PERMUTUTATIONAL LABELLING OF CONSTANT WEIGHT GRAY CODES

Inessa Levi and Steve Seif

We prove that for positive integers n and r satisfying $1<r<n$, with the single exception of $n=4$ and $r=2$, there exists a constant weight Gray code of r-sets of $X_{n}=\{1,2, \ldots, n\}$ that admits an orthogonal labelling by distinct partitions, with each subsequent partition obtained from the previous one by an application of a permutation of the underlying set. Specifically, an r-set A and a partition π of X_{n} are said to be orthogonal if every class of π meets A in exactly one element. We prove that for all n and r as stated, and $i=1,2, \ldots,\binom{n}{r}$ taken modulo $\binom{n}{r}$, there exists a list $A_{1}, A_{2}, \ldots, A_{\binom{n}{r}}$ of the distinct r-sets of X_{n} with $\left|A_{i} \cap A_{i+1}\right|=r-1$ and a list of distinct partitions $\pi_{1}, \pi_{2}, \ldots, \pi_{\binom{n}{r}}$ such that π_{i} is orthogonal to both A_{i} and A_{i+1}, and $\pi_{i+1}=\pi_{i} \lambda_{i}$ for a suitable permutation λ_{i} of X_{n}.

1. Orthogonally labelled Hamiltonian cycles

We prove a combinatorial result regarding labelling of constant weight Gray codes. The paper is aimed at understanding the combinatorics of subsets and partitions of finite sets and their efficient listing.

Let $X_{n}=\{1,2 \ldots, n\}$. An r element subset A of X_{n} is referred to as an r-set. Let $G_{n, r}$ be the graph whose vertices constitute all the r-sets of X_{n}, with two r-sets being adjacent if their intersection has exactly $r-1$ elements. A path in a graph is a sequence of distinct pairwise adjacent vertices; a cycle is a path in which the first and the last vertices are adjacent. A Hamiltonian path (cycle) is one that contains every vertex of the graph. It is well-known that $G_{n, r}$ is Hamiltonian; that is, that it contains Hamiltonian cycles. Hamiltonian cycles of $G_{n, r}$ are also known as constant weight Gray codes and were among the earliest examples of combinatorial Gray codes ([6]).

A partition π of X_{n} is said to have weight r if π has r distinct classes. The partition π and the set A are said to be orthogonal if every class of π contains exactly one element of A. An orthogonally labelled list of r-sets in X_{n} is a sequence

$$
\begin{equation*}
A_{1}, \pi_{1}, A_{2}, \pi_{2}, \ldots, A_{\binom{n}{r}}, \pi_{\binom{n}{r}} \tag{1}
\end{equation*}
$$

Received 30th August, 2001
Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/02 \$A2.00+0.00.
alternating between distinct r-sets A_{i} and distinct partitions π_{i} of weight r, such that for $i=1,2, \ldots,\binom{n}{r}$ taken modulo $\binom{n}{r}$, the partition π_{i} is simultaneously orthogonal to A_{i} and A_{i+1}. The sequence $A_{1}, A_{2}, \ldots, A_{\binom{n}{r}}$ of $\binom{n}{r}$ distinct r-sets of X_{n} is referred to as the set-sequence, and is denoted by $\mathcal{A}=A_{1} A_{2} \ldots A_{\binom{n}{r}}$. The sequence $\pi_{1}, \pi_{2}, \ldots, \pi_{\binom{n}{r}}$ of $\binom{n}{r}$ distinct partitions is referred to as the partition-sequence, and is denoted by II $=\pi_{1} \pi_{2} \ldots \pi_{\binom{n}{r}}$. We identify the orthogonally labelled list in (1) with an ordered pair (\mathcal{A}, Π). In the sequel, we omit the commas between the elements of set-sequences and partition-sequences.

In [1], Howie and McFadden prove the existence of orthogonally labelled lists as stated below.

Theorem 1.1. ([1]) For all positive integers n and r with $1<r<n$ there exist an orthogonally labelled list of the r-sets of X_{n}.

