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Introduction. In the sequel, given k,n eN, p e [1, °°] and a compact real interval /,
we denote by Wk-p(I, U") (simply by Wkp(I) if n = 1) the space of all functions
u e Ck~\l, W) such that uik~n is absolutely continuous in / and u(k) e L"(I, U").

Very recently, in [11], J. R. L. Webb and S. C. Welsh obtained the following
existence result.

THEOREM A ([11, Theorem 1]). Let g:U3—>U be a continuous function satisfying the
following conditions:

(1) there exists a constant c > 0 such that

\g(x,y,z)\*c(l + \x\ + \y\ + \z\)

forallx,y,zeU;
(2) one has

(g(x,y,zl)-g(x,y,z2))(z1 - z2) < a(s) \zx - z2\
2

for all x,y, zu z2eU, with \zx — z2\ ̂ s, where a:]0, °°[—* [0,1[ is some function such that
ifa(s)->l thens->0.

Then, for every x0, yoeR, there exist b>0 and u e W22([0, b]) such that

"(t) = g(u(t), u'(t), u"(t)) a.e. in [0, b]

u(0)=xo

.u'(0)=yo.

Webb and Welsh [11] also established the following regularity theorem.

THEOREM B ([11, Theorem 2]). Let the assumptions of Theorem A be satisfied. In
addition, assume that there is a function h:[0, °°[—»[0,»[, vanishing and continuous at
zero, such that

\g(xuyl,z)-g(x2,y2,z)\<h(\x1-x2\ + \yl-y2\)

forallxx,x2,yx,y2,zeU.
Then, any function u, as in the conclusion of Theorem A, belongs to C2([0, b]).

To get Theorem A, Webb and Welsh employed a degree theory argument for
A -proper mappings, while a direct ad hoc argument was used to prove Theorem B.

The aim of the present paper is to establish Theorem 1 below: a general existence
theorem for the problem

(f(t,x,x',...,x(k)) = 0

U W ( 0 ) = J C , , i = 0 , l , . . . , * - l .

Our approach, completely different from that of [11], is based on our preceding
works ([4], [5], [6], [7]).

In particular, the following two results are immediate consequences of our Theorem
1.

Glasgow Math. J. 33 (1991) 343-348.

https://doi.org/10.1017/S0017089500008405 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500008405


344 BIAGIO RICCERI

THEOREM C. Let g: R3—>• U. be a continuous function such that, for every (x, y) e U2,
the function z^>g(x,y,z)-z changes sign in U and int({z € U :g(x,y, z) = z}) = 0 .

Then, the conclusion of Theorem A holds, with u e W2a>([0, b]).

THEOREM D. Let g:M3—>M be as in Theorem C. Moreover, assume that, for every
(x,y)eU2, there is only one zeU such that g(x,y,z) = z. Then, the conclusions of
Theorems A and B hold.

Observe now that if a continuous function g:R3—»IR satisfies condition (2) of
Theorem A, then, for every (x,y)eU2, the function z—>g(x,y, z) -z is strictly
decreasing in IR and, by [12, p. 241], it vanishes at some point. Consequently, such a g
satisfies the assumptions of Theorem D. In other words, we have the following result.

THEOREM E. Let g:R3—»IR be a continuous function satisfying condition (2) of
Theorem A. Then, the conclusions of Theorems A and B hold.

It is worth noticing that if g satisfies the hypotheses of Theorem D (in particular, that
of Theorem E) then, the function, say q>, which to each (x,y) e IR2 associates the unique
fixed point of g(x, y, •), is continuous. This follows directly from Theorem 1.1 of [5], a
key tool in proving Theorem 1. Consequently, in this case, the differential equation
x" = g(x,x',x") is equivalent to x" = cp{x,x') to which the classical Peano existence
theorem applies.

Finally, we remark again that our Theorem 1 is a genuine existence result: it does not
give any information on uniqueness. On the contrary, [11] was mainly concerned with
uniqueness. It is just in the uniqueness setting that condition (2) of Theorem A, together
with some other assumption, plays an effective and crucial role ([11, Theorem 3]).

The present paper is arranged into two sections. Section 1 is devoted to the proof of
Theorem 1, while Section 2 contains some remarks on it.

1. The main result. In the sequel, a is a positive real number; k, n are two positive
integers; Y is a non-empty closed connected and locally connected subset of U";f is a real
function defined in 5 x Y, where 5 = [0, a] x (U")k.

Given xo,x{,.. . ,xk_i e IR", we consider the following Cauchy problem

(fit r x' x(k)\ = 0

IJC(0(0) = XI- for i = 0 , l , . . . , k - 1 .

