying cross-sectional area
of the cone. The sound speed is normalized to co = 1, and the equation of state for a
polytropic gas is

4 —1
£=<£) =(1+e)”=1-|—ye+me2
Po £0 2
where pg, po are the density and pressure in the reference state. Figure 1 provides a
depiction of the physical configuration.

The equivalent linear undamped equations are

2.1

+..., (2.2)

de 0 du de
— 4 =0, —+—=0. 2.3a,b
s(x) o T ax(S(X)u) 5 T ox (2.3a,b)
For a tube closed at x = 0 with an oscillating piston at x = 1,the boundary conditions are
u(0,1) =0 and u(l,r) = Msin 2nwt), (2.4a,b)

where M is the Mach number.
When the cross-section of the containing tube is given by

s) = (14+ax)?, 0<x<1, (2.5)
the general linear solution is
-2 I G a F G 2.6
ue ) = o [F@+ 6@ |+ s [Fe - 60 2.:6)
e ) = T [F @ — G (ﬂ)] : 2.7)

see Mortell & Seymour (20174, p. 92) (where there is a typographical error), o« = w(t — x)
and B =w(t+x—1)sothate =wtonx=0and = wtonx = 1. F(x) and G(B) are
arbitrary functions to be determined from the boundary conditions.
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2.1. Exact linear solution

The linear problem of resonant oscillations in a closed cone can be solved exactly. In § 5
we make use of this exceptional case to examine the range of frequencies in figure 9 for
both small and large values of a for which the linear solution is a good approximation to
the full nonlinear solution computed numerically.

For s(x) = (1 + ax)? the general solution to the linear equations for u(x, ) is given by
(2.6). The boundary conditions for the resonance problem are u = M sin(2nwt) at x = 1
and a closed end (¥ = 0) at x = 0, so that

u(l, w(t — 1), o) = MsinRnwr), u(0, ot, ot — 1)) = 0. (2.8a,b)

Then F and G satisfy
olF (ot — 1)) + G (w)] + [[F(w(t — 1)) — G(w)] = M(1 +a) sin(Wr)  (2.9)
oF (1) + aF (wt) + oG (ot — 1)) — aG(w(t — 1)) =0, (2.10)

with I = a(l +a)~! and W = 27w.
After some algebra, the exact linear solution (see Mortell & Seymour 2017a) can be
written in the form

2 2 2 2\ o )
w1 = (1+a) [(a + W=+ axW )sm(‘Wx) a-xW cos(Wx):| Msin(Wr). (2.11)
(1 + ax)? (@ 4+ W2+ aW?)sinW — a?W cos W
or
1) = Ko, W, ) S0WVx = 0@ Wo @) ow (2.12)
ulx,t) = Kx, W, a W —p(LW.2) sin(Wr), )
where

(1 +a)2Va® + W2 (1 + ax)?
(1+ a2V + W2 (1 +a)?
a*xW :|

Kx,W,a) =

2.13a.b
a2 + W21 + ax] (2.13a.5)

Setting the denominator of (2.11) to zero, the resonant frequencies, W = £2,,, are given by

Qa?
anQ = — 4 (2.14)
221 +a) +a?

For a > 0, in general these are incommensurate, so that £2,, #n£2;. However, for small a
(2.14) implies that the first two resonant frequencies are
1 1

1
_ 2~ 3 _
w1_§+2_7[2a 27[261 +..., and wr =1+

é(x, W,a) = tan”! [

1 2
g2

S
(2.15a,b)

g2

where w, = £2,,/27 is the normalized resonant frequency. Thus for small a the eigenvalues
are commensurate to O(a?). Then we anticipate a shocked solution.
Whena — 0
sin(Wx) sin(W¢
ur, 1) =y RISV, ) 4 o). (2.16)
sin W