If the partition-sequence Π is such that for each $i=1,2, \ldots,\binom{n}{r}$ taken modulo $\binom{n}{r}$, there exists a permutation λ_{i} of X_{n} with $\pi_{i+1}=\pi_{i} \lambda_{i}$, the orthogonally labelled list (\mathcal{A}, Π) is referred to as the permutational orthogonally labelled list. If the set sequence \mathcal{A} is a Hamiltonian cycle in $G_{n, r}$, the orthogonally labelled list (\mathcal{A}, Π) is referred to as an orthogonally labelled Hamiltonian cycle. Our objective in this paper is to prove the following strengthening of Theorem 1.1.

Theorem 1.2. For all positive integers n and r with $1<r<n$, except for the $n=4, r=2$ case, there exists a permutational orthogonally labelled Hamiltonian cycle in $G_{n, r}$.

We prove the theorem after providing a definition and several examples. A partition of the set X_{n} has type $\tau=d_{1}^{t_{1}} d_{2}^{t_{2}} \ldots d_{k}^{t_{k}}$ if it has t_{i} classes of size d_{i} for $i=1,2, \ldots, k$, where $d_{1}>d_{2} \ldots>d_{k}$. We use τ to refer to the set of all partitions of X_{n} of that type. Example 1.1. We show that $G_{4,2}$ has no permutational orthogonally labelled Hamiltonian cycle (nor even a permutational orthogonally labelled list). There are seven partitions of weight two of X_{4} : three of these are of type 2^{2} and four of type 31 . There are six 2-sets in X_{4}; hence, any orthogonally labelled Hamiltonian list in $G_{4,2}$ must contain partitions of both types, 2^{2} and 31 . No permutation of X_{4} can transform a partition of one type into the other; hence there exists no permutational orthogonally labelled list in $G_{4,2}$. It is somewhat surprising that $n=4, r=2$ turns out to be the only exceptional case as Theorem 1.2 indicates.

In the table below, we also present two permutational orthogonally labelled Hamiltonian cycles for $n=5$, one for the case of $r=2$, the other for the case $r=3$.

Set	Partition	Set	Partition
A_{i}	π_{i}	B_{i}	$\boldsymbol{\gamma}_{i}$
12	$25 \mid 134$	123	$3\|15\| 24$
23	$12 \mid 345$	134	$3\|12\| 45$
13	$14 \mid 235$	234	$2\|13\| 45$
34	$23 \mid 145$	124	$4\|13\| 25$
24	$34 \mid 125$	145	$4\|12\| 35$
14	$24 \mid 135$	245	$4\|23\| 15$
45	$15 \mid 234$	345	$3\|14\| 25$
35	$45 \mid 123$	135	$5\|12\| 34$
25	$35 \mid 124$	235	$5\|13\| 24$
15	$13 \mid 245$	125	$1\|24\| 35$

Figure 1: Permuational Orthogonally Labelled Hamiltonian cycles in $G_{5,2}$ and $G_{5,3}$
An orthogonally labelled list (\mathcal{A}, Π) in which every partition in Π has type τ, is called an orthogonally τ-labelled list. If \mathcal{A} is a Hamiltonian cycle, then (\mathcal{A}, Π) is referred to as an orthogonally τ-labelled Hamiltonian cycle. For a fixed type τ, the group S_{n} of permutations of X_{n} acts transitively on the set of partitions of type τ. In particular, an orthogonally τ-labelled list is a permutational orthogonally labelled list. The following proposition is concerned with the case of partitions of weight two and begins the proof of the theorem.

Proposition 1.3. Let $d \geqslant 3$ and $\tau=d 2$. There exists an orthogonally τ-labelled Hamiltonian cycle in $G_{d+2,2}$.

Proof: We prove inductively that for $d \geqslant 3$ there exists an orthogonally ($d 2$)labelled Hamiltonian cycle (\mathcal{A}, Π), such that the first set in the set-sequence is $\{1,2\}$, the last set in the set-sequence is $\{1, d+2\}$, and the last partition in the partition sequence has a doubleton class $\{1,3\}$.

The base step with $d=3$ is presented in the two left-most columns of Figure 1; they comprise an orthogonally labelled Hamiltonian cycle in $G_{5,2}$ with the properties described above.

