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Abstract

Because of its practical and theoretical importance in rheology, numerous algorithms have been proposed
and utilised to solve the convolution equation g(x) = (sech ? h)(x) (x ∈ R) for h, given g. There are
several approaches involving the use of series expansions of derivatives of g, which are then truncated to
a small number of terms for practical application. Such truncations can only be expected to be valid if the
infinite series converge. In this note, we examine two specific truncations and provide a rigorous analysis
to obtain sufficient conditions on g (and equivalently on h) for the convergence of the series concerned.
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1. Introduction

In continuous relaxation spectrum recovery using oscillatory shear data, one is
required to solve for the relaxation spectrum h from the convolution equation

g(x) = (sech ? h)(x) (x ∈ R). (1.1)

Here g and h are bounded nonnegative measurable functions on R, although satisfying
(1.1) means that g is necessarily C∞. The details of obtaining this equation from
considerations of storage and loss moduli are given in [1]. Some approaches to the
problem of estimating h from g are discussed in [5, Ch. 4A] with different terminology
(see also [9], [10, 4(f)]). Having derived an infinite series solution for h in terms of
derivatives of g, such as [1, (3.13)], which is reproduced in (3.2) in Section 3 below,
approximations such as

h(x) ∼
1
π

g(x), h(x) ∼
1
π

(
g(x) −

π2

8
d2g
dx2 (x)

)
are generated as truncations of the series. The utility and implementation of such
approximations have been examined in [2]. However, to verify their validity, a proof
of the convergence of the series is required. The provision of a direct proof of this
convergence is the goal of the current paper.
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The paper has been organised in the following manner. Section 2 discusses the
related power series approach of Gureyev et al. [7] as motivation for the subsequent
deliberations where weaker conditions which guarantee convergence are derived.
The mollifier approach of [1, Section 3] is briefly outlined in Section 3 in order
to set the scene for the subsequent analysis. Sections 4 and 5 derive properties of
Gaussians and the sech function required to establish, in Section 6, conditions under
which convergence will hold. In particular, it is established that pointwise and L1

convergence hold for any g (and, equivalently, h) in a dense subset of L1. This, in
turn, justifies the truncation procedures used to approximate, as outlined above. Some
remarks about the possible extension to the more general situation where h ∈ L1 are
given in Section 7.

2. The power series approach of Gureyev et al.

Following Gureyev et al. [7], we consider a ‘local’ approach of assuming a power
series expansion for h and obtaining a series expansion for g in terms of derivatives of
h, which can then be ‘inverted’ to yield an expansion for h in terms of derivatives of g.
Under a suitable hypothesis, the formal solution can be confirmed to solve (1.1).

To be clear about the nature of the hypotheses needed, we examine the steps needed
to make the confirmation. One tries for a solution of the form

h(x) =

∞∑
n=0

bn
dng
dxn (x). (2.1)

Formal substitution in (1.1) and equating coefficients of dnh/dxn(x) results in bn

satisfying

b0 =
1
a0
, bn = −b0

n−1∑
k=0

bkan−k,

where

an =
(−1)n

n!

∫ ∞

−∞

yn sech(y) dy

are multiples of the moments of sech. Now a2k−1 = 0, k = 1, 2, . . . , because sech is
even, and hence it follows that b2k−1 = 0, k = 1, 2, . . . , so odd derivatives of g are
absent from the solution. Since a0 = π and, for k = 1, 2, . . . ,

a2k =
1

(2k)!

∫ ∞

−∞

x2k sech(x) dx = 2 · (2k)!
∞∑

n=1

(−1)n+1

(2n − 1)2k+1 ≤ 2,

one shows that there are geometric bounds |bn| ≤ (2/π2)(1 + 2/π)n−1, n = 1, 2, . . . .
Indeed, this is clear for n = 1. Suppose it true for 1 ≤ n ≤ j,

|b j+1| ≤
1
π

j∑
k=0

|bka j+1−k| ≤
2
π2 +

j∑
k=1

4
π3

(
1 +

2
π

)k−1
.
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Summing the geometric series gives

|b j+1| ≤
2
π2

(
1 +

2
π

) j
,

which is the result for j + 1, as required. The bounds follow by mathematical
induction.