If 6e]0,o] , a function M:[0,b]—*U" is said to be a generalized (resp. classical)
solution of Problem (CP) in [0,b] provided that ueWkA([0,b],W) (resp. ue
Ck([0, b], 0T)), u(l)(0) = x, for i = 0 , l , . . . , * - l , and uw(t)eY,
f(t, u(t), u'(t), • • • , u(k)(t)) = 0 for almost every (resp. for every) t e [0, b].

Our main result follows.

THEOREM 1. Let the following conditions be satisfied:
(i) there exists a set DcYxY, with D = YxY, such that, for every (y,z)eD, the

set

is open in S;
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(ii) for every (t, §) e 5, the function f (t, £, •) is continuous, 0 e int(/((, §, Y)) and the
set

has empty interior in Y.
Under such hypotheses, for every xo,xu. . . , xk_x e R", the following assertions hold:
()3) There exists b e ]0, a] such that Problem (CP) has at least one generalized solution

in [0, b] belonging to Wk'"([0, b], U").
(y) IfYis convex and there exists a set T c S of topological dimension zero, such that

V(t, | ) is convex, for all (t, £) e (S\F) U {(0, x0, xu. . . , xk_i)}, then for each non-empty
bounded set E c V(0, xo,xu . . . , xk_{) there is bEe ]0, a] such that for every yoeE there
exists a classical solution u of Problem (CP) in [0, bE] satisfying uw(0) = y0.

(8) If for every (t, £) e S the set V(t, §) is a singleton, then for every b e ]0, a] any
generalized solution of Problem (CP) in [0, b] is a classical one there.

Proof. We follow the approach of [6]. For each (t, §) e 5, put

L(t, £) = {y e Y: y is a local extremum for/(f, §, •)}

as well as

Our assumptions imply that the multifunction (t, £)—*Q(t, £) is lower semicon-
tinuous and its values are non-empty and closed (see Theorem 1.1 of [5] or Theorem 3.2
of [7]). Consequently, if ||*||R* denotes the underlying norm on R", the real function
(t, I ) - * inf II^HR-. is upper semicontinuous (see, for instance, Theorem 1.1 of [8]). Fix

QUS)y U )
xo,Xi,. . . ,xk_x eR" and a compact neighbourhood W oiw = (xo,xu . . . ,xk-.t) in (R")k.
Then, we can choose n e R in such a way that inf ||_y || < fi for all (t, §) e [0, a] X W.

ec i )
For r>0, let Br = {y e R": | | y | | R - < r } . Now, for each (t,vo,vu.. . ,vk_l)e[0,a]xW,
put

F{t, v0, vu . . . , vk_x) = {v,} X {v2} X . . . X {vk.r} x (Q(t, t/0, « ! , . . . , uk_,) n B^).

Clearly, the multifunction (t, v0, vu . . . , vk-x)-+F(t, v0, v1;. . . , vk_x) is non-empty
compact-valued, lower semicontinuous and with bounded range. Consequently, by
Theorem 2 of [1], there exist b e ]0, a] and a Lipschitzian function cp: [0, b\—* W such that

(y'(t)eF(t,<p(t)) a.e. in [0,6]

Therefore, if q>(t) = (q>0(t), y^t),..., (pk-x(t)), we have

" <Po(0 = <Pi(0. <p'i(t) = q>2(t),..., q>'k-2(t) = q>k^(t) a.e. in [0, b]
<P*-i(0 e G(', Vo(0» <Pi(0, • • • . V*-i(0) a.e. in [0, b]
<p,(0) = x, for i = 0 ,1 , . . . , k - 1.

From this it follows at once that the function cp0 is a generalized solution of Problem
(CP) in [0, b] belonging to Wk°°([0, b], R"). Thus, (j8) is proved.
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Now, let us prove (y). Under the present additional assumptions, from the proof of
Theorem 2.2 of [5], we know that V(t, §) = Q(t, f) for all (/, §) e (S\r) U
{(0,;to,*i,. • • ,*k-i)}- Fix anY non-empty bounded set E cV(0,xo,xu . . . ,xk_l). Put

conv(£) if r = 0, £ = w,

where conv(£) denotes the closed convex hull of E. Since the set Q(0, w) is closed and
convex, one has conv(£) c Q(0, w). This implies at once that the multifunction
(t, §)—»<2('» §) is lower semicontinuous. Hence, as seen above, there is r\ e IR such that

inf H^IIR-^J; for all (t,%)e[0,a]xW. Fix p>max{?j,sup ||y\\R*}. By the classical
ycQO, 6) y^E
Peano theorem, there exists bp e ]0, a] such that, for any continuous function co: [0, a] X
W-»[R" satisfying

sup | |a>(r, | ) | |H .sp,
(f, |)e|0, a]xw

the problem

admits at least one classical solution in [0, bp]. Now observe that the set Q(t, §) n Bp is
non-empty and closed for all (t, §) e [0, a] x W, and convex for all (t,"§) e ([0, a] x W)\r.
Moreover, g(0, w) D Bp = conv(£) and, of course, the multifunction (t, %)-*Q(t, §) fl Bp

is lower semicontinuous. Consequently, by Theorem 7.1 of [3], for every fixed yoeE,
there exists a continuous function (h: [0, a] x W-* Un such that 6>{t, | ) e <2(f, §) n Bp for
all (t, | ) e [0, a] x W, and <y(0, w) =>-0. Then, the problem