So there is a singularity at W = wt, or w = 1/2 as a — 0, confirming that o = 1/2 is a
resonant frequency for a straight tube.
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We note here that the equivalent linear problem for s(x) = (1 + ax)~2 also has an exact
solution, given by
sin(Wx) sin(Wr) (1 + ax)
sin W (1+a)’
This is a rare example of a variable cross-section where all natural frequencies, W = nm,
are commensurate for all positive values of a. This allowed Keller (1977) to use the
technique of Chester (1964) for a straight tube to find a solution to the nonlinear problem
containing shocks, although it is unclear if it is relevant to any real physical problem.
While attempting to solve the case of the frustum of a cone, Keller observed ‘there seems
to be no elementary analytical method which would lead to a simple resonance equation’.

ux,t) = M 2.17)

3. Augmented nonlinear geometric acoustics approximation

For small a the linear solution is augmented using nonlinearization to include the
corrected nonlinear characteristics. The ‘nonlinearization technique’ was first given
by Landau (1945), and then independently by Whitham (1952) in the context of the
sonic boom problem. Whitham (1952) made the fundamental hypothesis that ‘linear
theory gives a valid approximation to the flow everywhere provided that in it the
approximate characteristics are replaced by the exact ones or at least by a sufficiently good
approximation to the exact ones’. These authors considered waves travelling outward from
a given source. Mortell & Seymour (2017b) extended the technique to deal with reflected
waves in a bounded medium, e.g. the resonant motion of a gas in a closed tube. The linear
round trip travel time in the medium is replaced by the nonlinear travel time which is
calculated from the ‘sufficiently good approximation’, viz., the superposition of the two
non-interacting modulated simple waves. A full account of the Whitham theory is given
in Whitham (1974).

Here we nonlinearize the linear resonant equation (3.5) to obtain a generalization of
nonlinear geometric acoustic theory. To do this we first use the boundary conditions
(2.4a,b) to eliminate Fin (2.9) and (2.10) exactly at resonance when w = 1/2. However,
because we are now exactly at resonance the functions are redefined for convenience
as G(t) = G(1/2), F(t) = F(/2), g(t) = 1G'(1/2), f(t) = LF'(/2). This corresponds to
defining « =t — x and 8 = ¢ + x — 1. With this notation the general linear solution is

u(x, 1) = H—;ax [f(e@) +(B)] + ﬁ [F(a) = G(B)], 3.1
e 1) = —— [f(@) — g(B)]. (32)
I +ax
Then the boundary condition on x = 1 implies
g —LGH +ft—1)+LF(@—1)= (1 +a)Msin(mt), (3.3)
where £ = a/(1 + a). Similarly the boundary condition on x = 0 implies
f@) =aG@t—1)— gt —1) —aF(2). (3.4)

The substitution of (3.4) into (3.3) gives the linear resonance equation
gt) —g(t—2)—LG({Ht) +aGt—2)+ L —a)F(t—1) = (1 +a)Msin(wr). (3.5)

Then F(t— 1) is eliminated from (3.5) using O(1) and O(a) terms from (3.4) as
appropriate. The linear standing wave, M = 0, has period 2.
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The linear resonance equation (3.5) is now nonlinearized by replacing the linear travel
time 2 by the nonlinear travel time calculated by the superposition of the «-simple wave
and the B-simple wave with u and e given by (3.1) and (3.2) to yield the nonlinear
resonance equation (3.13).

The first nonlinear correction to the linear characteristics found by a geometric acoustics
expansion is for the a-wave

y —1

e, (3.6)

—| =1—-u—
x|,

see Mortell & Seymour (2017a), where u and e are given by (3.1) and (3.2) with g(8) = 0,
i.e. (3.6) is an a-simple wave. Then

ot
0x

o1 v+l _* F 3.7
= ire 2 YT ar @ S

o

which integrates to the modulated simple wave result

1
YFlnd + aofe) — —=
a 14+ ax

t=o+x— F(a), (3.8)

where @ = ton x = 0. We note that, fora > 0.2, ((y + 1)/2a) In (1 + ax) > ax/(1 + ax).
Similarly for a B-simple wave