Thus, (2.1) converges absolutely and uniformly on any interval for which there are
constants C > 0 and 0 < δ < (1 + 2/π)−1 for which∣∣∣∣∣dng(x)

dxn

∣∣∣∣∣ ≤ Cδn n ∈ N. (2.2)

In fact, for (2.1), only even values of n are needed, but, for later steps, odd powers
enter the calculation. In particular, the same convergence holds for

h(k)(x) =

∞∑
n=0

b2n
dk+2ng
dxk+2n (x) k = 1, 2, . . . . (2.3)

Note that, for each k = 1, 2, . . . , assuming that (2.2) holds at x ∈ R,∫ ∞

−∞

∞∑
n=0

|bn|

( ∞∑
k=0

∣∣∣∣∣dk+ng
dxk+n (x)

∣∣∣∣∣ |y|kk!

)
sech(y) dy =

∞∑
n=0

∞∑
k=0

∣∣∣∣∣dk+ng
dxk+n (x)

∣∣∣∣∣|akbn|

=

∞∑
r=0

( ∑
n+k=r

|akbn|

)∣∣∣∣∣drg
dxr (x)

∣∣∣∣∣
≤ 2

∞∑
r=0

( r∑
n=0

|bn|

)∣∣∣∣∣drg
dxr (x)

∣∣∣∣∣
≤C′

∞∑
r=0

δr(1 + 2/π)r <∞, (2.4)

for some constant C′ > 0. This finiteness is needed below.
Thus, substituting (2.1) in (1.1),∫ ∞

−∞

∞∑
n=0

b2n
d2ng
dx2n (x − y) sech(y) dy (2.5)

=

∫ ∞

−∞

∞∑
n=0

b2n
d2n

dx2n

( ∞∑
k=0

dkg
dxk (x)

(−y)k

k!

)
sech(y) dy (2.6)

=

∫ ∞

−∞

∞∑
n=0

b2n

( ∞∑
k=0

dk+2ng
dxk+2n (x)

(−y)k

k!

)
sech(y) dy (2.7)

=

∞∑
n=0

∞∑
k=0

d2k+2ng
dx2k+2n (x)a2kb2n (2.8)

=

∞∑
r=0

( ∑
n+k=r

a2kb2n

)d2rg
dx2r (x) (2.9)

= g(x). (2.10)

https://doi.org/10.1017/S0004972716000861 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972716000861


124 R. J. Loy, F. R. de Hoog and R. S. Anderssen [4]

The step (2.5) → (2.6) requires the Taylor expansion of g about x to converge to
g everywhere on R; (2.6) → (2.7) is the usual term-by-term differentiation with the
resulting series absolutely convergent by (2.3); (2.7)→ (2.8) is the usual term-by-term
integration; and the rearrangement (2.8)→ (2.9) is valid because of finiteness at (2.4).

The regularity required for this argument to be valid for any point x ∈ R, is that:

the Taylor series of g about x converges to g everywhere on R,
and so g extends from R to an entire function on C; and (2.11)

the bounds (2.2) hold. (2.12)

But then, given ρ > 0 and x ∈ R, set z = x + ρi and estimate

|g(z)|=
∣∣∣∣∣ ∞∑
n=0

1
n!

dng
dxn (x)(z − x)n

∣∣∣∣∣
≤C

∞∑
n=0

1
n!

(δρ)n.

It follows that

g is bounded on the strip |=(z)| ≤ ρ for every ρ > 0. (2.13)

Remark 2.1. Since we assume that g is bounded on R, all these conditions are satisfied,
for example, if g is of exponential type less than (1 + 2/π)−1 (see [3, Ch. 6]). Our
approach below is valid under more general conditions (see (6.3)).

In order to justify the basic assumption of [7] that g has an expansion in terms of
derivatives of h, one argues that

g(x) =

∫ ∞

−∞

h(x − y) sech(y) dy (2.14)

=

∫ ∞

−∞

∞∑
n=0

(−y)n

n!
dnh
dxn (x) sech(y) dy (2.15)

=

∞∑
n=0

dnh
dxn (x)

(−1)n

n!

∫ ∞

−∞

yn sech(y) dy (2.16)

=

∞∑
n=0

a2n
d2nh
dx2n (x), (2.17)

where the an are as before. For (2.14)→ (2.15), we need the Taylor series of h about
x to converge to h on all of R, so that h is the restriction to R of an entire function. For
(2.15)→ (2.16), it would suffice that∫ ∞

0

∞∑
n=0

yn

n!