Suppose that for $d \geqslant 4$ there exists an orthogonally (($d-1$) 2)-labelled Hamiltonian cycle (\mathcal{B}, Γ), satisfying the above inductive assumptions. Specifically, if $\mathcal{B}=B_{1} B_{2} \ldots B_{\binom{d+1}{2}}$ then $B_{1}=\{1,2\}, B_{\binom{d+1}{2}}=\{1, d+1\}$, and if $\Gamma=\gamma_{1} \gamma_{2} \ldots \gamma_{\binom{d+1}{2}}$ then the doubleton class of $\gamma_{\binom{d+1}{2}}$ is $\{1,3\}$. Then the partition sequence $\Gamma^{\prime}=\gamma_{1}^{\prime} \gamma_{2}^{\prime} \ldots \gamma_{\binom{d+1}{2}}^{\prime}$, obtained from Γ by adjoining $d+2$ to the ($d-1$)-class of each partition γ_{i} in Γ, orthogonally labels the cycle $\mathcal{B}=B_{1} B_{2} \ldots B_{\binom{d+1}{2}}$ in $G_{d+2,2}$.

For $i=1,2, \ldots, d+1$, let $C_{i}=\{d+2-i, d+2\}$. Then

$$
\mathcal{A}=B_{1} B_{2} \ldots B_{\binom{d+1}{2}} C_{1} C_{2} \ldots C_{d+1}
$$

is a Hamiltonian cycle in $G_{d+2,2}$ with $B_{1}=\{1,2\}$ and $C_{d+1}=\{1, d+2\}$. To label \mathcal{A} with orthogonal partitions of type $d 2$, define the following partitions of X_{d+2} : $\pi_{1}=\{1, d+2\}\left|\left(X_{d+1}-\{1\}\right), \pi_{2}=\{2, d+2\}\right|\left(X_{d+1}-\{2\}\right)$, and for $i=3,4, \ldots, d+1$, $\pi_{i}=\{d+4-i, d+2\} \mid\left(X_{d+1}-\{d+4-i\}\right)$ (note that for $i=1,2, \ldots, d+1$ the partitions π_{i} have $d+2$ in a two element class, and so they are distinct from partitions in Γ^{\prime}). Let $\Pi=\gamma_{1}^{\prime} \gamma_{2}^{\prime} \ldots \gamma_{\binom{d+1}{2}-1}^{\prime} \pi_{1} \pi_{2} \pi_{3} \ldots \pi_{d+1} \gamma_{\binom{d+1}{2}}^{\prime}$, then (\mathcal{A}, Π) is an orthogonally ($d 2$)-labelled Hamiltonian cycle in $G_{d+2,2}$ with the doubleton class of $\gamma_{\binom{d+1}{2}}^{\prime}$ being of the form $\{1,3\}$. \square

Given a partition type τ on X_{n}, let $\tau \oplus 1$ denote a partition type on X_{n+1} obtained from τ by adjoining one singleton class. If τ has a class of size $d_{s}>1$, let $\tau-d_{s}$ be a partition type on X_{n-1} obtained from τ by reducing the size of one of its d_{s}-blocks by 1 .

PROPOSITION 1.4. Let $\tau=d_{1}{ }^{t_{1}} d_{2}^{t_{2}} \ldots d_{k}^{t_{k}}$ be a partition type on X_{n} of weight r having at least two distinct class sizes $d_{s}, d_{t} \geqslant 2$. Suppose that there exist Hamiltonian cycles in $G_{n, r}$ and $G_{n, r+1}$ that can be labelled by partitions of type τ and $\omega=\left(\tau-d_{s}\right) \oplus 1$ respectively. Then there exists a Hamiltonian cycle in $G_{n+1, r+1}$ that can be labelled by partitions of type $\tau \oplus 1$.

Proof: Observe that ω is a partition type on X_{n} of weight $r+1$. Let $\mathcal{A}=A_{1} A_{2} \ldots A_{\binom{n}{r+1}}$ be a Hamiltonian cycle in $G_{n, r+1}$, and let $\Omega=\sigma_{1} \sigma_{2} \ldots \sigma_{\binom{n}{r+1}}$ be a corresponding partition sequence of partitions of type ω that orthogonally labels the cycle. For each partition σ_{i} in Ω, let σ_{i}^{\prime} be a partition of X_{n+1} of type $\tau \oplus 1$ obtained from σ_{i} by adjoining the element $n+1$ to a ($d_{s}-1$)-class.