L [1 tu———e+ }
ax B N ! ¢
_ g+l e
=-1 T*ar 2 g8(B) + (1+ax)2G(ﬂ), (3.9)
with f(«) = 0. Then (3.9) integrates to
P _y—l—l 1+ ax Lx—1)
r=p—x—1 2 1r1< T+ a )g(ﬁ) + I ax G(B), (3.10)

where 8 =tonx =1 and £ = a/(1 + a). Now a -wave leaves x = 1 at t = 1y, reaches
x =0att =t and is reflected as an a-wave to arrive back at x = 0 at r = ,. Then (3.8)
and (3.10), when added, give the nonlinear travel time

Y+

1
P In (1 +a) [g(t0) = f(r1)] — £[G(10) + F(11)], (3.11)

Hh—ty=2+

and using the O(1) and O(a) terms in (3.4) the result is
y+1
a

h—th=2+ In (1 4 a)g(to) — 2¢G(10), (3.12)
on using the periodicity of G(f). This is the nonlinear travel time that includes the first
correction to the linear travel time 2. To nonlinearize the linear resonance equation (3.5)
we replace the difference 2 (the linear travel time) by the right-hand side of (3.12) and
expand in a Taylor series. The end result is

y+1

In(1 + a) [gg/ — lgz] — 20Gg' = (1 + a)M sin (1), (3.13)

when terms at O(£?) are neglected. This is the nonlinear resonance equation.
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For ¢ = 0, (3.13) becomes

Y (1 + a)gg = (1 + )M sin () (3.14)

which is the first term in a nonlinear geometric acoustics expansion (NLGA). The periodic
solution to (3.14) is

1/2
o(f) = + [n(;i(i;;n“()ﬁ a)} * din (gt) (3.15)
When a = ¢ = 0, (3.13) becomes
(y + 1)gg’ = M sin (nf) (3.16)
with solutions, on letting @ — 0 in (3.15),
aM 12 |
o(t) = + [m] sin (Et)’ (3.17)

which is the result in Chester (1964) for a straight tube. Equation (3.13) may be seen as the
result of a corrected, or augmented, nonlinear geometric acoustics expansion.

Figure 2 provides a comparison of the NLGA approximations (3.15) with the solutions
obtained by direct numerical simulation for increasing geometric effects a. The agreement
is good for 0 < a < 0.15. However, at a = 0.15 we notice small discrepancies due to the
impact of higher-order geometric terms. Figure 3 provides a comparison of solutions of the
augmented equation (3.13) for the NLGA approximation with direct numerical solution
for increasing a. The approximation is reasonable for 0 < a < 0.2, and, in particular
captures the asymmetry of the numerical solution. To quantify further, table 1 provides
the 2-norm errors in each case relative to the fully numerical solutions and table 2 shows
the asymmetry induced by (3.13).

For the case s(x) = (1 + ax)~2 Keller (1977) found an approximate solution for the
nonlinear problem by using Chester’s (1964) technique. Using the nonlinearization
technique with £ = 0, for this case we find

8M 2 g
g0 = i[n(l Fr TR 1)] sin <5z>. (3.18)

Chester’s (1964) result for a straight tube follows by setting a = 0, see (3.17).

3.1. Damped oscillations
Damping is introduced by an impedance condition at x = 0,

e(0T, 1) = —iu(0", 1), >0, (3.19)

where i is the impedance of the interface and energy radiates out of the system through
the end x = 0. We show that, even at resonance, a continuous solution is possible for
sufficiently large damping.
On x = 0, the condition (3.19) is
i
1) =kg(t—1) —
f() =kg(r—1) T
with k = (1 —i)/(1 4 i), where F(z) and G(¢) are defined through u(x, ) and e(x, f) given
by (3.1) and (3.2). On x = 1, the forced condition is still (3.4). Then, following the same
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Figure 2. Comparison of approximate solutions based on (3.15) (dashed lines) vs direct numerical simulation

(solid) for M = 1.25 x 10~* and (@) a = 0.05, (b) a = 0.1, (¢) @ = 0.15, (d) a = 0.2.