∣∣∣∣∣dnh
dxn (x)

∣∣∣∣∣ sech(y) dy <∞. (2.18)

https://doi.org/10.1017/S0004972716000861 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972716000861


[5] Convergence in relaxation spectrum recovery 125

This is a very strong restriction, but holds, for example, if there exist 0 < r < 1 and
K > 0 such that ∣∣∣∣∣dnh

dxn (x)
∣∣∣∣∣ ≤ Krn,

for then ∫ ∞

0

∞∑
n=0

yn

n!

∣∣∣∣∣dnh
dxn (x)

∣∣∣∣∣ sech(y) dy ≤
∫ ∞

0
ery sech(y) dy <∞.

This is the case for the Gaussians exp(−βx2) for β < 1, but note that (2.18) fails for
h(x) = exp(−x2).

3. The mollifier approach of Anderssen et al.

The argument in [1, Section 3], going from their (3.6) and (3.7) to their (3.12) and
(3.13), respectively, lacks any detail to justify the interchanging of the limit operations.
Here, we consider the matter more carefully, focusing on obtaining their (3.13)

h(t) =
1
π

∞∑
r=0

(−1)r
(
π

2

)2r 1
(2r)!

[d2ng
dt2n (t)

]
, (3.1)

from their (3.7)

h(t) (3.2)

= lim
ε→0

1
2π2

∫ ∞

−∞

∫ ∞

−∞

g(x)
∞∑

n=0

1
(2n)!

(
π

2
p
)2n

exp
(
−

1
2
ε2 p2

)
exp(ip(t − x)) dp dx,

where t > 0 is constant as far as the integration is concerned. This integral comes
from taking the Fourier transform of (1.1), rearranging as a formula for ĥ, introducing
the factor exp(−ε2 p2/2), applying standard inversion, and then changing the order of
integration.

Since
∞∑

n=0

1
(2n)!

(
π

2
p
)2n

exp
(
−

1
2
ε2 p2

)
≤ exp

(
π

2
p −

1
2
ε2 p2

)
is integrable for any ε > 0, the inner integration and summation in (3.1) can be
interchanged by dominated convergence, giving

1
2π2

∫ ∞

−∞

g(x) dx
∞∑

n=0

1
(2n)!

∫ ∞

−∞

(
π

2
p
)2n

exp
(
−

1
2
ε2 p2

)
exp(ip(t − x)) dp. (3.3)

4. Some observations about Gaussians

Set

Fε(ξ) =

∫ ∞

−∞

exp(− 1
2ε

2 p2) exp(−ipξ) dp, (4.1)
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which is the Fourier transform of the Gaussian exp(− 1
2ε

2 p2). Of course,

Fε(ξ) =

√
2π
ε

exp
(
−
ξ2

2ε2

)
. (4.2)

Also note that Fε/(2π) is an approximate identity in L1(R) [8, Section 21.36], with all
elements having norm one. In particular, Fε ≥ 0 and

∫ δ

−δ
Fε(ξ) dξ→ 2π as ε→ 0, for

any δ > 0. Thus, for any bounded measurable f which is continuous at t,∫ ∞

−∞

Fε(x − t) f (x) dx→ 2π f (t) as ε→ 0. (4.3)

Further, for any f ∈ L1(R),∫ ∞

−∞

∣∣∣∣∣∫ ∞

−∞

Fε(x − t) f (x) dx − 2π f (t)
∣∣∣∣∣ dt→ 0.

Differentiating (4.1), for each n ∈ N,

d2nFε

dξ2n (ξ) =

∫ ∞

−∞

(−ip)2n exp
(
−

1
2
ε2 p2

)
exp(−ipξ) dp, (4.4)

so that, by the Riemann–Lebesgue theorem, Fε, together with all its derivatives, vanish
at ±∞. Note the similarity between the inner integrand of (3.3) and that of (4.4).

We shall require the finiteness of integrals of the form∫ ∞

−∞

g(x)
∞∑

n=0

1
(2n)!