Let $\mathcal{B}=B_{1} B_{2} \ldots B_{\binom{n}{r}}$ be a Hamiltonian cycle in $G_{n, r}$ and let $\Gamma=\gamma_{1} \gamma_{2} \ldots \gamma_{\binom{n}{r}}$ be a corresponding partition sequence of partitions of type τ that orthogonally label the cycle. For each B_{i} in \mathcal{B}, let B_{i}^{\prime} be the $(r+1)$-set $B_{i} \cup\{n+1\}$. For each partition γ_{i} in Γ, let γ_{i}^{\prime} be a partition of X_{n+1} of type $\tau \oplus 1$ obtained from γ_{i} by adjoining a new class $\{n+1\}$.

Without loss of generality we may assume that $A_{1}=\{1,2, \ldots, r, r+1\}, A_{\binom{n}{r+1}}$ $=\{1,2, \ldots, r, n\}$ and $B_{1}^{\prime}=\{1,2, \ldots, r, n+1\}$ and $B_{\binom{n}{n}}^{\prime}=\{1,2, \ldots, r-1, n, n+1\}$ (or else we simply can relabel the elements of X_{n}). Choose two partitions of X_{n+1} of type $\tau \oplus 1$ containing $n+1$ in a class of size d_{t} such that β is orthogonal to B_{1}^{\prime} and A_{1}, and δ is orthogonal to $A_{\binom{n}{r+1}}$ and $B_{\binom{n}{r}}^{\prime}$.

Then $A_{1} A_{2} \ldots A_{\binom{n}{r+1}} B_{\binom{n}{r}}^{\prime} \ldots B_{2}^{\prime} B_{1}^{\prime}$ is a Hamiltonian cycle in $G_{n+1, r+1}$ which is $\tau \oplus 1$ labelled by partitions in the sequence $\sigma_{1}^{\prime} \sigma_{2}^{\prime} \ldots \sigma_{\binom{n}{r+1}-1}^{\prime}{ }_{\left(\gamma_{\binom{n}{r}-1}^{\prime} \ldots \gamma_{2}^{\prime} \gamma_{1}^{\prime} \beta \text {. The partitions }\right.}$ in this sequence are distinct, as partitions σ_{i}^{\prime} contain the element $n+1$ in a d_{s}-class, partitions γ_{i}^{\prime} contain $n+1$ in a singleton class, and β, δ contain $n+1$ in a d_{t}-class.

The following theorem appears in [2].
THEOREM 1.5. For $r \geqslant 2$ and $1 \leqslant s<r$, there exist orthgonally $2^{s} 1^{r-s}$-labelled Hamiltonian cycles in $G_{s+r, r}$.

So that the work here is self-contained, we prove the aspects of Theorem 1.5 that
will be used to prove the main theorem (Theorem 1.2).
Lemma 1.6. For $r \geqslant 2$, there exist orthogonally 21^{r-1} and $2^{2} 1^{r-2}$-labelled Hamiltonian cycles.

Proof: We prove the existence of stated Hamiltonian cycles with an additional condition, namely that the first set of the set-sequence is $\{1,2, \ldots, r\}$ and the last set of the set-sequence is $\{1,2, \ldots, r-1, n\}$, where $n=r+1$ for the 21^{r-1}-labelled cycle, and $n=r+2$ for the $2^{2} 1^{r-2}$-labelled cycle.

Let $\mathcal{A}=A_{1} \ldots A_{r+1}$ be any Hamiltonian cycle in $G_{r+1, r}$ with $A_{1}=\{1,2, \ldots, r\}$ and $A_{r+1}=\{1,2, \ldots, r-1, r+1\}$. Let $\Pi=\pi_{1} \pi_{2} \ldots \pi_{r+1}$ be the sequence of partitions of the type 21^{r-1} such that the only non-singleton class of π_{i} is the symmetric difference of A_{i} and A_{i+1}, where $i=1,2, \ldots, r+1$, calculated $\bmod (r+1)$. Then (\mathcal{A}, Π) is an orthogonally 21^{r-1}-labelled Hamiltonian cycle in $G_{r+1, r}$ satisfying the stated conditions on the first and the last set.