(b)
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L
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S _0.005
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-0.010 1

Figure 3. Comparison of approximate solutions based on (3.13) (dashed lines) vs direct numerical simulation

(solid) for M = 1.25 x 10~ and (@)a=0.05b)a=0.1,(c)a=0.15,(d) a = 0.2.

procedure as (3.4) to (3.5), the final result to 0(d?) is

(14 )G — k(1 — A [G/G” n Z(G’z] — (- k)zﬁll—j:,(G/Z) + k(1 — b)GG”
l

— (1 —k)G + (1 — k)li—iiG = M(1 + a) sin (101),

(3.21)
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a =0 >0
0 0.0023 0.0023
0.05 0.0086 0.0042
0.1 0.051 0.0095
0.15 0.13 0.057
0.2 0.25 0.11
0.25 0.39 0.21

Table 1. Relative 2-norm errors for approximations using (3.15), £ = 0 and (3.13), £ > 0, for
M =1.25x107*

a 7 Uy
0.05 0.0086 0.008
0.1 0.0091 0.0077

0.15 0.0095 0.0074
0.2 0.0097 0.0072
0.25 0.0101 0.007

0.3 0.0103 0.0068

Table 2. Values of u(0.5, ¢) on left-hand (u;) and right-hand (u,) sides of upper continuous interval using
approximation (3.13), with M = 1.25 x 107+,

where A = ((y + 1)/2a) In (1 4+ a). We note that when kK = —1, i.e. no damping i — oo,
and given that { — a = 0(a?) (3.21) reduces to (3.13) and (3.20) reduces to (3.4). If £ = 0
then (3.21) gives the damped version of NLGA. When k= —1, £ =0, 0 < a < 1, the
undamped NLGA equation (3.14) is recovered. Figure 4(a) shows the continuous solution
that arises for i = 30, which is essentially sinusoidal. This is further evidenced by the
close agreement with the associated linear solution determined in the same way as in
§ 2.1 with the boundary condition modified accordingly. The damping at the boundary
x = 0 attenuates the signal periodically and prevents a shock from forming when i = 30.
Thus damping can eliminate the shock even at resonance. An example of this is given in
Seymour & Mortell (1973) and in the experiments of Sturtevant (1974) by having a hole in
the end of the tube. As i is increased to 50, or equivalently damping decreases beyond
a critical value, the solution becomes shocked. Finally for i = 100 figure 4 shows the
increased separation of the corresponding separatrices, in analogy to figure 2 of Seymour
& Mortell (1973) for the case where no geometric variation is present.

3.2. Resonant band

The range of frequencies around the resonant frequency for which the solution contains
shocks is called the resonant band. Equation (3.13) is essentially the NLGA result with
the correction at O(£) included, but is only valid exactly at resonance when @ = 1/2. To
calculate the solution for frequencies in the resonant band we will confine ourselves to
(3.15) — the NLGA when £ = 0 in (3.13).

It is convenient to rescale the independent time variable with w so that g(s) has unit
period in s. The corresponding nonlinear difference equation, equivalent to (3.5) with
(3.12), is derived by following a wave leaving x = 1 at time r, with amplitude g(r) =
G(wr), through a full cycle and arriving back at x = 1 at time ¢. Close to resonance the
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0.01 F i=30 |4
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Figure 4. (a) Approximate solution u(0.5, 7) based on (3.21) for i = 30 compared with linear solution.
(b) Continuous and discontinous solutions g(#) of (3.21) when M = 1.25 x 10~4, @ = 0.1 and i = 30, 50, 100.

nonlinear difference equation then has the form

G(y) = G(s) + M(a) sin 2my), y = 20+ z + 3NK(a)G(s) + Higher-order terms,
(3.22a,b)

where y = wt,z=wr, N=—(y +1)/2, M(a) = [s(D]'*M = (1 + a)M and K(a) =
A>(0, a) — A (1, a) with

/x —-1/2 1
A1(x,a) = [s(r)] dr = - In (1 4+ ax),
0

Ar(x, a) = f ()2 dr = 11 (1 + “x>, (3.23a,b)
1 a l14+a

so that K(a) = —(2/a) In (1 4 a).
The off-resonant frequencies are given in terms of the detuning parameter A by

w=3(1+A). (3.24)
Defining M(a) = %NK (a)M (a) and G(y) by
G(y) = A+ INK(@)G(y), (3.25)
(3.22a,b) become
G(y) — G(s) = M(a) sin 2my), y=s+G(s), (3.26a,b)
on using unit periodicity of G. Assuming |G| < 1 and |G| < 1, (3.26a,b) reduces to
G()G'(y) = M(a)sin (27y), (3.27)
and the mean condition requires
1
/ G(y)dy=A. (3.28)
0
937 A5-11
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Following the analysis in Seymour & Mortell (1973) we find the resonant band is given by
AT < A < AT where