(
π

2

)2n∣∣∣∣∣d2nFε

dx2n (x − t)
∣∣∣∣∣ dx, (4.5)

where g is a given nonnegative bounded measurable function. For this, we recall some
properties of Hermite functions. In particular,

Hn(x) = (−1)nex2 dn

dxn e−x2
n = 1, 2, . . . ,

so that ∫ ∞

−∞

Hn(x)2e−x2
dx = 2n · n! ·

√
π. (4.6)

From (4.2),

d2nFε

dx2n (x − t) =

√
2π
ε

d2n

dx2n

(
exp−

(x − t)2

2ε2

)
=

√
2π
ε

(2ε2)−2n d2n

dη2n

(
exp−η2

)∣∣∣∣∣
η=(x−t)(

√
2ε)

=

√
2π
ε

(2ε2)−2nH2n

( x − t
√

2ε

)
exp(−(x − t)2/(2ε2)),
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and hence

H2n

( x − t
√

2ε

)
= e(x−t)2/(2ε2)(2ε2)2n ε

√
2π

d2nFε

dx2n (x − t).

Now, from (4.6),∫ ∞

−∞

H2n

( x − t
√

2ε

)2
e−(x−t)2/(2ε2) dx = 22n · (2n)! ·

√
2πε,

so that ∫ ∞

−∞

e(x−t)2/(2ε2)
∣∣∣∣∣d2nFε

dx2n (x − t)
∣∣∣∣∣2 dx = 22n · (2n)! ·

√
2πε · (2ε2)−4n ·

2π
ε2 .

Thus, ∥∥∥∥∥e(x−t)2/(4ε2) d2nFε

dx2n (x − t)
∥∥∥∥∥

2
= 2−n+3/4 ·

√
(2n)! · ε−4n−1/2 · π3/4.

Consequently,

2−n+3/4 ·
√

(2n)! · ε−4n−1/2 · π3/4 · (π/2)2n

(2n)!
= An

ε · Bε · ((2n)!)−1/2

for constants Aε, Bε, which is summable over n for each ε > 0. The integral (4.5) can
be rewritten as∫ ∞

−∞

(
g(x)e−(x−t)2/(4ε2)

)( ∞∑
n=0

1
(2n)!

(
π

2

)2n∣∣∣∣∣d2nFε

dx2n (x − t)
∣∣∣∣∣e(x−t)2/(4ε2)

)
dx,

where each (· · · ) has finite L2-norm. Thus, the integral (4.5) is finite, as required.

5. Properties of the function sech

It is known [4, Proposition 3] that, for t ∈ R,

sech(m)(t) = sech(t)Sm(tanh(t)),

where the Sm are the polynomials given by

Sm(z) =

m∑
j=0

[
(−1) j j!

m∑
k= j

(
m
k

){
k
j

}
2k− j

]
(z + 1) j

and the
{
k
j

}
denote the Stirling numbers of the second kind. Since |tanh(t)| ≤ 1, this

establishes continuity, boundedness and integrability of each of the derivatives sech(m).
The meromorphic function z 7→ sech(z) has (simple) poles at the points of the set

{(k + 1/2)iπ, k ∈ Z}. The closest such points to the real line are S = {±iπ/2}. Thus, for
real t , 0,

sech(t + z) =

∞∑
n=0

zn

n!
sech(n)(t)
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has radius of convergence d(t, S ) > π/2, and so, in particular,

sech(t + iπ/2) =

∞∑
n=0

1
n!

( iπ
2

)n
sech(n)(t),

where the series is absolutely convergent. Since sech(t + iπ/2) is purely imaginary for
any real t, it follows that, for t ∈ R \ {0},

∞∑
n=0

1
(2n)!

( iπ
2

)2n
sech(2n)(t) = 0. (5.1)

Since

sech(2n)(0) = (−1)n2(2n)!
(2
π

)2n+1 ∞∑
k=0

(−1)k

(2k + 1)2n+1 ∼ (−1)n2(2n)!
(2
π

)2n+1

[6, Section 9.652], at t = 0, the terms of the series (5.1) converge to 4/π, so the series
itself diverges to +∞.

In fact, much more is true. For u ∈ (0,∞), set Mu = max{|sech(z)| : |z − u| ≤ π/2}.
Note that u 7→ Mu is continuous and Mu → 0 as u→∞, Mu →∞ as u ↓ 0. Take ε > 0,
0 < s < t and π/2 < d < min{d(s, S ), d(t, S )}. Set M = max{Mu : s ≤ u ≤ t}. Finally,
take natural numbers p ≤ q. Then, making use of Cauchy’s inequalities,

q∑
n=p

1
(2n)!

(
π

2

)2n
|sech(2n)(t) − sech(2n)(s)| ≤

2q∑
n=2p

1
n!

(
π

2

)n
|sech(n)(t) − sech(n)(s)|

≤
∑
n≥2p

1
n!