Now we prove inductively that for $r \geqslant 3$ there exists an orthogonally $2^{2} 1^{r-2}$-labelled Hamiltonian cycle (\mathcal{B}, Γ) in $G_{r+2, r}$ satisfying the stated conditions on the first and the last set. The base step with $r=3$ is presented in the two right-most columns of Figure 1: they comprise an orthogonally 2^{2} 1-labelled Hamiltonian cycle in $G_{5,3}$ such that the first set is $\{1,2,3\}$ and the last set is $\{1,2,5\}$.

Suppose that for $r \geqslant 4$ there exists an orthogonally $2^{2} 1^{r-3}$-labelled Hamiltonian cycle (\mathcal{C}, Ψ) with the partition-sequence $\mathcal{C}=C_{1} C_{2} \ldots C_{\substack{(r+1 \\ r-1}}$ satisfying the following conditions: $C_{1}=\{1,2, \ldots, r-1\}$ and $C_{\binom{r+1}{r-1}}=\{1,2, \ldots, r-2, r+1\}$. Note that \mathcal{C} is a Hamiltonian cycle in $G_{r+1, r-1}$, and for each C_{i} in \mathcal{C} let $C_{i}^{\prime}=C_{i} \cup\{r+2\}$ be an r-set in X_{r+2}. For each partition ψ_{i} in Ψ let ψ_{i}^{\prime} be a partition of weight r of X_{r+2} obtained from ψ_{i} by adjoining a new singleton class $\{r+2\}$. Then the partition sequence $\Psi^{\prime}=\psi_{1}^{\prime} \psi_{2}^{\prime} \ldots \psi_{\binom{r+1}{r-1}}^{(}$ orthogonally labels the cycle $\mathcal{C}=C_{1}^{\prime} C_{2}^{\prime} \ldots C_{\binom{(+1}{r-1}}^{\prime}$ in $G_{r+2, r}$.

By the first paragraph of this proof, there exists an orthogonally 21^{r-1}-labelled Hamiltonian cycle (\mathcal{A}, Π) in $G_{r+1, r}$ with the partition-sequence $\mathcal{A}=A_{1} A_{2} \ldots A_{r+1}$ satisfying the following conditions: $A_{1}=\{1,2, \ldots, r\}$ and $A_{r+1}=\{1,2, \ldots, r-1, r+1\}$. For each partition π_{i} in Π let π_{i}^{\prime} be a partition of the type $2^{2} 1^{r-2}$ of X_{r+2} obtained from π_{i} .by adjoining the element $r+2$ to a singleton class of π_{i} not of the form $\{r-1\}$ or $\{r\}$ (such a singleton class may be selected since $r \geqslant 4$, so each π_{i} has at least three singleton classes). Then the partition sequence $\Pi^{\prime}=\pi_{1}^{\prime} \pi_{2}^{\prime} \ldots \pi_{r+1}^{\prime}$ orthogonally labels the cycle \mathcal{A} in $G_{r+2, r}$.

Observe that

$$
\mathcal{B}=A_{1} A_{2} \ldots A_{r+1} C_{\binom{r+1}{r-1}}^{\prime} \ldots C_{2}^{\prime} C_{1}^{\prime}
$$

is a Hamiltonian cycle in $G_{r+2, r}$ with the first set $A_{1}=\{1,2, \ldots, r\}$ and the last set $C_{1}^{\prime}=\{1,2, \ldots, r-1, r+2\}$. Let α be any partition of the type $2^{2} 1^{r-2}$ which is simultaneously orthogonal to A_{r+1} and $C_{\binom{r+1}{r-1}}^{\prime}$. Such α has a doubleton class $\{r-1, r+2\}$,
and so it is not an element of either Ψ^{\prime} or Π^{\prime}. Let β be any partition of the type $2^{2} 1^{r-2}$ simultaneously orthogonal to C_{1}^{\prime} and A_{1}. Such a β has a doubleton class $\{r, r+2\}$, and so it is also not an element of either Ψ^{\prime} or Π^{\prime}. Since Ψ^{\prime} or Π^{\prime} have no elements in common, the sequence

$$
\Gamma=\pi_{1}^{\prime} \pi_{2}^{\prime} \ldots \pi_{r}^{\prime} \alpha \psi_{\binom{r+1}{r-1}-1}^{\prime} \ldots \psi_{2}^{\prime} \psi_{1}^{\prime} \beta
$$

consists of distinct partitions of type $2^{2} 1^{r-2}$, and (\mathcal{B}, Γ) is an orthogonally $2^{2} 1^{r-2}$-labelled Hamiltonian cycle in $G_{r+2, r}$ satisfying the stated conditions on the first and the last set. \square

The result below follows from Proposition 1.3, Proposition 1.4, and Lemma 1.6.
Corollary 1.7.