1\32 _
AT =+ <;> [M(a)]'/. (3.29)

The solution G(y) is given by

ZT(y), 0<y <y,
G(y)={ _(y) Y= (3.30)
Z7(y), ys<y<l,

where

ZE(y) ==+ sin (). (3.31)

2M(a)]"?
B4
Now y = yy is the position of the shock and is determined by the mean condition (3.28)
and uniqueness is guaranteed by the condition that the shock is compressive; M(a) =
(((y + D(1 +a))/2a)In (1 + a)M. The range of frequencies in (A~, A™) is called the
resonant band, and the solution u(x,¢) is discontinuous in this interval. The slope is
discontinuous at A~ and AT,
The continuous solution G at the edges of the resonant band A¥ is given by

GE(s) = AT + wNK (a)GE(5), (3.32)
so that
G = [ 2M@ 17 2 3.33
S |:TE(1)NK(CI)1| [sm (my) — n]' (3.33)
When a =0,
- am VAT 2
G, (y) = [m} [sm (y) — ;} , (3.34)

on approximating w = %(1 + A) = % since |A| < 1. This is the signal at the positive
end of the resonant band A = A" for the case of a closed straight tube. Figure 5(b)
provides a comparison with direct numerical simulation at A = A" for a = 0.1 and
M = 1.25 x 10~*. Relative to the case where a = 0 shown in figure 5(a), while some
small discrepancies appear near the extrema, the agreement remains quite good. However,
for a = 0.2 in figure 5(c), the geometric effects are now sufficiently large that (3.33) no
longer offers a good approximation.

Fora =0, A = 01i.e. on resonance w =

D=

B 1/2
Gt(y) = [m] sin (1y), (3.35)

which is Chester’s (1964) solution for a straight tube.

4. Nonlinear dominant first mode solution for a = O(1)

When the slope of the cone is large the experiments of Lawrenson et al. (1998) show that
the resonant motion is continuous with amplitudes that ‘far exceed previously predicted
and demonstrated values’. The overpressure amplitudes achieved are far greater than
previously predicted. The authors describe RMS as ‘the deliberate shaping of a resonant
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0

(b) o0.010
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0

(c) 0.010
0.008
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(0.5, f)

—0.002
—0.004
—0.006

—0.008

-0.010 : : :
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Figure 5. Comparison of approximate solutions based on (3.33) (dashed lines) vs direct numerical simulation
(solid) for M = 1.25 x 10~4, at the edge of the resonant band A = A% and for (@) a =0, (b) a = 0.1, (¢)
a=0.2.
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acoustic waveform by designing the shape of the resonator to give the desired result’.
... ‘By controlling both harmonic phase and amplitude it is possible to synthesize a
continuum of extremely high overpressures of unshocked waveforms’. This is the essential
contrast with the situation when the slope a < 1.

The analytic procedure given in Mortell & Seymour (2004) does not depend on
the resonator shape being a small deviation from cylindrical. When the modes are
incommensurate, shocks will not form and the resultant motion is continuous, periodic

and dominated by the lowest eigenmode with the resultant motion O(M'/3).
In this case

A
ulx, t) = —¢(x) sin(Wr), 4.1
s(x)
where A is an unknown amplitude, ¢ (x) is the fundamental eigenfunction on [0, 1] of
d(Ld +/12¢ 0 ¢0)=0,¢(1)=0 (4.2a,b)
o _— _— = = ) = . (1,
dx \ s(x) dx s(x)
given by
¢ (x) = Aja*xcos 1x — [A} 4 axA} + a*]sin(d;x), (4.3)

and A = A is the smallest positive eigenvalue satisfying (2.14); see Mortell & Seymour
(2004).