{i)(0)=xh fori = 0 , 1 , . . . , * - l ,

has at least one classical solution M in [0, bp]. Of course, the function u solves Problem
(CP) in [0,bp] and satisfies M(*)(0) = >'O. Finally, let us prove (8). In this case, we have
V(t, §) = Q(t, | ) for all (r, | ) e 5. Therefore, the (single-valued) function (t, | ) ^ K(/, §)
is continuous. Let b e ]0, a]. If u is any generalized solution of Problem (CP) in [0, b],
then we have

„<*)(,) = v(t, u(t), u'(t),..., u(k-l)(t)) a .e . in [0, b].

Thus, since M'*"^ is absolutely continuous, one has

for all f e [0, b], and hence M e C*([0, ft], IR").

2. Some remarks. As we said in the introduction, this section is devoted to some
remarks on Theorem 1. First, it should be observed that, in (/3), we have u e
Wk'°°([0,b],Rn), although the set Y, where u w takes its values, is not assumed to be
bounded.
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Furthermore, observe that assertion (y) can be used to obtain multiplicity results for
(CP). For instance, we have the following result.

THEOREM 2. Let Y be a linear subspace of U" of dimension greater or equal to 2. Letf
be continuous and such that, for every (f, £ )eS , the function / ( / , £ , • ) is affine and
non-constant in Y. Then, for every x0, xt,. . . , xk-\ e R", there exists b e ]0, a] such that
the set of all classical solutions of Problem (CP) in [0, b] has the continuum power.

Proof. It is immediate to check that / satisfies (i), (ii), and each set V(t, £) is, of
course, an affine manifold of positive dimension. Hence, (y) holds. Fix x0, xx,. . . ,xk^ e
U" as well as any bounded set Ec V(0, xo,xu. . . , *fc_i) having the continuum power.
Denote by °U.E the set of all classical solutions of Problem (CP) in [0, bE], where bE has
the property expressed in (y). For each y0 e E, choose uyo e °UE such that M ^ O ) = V0. Of
course, the mapping y0—• uyo is one-to-one, and so its range has the continuum power. On
the other hand, Ck([0,bE],W) has the continuum power, since, endowed with one of
the usual metrics, it is separable (see [2, p. 251]). Hence, °UE has the continuum power
and the conclusion follows by taking b = bE. •

Let us observe also that the conditions (i) and (ii) are not sufficient to ensure the
existence of classical solutions for Problem (CP). For example, let n = A: = 1, Y = R and
let / : U2-* R be defined by

f(x,y)=
[arctg* if*elR,y = l.

It is not hard to check that such an/satisfies (i), (ii) and belongs to C°°(IR2). Nevertheless,
for each b > 0, the problem

U(0) = 0
has no classical solution in [0, b\. Indeed, assume, on the contrary, that u is a classical
solution of this problem in [0, b]. Then, one has u'(0) = 1, and so, since «' is continuous,
there is b* e ]0, b] such that u is strictly increasing in [0, b*]. In particular, u(t) > 0 for all
t e ]0, b*]. This implies that there is e > 1 such that «'(]0, b*]) = ]1, e] and that

for all t e ]0, b*]. Therefore, the function

is strictly increasing in ]0, b*]. From this it follows that the function

is one-to-one in ]1, e], which is clearly false.
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The last remarks concern conditions (i) and (ii). Condition (i) is a very weak
continuity assumption which we do not see how to weaken further, unless / is of the form
fi(t, ®-My) ([9]).

In (ii), the requirement "0 e int(f(t, §, Y))" is essential. In other words, it is not
enough to assume that "0e/(f, %, Y)". To see this, it suffices to take n = k = \, Y = U
and f(t,y) = \q>(t) —y\, where <p:[0,a]—>M is such that <p|[0 b] $ L\[0, b]) for every
be]0,a].

Finally, always in (ii), the assumption that the interior of V(t, £) in Y is empty,
cannot be dropped. In this connection, we refer the reader to a very recent (and rather
complicated) example by J. Saint Raymond (see [10, Th6oreme 11]).
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