1. For $n \geqslant 5, d \geqslant 2$ and $r \geqslant 2$, there exists an orthogonally $d 21^{r-2}$-labelled Hamiltonian cycle in $G_{n, r}$.
2. There exist orthogonally 21 and 21^{2} labelled Hamiltonian cycles in $G_{3,2}$ and $G_{4,3}$ respectively.
Proof of Theorem 1.2: Let n and r be positive integers with $2 \leqslant r<n$, such that $n \neq 4$ if $r=2$. Using Corollary 1.7, we show that there exists a Hamiltonian cycle in $G_{n, r}$ orthogonally labelled by partitions of a given fixed type τ.

If $n \geqslant 3$ and $r=n-1$ and we let $\tau=21^{r-1}$. This allows us to assume that $n \geqslant 5$ and $2 \leqslant r \leqslant n-2$. If $r=2$ let $\tau=(n-2) 2$. If $r=n-2$ let $\tau=2^{2} 1^{r-2}$. If $2<r<n-2$ we let $\tau=d 21^{\tau-2}$, where $d \geqslant 3$.
1.1. Hamiltonian Cycles $H_{n, r}$. For given n and r with $1 \leqslant r<n$, we present the definition of the Hamiltonian cycle $H_{n, r}$. The cycles $H_{n, r}$ arise in the context of reflected Gray codes, certain widely studied recursively defined codes that list the subsets of X_{n} so that successive sets have a singleton symmetric difference. Numerous algorithms for the efficient output of $H_{n, r}$ appear in the literature ($[7,5,8]$). Below we shall outline an argument that supports the following refinement of Theorem 1.2.

Theorem 1.8. For all positive integers n and r with $1<r<n$, except for the $n=4, r=2$ case, there exists a permutational orthogonally labelled Hamiltonian cycle in $G_{n, r}$ with set-sequence $H_{n, r}$.

Definition 1.9: Let n, r be positive integers with $r \leqslant n$, and let $H_{n, r}$ be defined recursively as follows:

1. $H_{n, n}=X_{n}$.
2. $H_{n, 1}=\{1\} \ldots\{n\}$.
3. For $1<r<n$, given that $H_{n-1, r-1}=A_{1} A_{2} \ldots A_{\substack{n-1 \\ r-1}}$, let $H_{n-1, r-1}^{r e v} \oplus n$ be the list

$$
\left(A_{\substack{n-1 \\ r-1}} \cup\{n\}\right) \ldots\left(A_{2} \cup\{n\}\right)\left(A_{1} \cup\{n\}\right)
$$

that results by adjoining n to each set of $H_{n-1, r-1}$ and then reversing the order of the resulting listing.
4. For $1<r<n$, let $H_{n, r}=H_{n-1, r}\left(H_{n-1, r-1}^{r e v} \oplus n\right)$ be the list that results from concatenating $H_{n-1, r}$ and $H_{n-1, r-1}^{r e v} \oplus n$.

Example 1.2.

$$
\begin{aligned}
& H_{3,2}=H_{2,2}\left(H_{2,1}^{r e v} \oplus 3\right)=\{12\}\{23\}\{13\} \\
& H_{4,2}=H_{3,2}\left(H_{3,1}^{r e v} \oplus 4\right)=\{12\}\{23\}\{13\}\{34\}\{24\}\{14\} \\
& H_{4,3}=\{123\}\{134\}\{234\}\{124\} \\
& H_{5,3}=H_{4,3}\left(H_{4,2}^{r e v} \oplus 5\right)=\{123\}\{134\}\{234\}\{124\}\{145\}\{245\}\{345\}\{135\}\{235\}\{125\} .
\end{aligned}
$$

Notice that the base step of the inductive proof of Proposition 1.3 involves the cycle $H_{5,2}$. The inductive procedure used to ($d 2$)-label Hamiltonian cycles in Proposition 1.3 leads to set-sequences which are $H_{d+2,2}$ cycles. The construction used in Proposition 1.4 guarantees that if the two given cycles are $H_{n-1, r}$ and $H_{n, r+1}$, then the resulting $\tau \oplus 1$ labelled cycle is $H_{n+1, r+1}$. Thus, we may assume that for $d \geqslant 3$, the ($d 21^{r-2}$)-labelled Hamiltonian cycles used in the proof of Theorem 1.2 are all $H_{n, r}$ cycles.