The application of the Fredholm alternative at the third order in M yields a cubic
amplitude—frequency equation for A of the form

NiA3 —2A0LA = N, (4.4)

where N and N, are constants that depend on integrals of s(x) and ¢ (x) and A is a measure
of the detuning (3.24). The details of this long calculation are given in Mortell & Seymour
(2004).

5. Transition from a = o(1) toa = O(1)

As the value of a is increases beyond the range where the nonlinear resonance equation
(3.13) is valid, the nature of the resonance undergoes a fundamental shift. As noted earlier,
the qualitative nature of the response depends intrinsically on the commensurate structure
of the underlying linear eigenvalue spectrum arising from (2.14). Moreover, we see from
(3.13) that for sufficiently small geometric variation the amplitude of the response scales
as O(M'/?). In this regime the spectrum can be seen to be sufficiently commensurate
that solutions based around the limiting case where a = 0 provide a good approximation.
Beyond this, however, lies a transition regime through which the spectrum becomes no
longer sufficiently commensurate, and beyond a certain threshold the response becomes
composed of a single mode, with amplitude scaling as O(M'/3), in accordance with the
dominant first harmonic approximation (Mortell & Seymour 2004).

The variation in the fundamental nature of the response and the underlying scaling
with respect to the forcing amplitude M presents a distinct challenge. In the limit that the
geometric effects are weak, Ellermeier (1993) provided an analysis of the discontinuous
solutions which arise in the case of a closed tube with variable cross-section forced at or
near resonance. He also provided a condition under which these solutions are no longer
valid, alluding to the single mode limit. However, the nature of the transition between
these regimes was not discussed. Likewise, Ockendon et al. (1993) considered the case of
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Figure 6. Deformation of resonant profiles u(0.5, ¢) for ¢ € [0, 2] for increasing geometric parameter a,
(@M =15625x107,(v=1x10")and (B) M = 1.25 x 1074 (v =2 x 107).

a frustum of a spherical annulus which through a parametric transformation is analogous
to a cone, see Seymour et al. (2011). However, here too no direct connection was made
between the two distinct response regimes. Subsequently Chester (1994) also investigated
the case of weak geometric effects in the context of closed tubes with varying cross section.
He discussed the potential for extending the underlying expansions so as to account for
stronger geometric variation and to provide a condition for which shock wave solutions are
completely eliminated but no such condition was provided. Seymour et al. (2012) provided
an estimate for the parametric range of the transition in the case of a spherical annulus and
for a specific forcing amplitude. More recently Amundsen, Mortell & Seymour (2017)
considered the analogous transition in the context of an open axisymmetric tube. In this
case, because of the weaker commensurate structure, the limiting regimes arise at the
same asymptotic order in terms of the underlying forcing amplitude. As such a variably
truncated multiple mode expansion was used to capture solutions across the transition
regime. Therefore, in this section we will study in detail the way in which the resonant
response transitions between these limiting cases, a < 1 and a = O(1), and determine
precisely how the various qualitatively distinct outcomes depend upon the underlying
forcing and geometric effects.

To build a fuller understanding and draw a connection between the distinct solution
regimes, we consider numerically computed solutions across the full parametric range
associated with the transition. We simulate the fully nonlinear governing equations (2.1)
for motion of a gas in an Eulerian frame. Boundary conditions, as in (2.4a.,b), are taken
to be u(0,7) =0, u(l, ) = Msin(Wr) and the geometric factor s(x) = (1 + ax)%. We
also note that, in the same way as Chester (1994), a small dissipative term is added
to the momentum equation with parameter v. This is included to facilitate convergence
to a steady periodic state while not appreciably impacting the form of the resonant
response. From a physical standpoint this is equivalent to a uniformly imposed impedance
throughout the domain and is in turn analogous to one imposed at the boundary with
parameters chosen accordingly. The numerical computation is then carried out using an
adaptive finite volume based approach (LeVeque 2002) starting at the underlying unforced
equilibrium state.