(
π

2

)n
(|sech(n)(t)| + |sech(n)(s)|)

≤ 2M
∑
n≥2p

(
π

2d

)n
< ε,

provided p is sufficiently large. Thus, (5.1) is uniformly (absolutely) convergent on
compact subsets of R \ {0}. As remarked earlier, it is divergent to +∞ at t = 0.

For norm convergence in L1(R), similarly, on the interval {t : |t − u| ≤ π/2} for some
u > 0,

∞∑
n=0

1
(2n)!

(
π

2

)2n
|sech(2n)(t)| ≤ 2Mu

∞∑
n=0

(
π

2d

)n
.

Further, on the disc with the interval as diameter, setting z = x + iy,

|cosh2(z)| = cosh2(x) − 1 + cos2(y) ≥ cosh2(x) − 1 ≥ cosh2(u − π/2) − 1.

It follows that, for u ≥ π (to ensure the second inequality),

Mu ≤
1√

cosh2(u − π/2) − 1
≤
√

2 exp(−u + π/2).
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So, finally, for u ≥ π and |t − u| ≤ π/2, so that d > π/
√

2,

∞∑
n=0

1
(2n)!

(
π

2

)2n
|sech(2n)(t)| ≤ 2

√
2 exp

(
−u +

π

2

) ∞∑
n=0

(
π

2d

)n
≤ 9 exp

(
−u +

π

2

)
.

It follows, from this and the earlier uniform estimate, that the series in (5.1) is L1-norm
convergent on R \ (−δ, δ) for each δ > 0.

In summary,

ek(t) =

k∑
n=0

1
(2n)!

( iπ
2

)2n
sech(2n)(t)

k→∞
→

0 t , 0,
+∞ t = 0,

(5.2)

uniformly and in L1 on each R \ {−δ, δ}.
Since Mu = O(u−1) near 0, as well as d(u, S )→ π/2 as u→ 0, this argument does

not extend to give convergence in L1(R). In view of the above, the boundedness of (ek)
in L1(R) would follow from boundedness in L1[0, δ] for some δ > 0. Further discussion
is given in Section 7.

6. Convergence arguments

Using (4.1), the summation in (3.3) can be written as

∞∑
n=0

(−1)n

(2n)!

(
π

2

)2n d2nFε

dt2n (x − t),

so that (3.3) becomes

1
2π2

∫ ∞

−∞

g(x)
∞∑

n=0

(−1)n

(2n)!

(
π

2

)2n d2nFε

dt2n (x − t) dx. (6.1)

Furthermore, g and its derivatives vanish at ±∞, so that integration by parts yields∫ ∞

−∞

g(x)
d2nFε

dt2n (x − t) dx =

∫ ∞

−∞

Fε(x − t)
d2ng(x)

dx2n dx n = 0, 1, . . . .

To justify the interchange of integration and summation in (6.1), we simply invoke
(4.5), to obtain

∞∑
n=0

(−1)n

(2n)!

(
π

2

)2n(∫ ∞

−∞

Fε(x − t)
d2ng(x)

dx2n dx
)
, (6.2)

which is an absolutely convergent series.
For the case of interest g(t) = (sech?h)(t),

d2ng(t)
dt2n = (sech(2n) ? h)(t).

https://doi.org/10.1017/S0004972716000861 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972716000861


130 R. J. Loy, F. R. de Hoog and R. S. Anderssen [10]

So, as noted in (4.3), for each n ∈ N and t ∈ R,∫ ∞

−∞

Fε(x − t)
d2ng(x)

dx2n dx→ 2π
d2ng(t)

dt2n

pointwise and also in L1(R). Rather than termwise convergence, on the assumption
that the sum

∞∑
n=0

(−1)n

(2n)!

(
π

2

)2n d2ng(x)
dx2n (6.3)

is continuous at x = t and bounded, (4.3) with f (x) given by (6.3) gives

h(t) =
1
π

∞∑
n=0

(−1)n

(2n)!

(
π

2

)2n d2ng(t)
dt2n , (6.4)

with convergence being pointwise and in L1(R). This is the required equation (3.13)
of [1].

In particular, we note that (6.4) certainly holds when g satisfies the growth condition
(2.12) ∣∣∣∣∣dng(t)

dtn

∣∣∣∣∣ ≤ Cδn n ∈ N, (6.5)

for some C > 0 and some 0 < δ < (1 + 2/π)−1. In fact, any power growth, that is, any
fixed finite δ > 0 in (6.5), is sufficient.