The Hamiltonian cycle in $G_{5,3}$ in Figure 1 is $H_{5,3}$. We can assume the Hamiltonian cycles of $G_{r+1, r}$ used in the proof in Lemma 1.6 are $H_{r+1, r}$ cycles. Once again, the inductive procedure used in the proof of Lemma 1.6 leads to $H_{r+2, r}$ cycles for $2^{2} 1^{r-2}$ cases. Thus we may assume that all the orthogonally labelled cycles in Corollary 1.7 are $H_{n, r}$ cycles. Theorem 1.8 follows.

2. Conclusion

In this work the improvement over existing literature involves the "permutational" aspect of our main theorem. Indeed in [3], the present authors and R. B. McFadden prove that for any Hamiltonian cycle \mathcal{A} there exists a partition sequence Π such that (\mathcal{A}, Π) is an orthogonally labelled Hamiltonian cycle. They provide a highly efficient algorithm that on input (n, r) outputs an orthogonally labelled Hamiltonian cycle. However, except for the $(3,2)$ case, the partition sequence associated with their algorithm is not permutational. In [$\mathbf{3}$] the Transposition Listing Conjecture is stated: for $n \geqslant 2 r$, the authors conjecture that there exists a permutational orthogonally labelled Hamiltonian cycle such that all permutations involved are transpositions. The authors show that the validity of the Transposition Listing Conjecture is a logical consequence of the celebrated Middle Levels Conjecture (for a reference on the Middle Levels Conjecture, see [6]).

The partition type τ is said to be exceptional ([2]) if the number of distinct partitions of type τ is less than $\binom{n}{r}$. Clearly if τ is an exceptional partition type, no orthogonally τ-labelled list exists. In [2], the first author and J. Lehel prove existence of orthogonally τ-labelled lists for all non-exceptional partition types τ with classes of size at most two, a result we used in the paper. Moreover they show that for $1 \leqslant s<r$, there exist
orthogonally $2^{s} 1^{r-s}$-labelled Hamiltonian cycles. In [4], the authors extend this result and show that even for non-exceptional τ of the form 2^{r}, there exist orthogonally 2^{r} labelled Hamiltonian cycles.

In [2] it is conjectured that for every non-exceptional type τ, there exists orthogonally τ-labelled list. The present paper is a part of a series of papers directed towards proving this conjecture.

References

[1] J.M. Howie and R.B. McFadden, 'Idempotent rank in finite full transformation semigroups', Proc. Royal Soc. Edinburgh 114 (1990), 161-167.
[2] J. Lehel and I. Levi, 'Loops with partitions and matchings', Ars Combin. 54 (2000), 237-253.
[3] I. Levi, R.B. McFadden and S.Seif, 'Algorithms for labeling Gray codes', (submitted).
[4] I. Levi and S. Seif, 'Constant weight Gray codes labeled by partitions with blocks of size at most two', Ars Combin. (to appear).
[5] E.M. Reingold, J. Nievergelt and N. Deo, Combinatorial algorithms, theory and practice (Prentice-Hall, Englewood Cliffs, NJ, 1977).
[6] C.D. Savage and P. Winkler, 'Monotone Gray codes and the middle levels problem', J. Combin. Theory Ser. A 70 (1995), 230-248.
[7] H.S. Wilf, Combinatorial algorithms: an update, CBMS-NSF Regional Conference Series in Applied Mathematics 55 (SIAM, Philadelphia, PA, 1989).
[8] A.J. van Zanten, 'Index system and separability of constant weight Gray codes', IEEE Trans. Inform. Theory 37 (1991), 1229-1223.

Department of Mathematics
University of Louisville
Louisville, KY 40292
United States of America