Figure 6 shows the sequence of periodic response profiles which arise as a is varied for
two distinct forcing amplitudes. In both cases for a = 0 we recover the well-known shocked
solution associated with the closed tube (Chester 1964). While, at the other extreme,
(shown in blue) the discontinuity is no longer present and we recover the dominant first
harmonic response. In between these extremes lies a progression of shocked solutions
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Figure 7. Variation of qualitatively distinct resonant profiles in terms of forcing amplitude (M) and geometric
variation (a).

(in black) which transition to multi-modal continuous solutions (in red) before resulting in
the single mode response. This then implies the existence of a critical geometric parameter
value a;(M) with discontinuous, shocked, solutions to one side and continuous, multiple
mode, solutions to the other. Likewise, within the continuous regime a second critical
parameter value a,,(M) exists delineating the interface between multiple mode and single
mode responses, as in figure 7.

To investigate this further, figure 7 shows how the various qualitative types of responses
vary with geometric and forcing effects. Within the shocked region (0 < a < ay) the
shock amplitude, scaled by M'/?, was found to serve as a good proxy for the profiles
themselves and is represented by the black contour lines. The dashed curve corresponds to
the transition where the shock amplitude goes to zero and the profiles become continuous.
In terms of the geometric parameter this transition scales as O(M'/?). This goes beyond
but includes the range identified by Ockendon et al. (1993). Specifically, the transition
lies at a; = C;M'/3 where C; = 12.8. This curve, as indicated by the black dashed curve,
corresponds to the points where the amplitude of the shock goes to zero. With the increased
accuracy and resolution of these calculations, we also see that the transition lies close
to, but slightly beyond, the range predicted in Seymour et al. (2012) in the context of
concentric spheres. For the multimodal solutions (a; < a < a,,) the red contours show
how the relative amplitudes of the dominant mode and its first harmonic decrease until
eventually becoming effectively single mode, i.e. where the amplitude of the first harmonic
is less than one per cent that of the fundamental mode, see figure 8. As indicated by the

blue dashed curve, this transition occurs at a,, = C,,M'/> where C,, = 30. Finally, the
dominant first harmonic response emerges for a > a,, with amplitude scaling as O(M'/3).

In terms of the intensity of the response, we note in figure 6 that as the amplitude of
the forcing varies, and taking into account the associated scaling in a, a qualitatively
similar progression emerges. One key difference, however, lies in the amplitude of the
single mode response relative to the shocked response. This in turn relates to the different
scaling regimes present at each extreme. Taking a general scaling O(M“), for a = 0 we
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Figure 8. Scaling of response O(M*) and relative modal amplitudes as a varies for M = 1.25 x 1074,

a Al |A2] |As] |A4]

0 27618 0.7095 04177 0.2965
2 4.6520 0.0302 0.0017 0.0002

Table 3. Amplitudes for first harmonic A and higher harmonics for @ = 0, 2 and when M = 1.25 x 1074,
quantitatively showing how the higher modes attenuate in these distinct limiting cases.

expect k = 1/2 which then transitions to k = 1/3 for a sufficiently large corresponding
to the single mode response regime. To illustrate in more detail how this transition occurs
figure 8(a) shows the way in which the scaling « varies with a for M = 1.25 x 10~*. For
0 < a < a;(M) (indicated in black) the response remains near x = 1/2 with, interestingly,
a slight plateau for moderately large values of a. Then for ay(M) < a < a,,(M) (indicated
in red), corresponding to the multiple mode regime, the scaling now smoothly decreases,
with an asymptotic approach to k = 1/3 as the solution transitions to the single mode
regime (indicated in blue). While the latter transition remains somewhat arbitrary, the
beginning of the smooth decrease in scaling provides another clear interpretation for the
transition from shocked to multiple mode solutions at agz(M). And to further illustrate,
figure 8(b) shows the way in which the amplitudes of the higher harmonics (denoted by
A, for the n’th mode) in the solutions vary with the geometric parameter a relative to the
dominant first harmonic mode (denoted by A1). Moreover, table 3 provides the associated
numerical values of the modal amplitudes for a = 0 and a = 2, further quantifying the
attenuation of the higher modes. We see that within the shocked regime these modes
play a significant role with relative amplitudes remaining largely constant. Then as the
geometric effects increase, we observe a decay as the higher modal contributions begin
to successively drop off within the multiple mode regime. Then, once past the threshold
associated with a,,(M), we arrive at a response which is effectively single mode. Taken
together this further demonstrates the interplay between the response and the underlying
modal structure.
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Figure 9. Regions in a vs A where aNLGA (3.13), dominant first harmonic and exact linear approximations
provide agreement to within 5 % for M = 1.25 x 107+,