In fact, we can do much better that this. Suppose that g is the restriction to R of
a function analytic and bounded (by M) on a strip |=z| ≤ ρ for some ρ > π/2. This
is much weaker that the entire function assumption of (2.11) and (2.13). (Relevant
examples are sech(x/a) for a > 1, and Gaussians exp(−b(x − c)2) for b > 0, c ∈ R.)
From Cauchy’s inequalities, ∣∣∣∣∣dng(t)

dtn

∣∣∣∣∣ ≤ n!M
ρn n ∈ N,

so that
∞∑

n=0

1
(2n)!

(
π

2

)2n∣∣∣∣∣d2ng(t)
dt2n

∣∣∣∣∣ ≤ M
∞∑

n=0

(
π

2ρ

)2n
<∞.

Thus (6.3) is uniformly convergent and equality holds at (6.4). Indeed, (6.4) extends
to the strip |=z| ≤ ρ, giving h as analytic and bounded on |=z| ≤ ρ.

On the other hand, supposing that h is analytic and bounded on |=z| ≤ ρ, for t ∈ R,

g(t) = (sech?h)(t) =

∫ ∞

−∞

sech(s)h(t − s) ds,

so this also extends to |=z| ≤ ρ, giving

g(z) =

∫ ∞

−∞

sech(s)h(z − s) ds.
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It follows that the assumption of being analytic and bounded on |=z| ≤ ρ for h gives
the same condition on g, so the two are equivalent. They (both) imply that (6.4) holds
with convergence at a geometric rate (depending on ρ > π/2).

Looking at the question more generally, we can rephrase the problem, so as to
understand the convergence of (6.3), as

k∑
n=0

1
(2n)!

( iπ
2

)2n(
sech(2n) ? h

)
?
→ h, (6.6)

keeping in mind (5.2). We have shown convergence, both pointwise and in L1(R), in
(6.6) for g(x) = (sech?h)(x) lying in a dense subspace of L1(R), namely, the span of
the Gaussians. Indeed, if g is a function for which convergence in L1(R) holds in (6.6),
convolving both sides with k shows that we have the same for g ? k for any k ∈ L1(R).
In particular, we have convergence in L1(R) for any suitably mollified function.

7. Technical remarks
The above argument requires a severe restriction on g, or, equivalently, on h. As

shown in Section 5, for each δ > 0, on the set R \ (−δ, δ),
k∑

n=0

1
(2n)!

( iπ
2

)2n
sech(2n) → 0 (7.1)

uniformly and in L1-norm. It is, however, divergent to +∞ at t = 0. In particular,
it cannot be L1(R)-convergent. Otherwise, suppose that (7.1) did converge in L1(R).
Then, since a subsequence converges almost everywhere [8, Theorem 13.11] to the L1

limit, that limit is necessarily zero, by (5.2). Then (6.2) could be written as∫ ∞

−∞

Fε(x − t)
(( ∞∑

n=0

1
(2n)!

( iπ
2

)2n
sech(2n)

)
? h

)
(x) dx,

which is 0 since the inner (· · ·) = 0. But we know that this last expression converges to
h, for suitable restricted h , 0, which is a contradiction.

In spite of (7.1) not converging in L1(R), there is the possibility that (6.6) converges
in L1(R) for each h ∈ L1(R). If such was the case, then, by the Banach–Steinhaus
theorem [8, Corollary 14.24], there is a constant K such that

sup
k

∥∥∥∥∥ k∑
n=0

1
(2n)!

( iπ
2

)2n
(sech(2n) ? h)

∥∥∥∥∥
1
≤ K‖h‖1.

It would then follow from this and the denseness result above that the infinite sum
would be h itself for all h ∈ L1(R). Then letting h range over an approximate identity
of norm one, it would follow that

sup
k

∥∥∥∥∥ k∑
n=0

1
(2n)!

( iπ
2

)2n
sech(2n)

∥∥∥∥∥
1
≤ K (7.2)

so that (ek) would be a bounded approximate identity in L1(R).
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Conversely, if we knew that (7.2) was the case (by (5.2), even in L1[0, δ] for
some δ > 0 would be enough), then, because (6.6) holds on a dense subset, we could
conclude that it holds for all h ∈ L1(R).
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