5.1. Geometry and detuning

As discussed in §3.2, the augmented nonlinear geometric acoustics (aNLGA)
approximation (3.13) extends both the leading-order NLGA approximation (as shown in
table 1) and the range of validity of the approximation to larger values of the geometric
parameter. We now explore this comparison more fully over a fuller range of values of
geometric parameter a and detuning parameter A.

Figure 9 shows that the aNLGA approximation (3.13) provides a good approximation
for values of a near zero and A within the resonant band. The regions of agreement are
indicated by the locations of the text labels, with corresponding boundaries in the same
colour. We see that in the case where no geometric variation is present, a = 0, the validity
extends across the resonant band (as indicated by the dashed lines, (3.29)). On resonance
the aNLGA region extends up to approximately a = (0.2, in accordance with what was
observed in table 1 and figure 3.

For comparison we also show how, for larger values of geometric variation and detuning,
the dominant first harmonic approximation, see Mortell & Seymour (2004), and the exact
linear solution from § 2.1 compare. As expected, the former provides good approximation
away from resonance for a sufficiently large and across the entire detuning spectrum,
corresponding to the incommensurate nature of the linear spectrum. For moderately
large values of the geometric parameter (up to approximately a = 0.5) we see that
the approximation begins to break down due to the now increasingly incommensurate
structure. And due to the underlying rightward bend of the resonant response curve,
i.e. that the resonant amplitude increases with detuning, this region correspondingly skews
right. Finally, we note that in a narrow band near a = 0 and across all values of detuning,
the dominant first harmonic approximation breaks down. This relates to the fact that the
detuning itself is taken to scale with the amplitude of the response and therefore cannot
mitigate the effects of the fully commensurate spectrum at a = 0.

In addition, the exact linear solution provides good agreement off resonance. We note
also that this is largely independent of the geometric variation as would be expected
given that it is fully incorporated. However, one interesting feature is the slight bulge for
moderately large a. This suggests that up to a certain point it follows the widening of the
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resonant band itself, but then the geometric and nonlinear effects combine, and we return
to a comparison that is largely independent of a.

6. Conclusion

When the slope a of the frustum of a cone is o(1) then, using the superposition of
oppositely travelling modulated simple waves, it can be shown that the resonant output
at O(M'/?) for an input of O(M) contains shocks, see Amundsen et al. (2015). In contrast,
when the slope a is O(1) the resonant output is O(M 1/3) for an input of O(M) and the
signal is continuous, see Lawrenson et al. (1998) for the experimental result and Mortell
& Seymour (2004) for the analytical result, which is obtained as a dominant first harmonic
approximation. The problem investigated here is how the motion transitions as a changes
from o(1) to O(1). In particular, we are interested in the transition from shocked solutions
to single mode continuous solutions.

The nonlinear equation (3.13) for a = o(1) is derived for the first time using a
nonlinearization technique, see Mortell & Seymour (20175). Then it is found numerically
that the shocked solutions at o(1) transition first to a multimode continuous solution as a

crosses the curve a; = C;M'/3, where M is the Mach number of the input and Cy = 12.8.
As a increases further the number of modes required for a good approximation decreases
until the transition curve a,, = C,,M'/3, where C,, = 30, after which the dominant first
harmonic response emerges due to the Stokes interaction at third order.

In cases off resonance and where the spectrum is sufficiently commensurate,
the augmented NLGA approximation (3.13) provides improved agreement within the
resonant band. For sufficiently large geometric variation, and where the underlying
spectrum is sufficiently incommensurate, the response follows a dominant first harmonic
approximation. However, there remains an intermediate range where, near resonance,
neither of these approaches nor the exact linear solution apply.
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