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Introduction. In the sequel, given k, n e N, p €[1, ] and a compact real interval I,
we denote by W*?(I,R") (simply by W*?(I) if n=1) the space of all functions
u € C*7'(1, R™) such that u*~" is absolutely continuous in 7 and u® € LP(1, R™).

Very recently, in [11], J. R. L. Webb and S. C. Welsh obtained the following
existence result.

THeOREM A ([11, Theorem 1]). Let g:R*— R be a continuous function satisfying the
following conditions:
(1) there exists a constant ¢ > 0 such that
lgCx,y, 2} =c(l+ x|+ |yl +z])

forallx,y,zeR;
(2) one has

(. y,2) —g(x,y, )z —2) < als) |z — 2
forall x,y,z,2eR, with |z, — z,| =s, where «:]0,[— [0, 1] is some function such that
if a(s)—>1 then s—0.
Then, for every xo, yo € R, there exist b >0 and u € W**([0, b)) such that
u'(t) =g(u(t), u'(t), u"(t)) a.e. in [0, b]
u(0) = xo
u'(0) = y,. .
Webb and Welsh [11] also established the following regularity theorem.

THeoreM B ([11, Theorem 2)). Let the assumptions of Theorem A be satisfied. In
addition, assume that there is a function h:[0,*[— [0, [, vanishing and continuous at
zero, such that

lgCx1, Y15 2) — 8(x2, Y2, Z)| = h(fxy — Xo| + {31 = y2l)
for all x,,x,, y1, y2, Z € R.
Then, any function u, as in the conclusion of Theorem A, belongs to C*([0, b]).

To get Theorem A, Webb and Welsh employed a degree theory argument for
A-proper mappings, while a direct ad hoc argument was used to prove Theorem B.

The aim of the present paper is to establish Theorem 1 below: a general existence
theorem for the problem

{f(t,x,x',. cx®) =0
x20)=x;, i=0,1,...,k—1

Our approach, completely different from that of [11], is based on our preceding
works ([4], [5], (6], [7]).

In particular, the following two results are immediate consequences of our Theorem
1.
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Tueorem C. Let g:R>— R be a continuous function such that, for every (x,y) € R?,
the function z—g(x,y, z) — z changes sign in R and int({z e R:g(x,y,z)=2})=.
Then, the conclusion of Theorem A holds, with u e W>>([0, b]).

THEOREM D. Let g:R*—> R be as in Theorem C. Moreover, assume that, for every
(x,y) € R?, there is only one z € R such that g(x,y,z)=z. Then, the conclusions of
Theorems A and B hold.

Observe now that if a continuous function g:R*— R satisfies condition (2) of
Theorem A, then, for every (x,y)eR? the function z—g(x,y,z)~—z is strictly
decreasing in R and, by [12, p. 241], it vanishes at some point. Consequently, such a g
satisfies the assumptions of Theorem D. In other words, we have the following result.

THeoreM E. Let g:R>—>R be a continuous function satisfying condition (2) of
Theorem A. Then, the conclusions of Theorems A and B hold.

It is worth noticing that if g satisfies the hypotheses of Theorem D (in particular, that
of Theorem E) then, the function, say @, which to each (x, y) € R? associates the unique
fixed point of g(x,y,*), is continuous. This follows directly from Theorem 1.1 of [5], a
key tool in proving Theorem 1. Consequently, in this case, the differential equation
x"=g(x,x',x") is equivalent to x"= @(x,x’) to which the classical Peano existence
theorem applies.

Finally, we remark again that our Theorem 1 is a genuine existence result: it does not
give any information on uniqueness. On the contrary, [11] was mainly concerned with
uniqueness. It is just in the uniqueness setting that condition (2) of Theorem A, together
with some other assumption, plays an effective and crucial role ([11, Theorem 3]).

The present paper is arranged into two sections. Section 1 is devoted to the proof of
Theorem 1, while Section 2 contains some remarks on it.

1. The main result. In the sequel, a is a positive real number; k, n are two positive
integers; Y is a non-empty closed connected and locally connected subset of R”; f is a real
function defined in § X Y, where S =[0, a] x (R™)*.

Given x4, Xy, . . . , Xx—1 € R”, we consider the following Cauchy problem

{f(t,x,x',. ..,x®)=0,

(CP) xP0)=x; for i=0,1,..., k-1

If be]0,a], a function u:[0,b]—R" is said to be a generalized (resp. classical)
solution of Problem (CP) in [0,b] provided that ue W*'([0,b],R") (resp. ue
Cc ([0, b], R™)), u®0)=x; for i=0,1,...,k—1, and ubn ey,
@, u@®),u'(t),...,u®(r)) =0 for almost every (resp. for every) ¢ € [0, b].

Our main result follows.

THEOREM 1. Let the following conditions be satisfied:
(i) there exists aset DY XY, with D =Y XY, such that, for every (y,z)e D, the
set

{(,8)e8:f(1,5,y)<0<f(t, &, 2)}

is open in S;
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(ii) for every (t, &) € S, the function f(t, &, ) is continuous, 0 € int(f (¢, &, Y)) and the
set

Vi, 8)={yeY:f(t,§,y)=0}

has empty interior in Y.

Under such hypotheses, for every xo,x,,. .. ,x,_; € R", the following assertions hold:

(B) There exists b €]0, a] such that Problem (CP) has at least one generalized solution
in [0, b] belonging to W*=([0, b], R").

(y) If Y is convex and there exists a set T = S of topological dimension zero, such that
V(t, &) is convex, for all (t, &) e (S\I') U {(0, x¢, X1, ... ,Xk_1)}, then for each non-empty
bounded set E < V(0,xq,x,,...,Xc_,) there is bg €10, a] such that for every y, € E there
exists a classical solution u of Problem (CP) in (0, bg] satisfying u®(0) = y,.

(8) If for every (t,§) €S the set V(t, &) is a singleton, then for every b €0, a] any
generalized solution of Problem (CP) in [0, b] is a classical one there.

Proof. We follow the approach of [6]. For each (¢, £) € S, put
L(t,E)={yeY:yis alocal extremum for f(¢, g, )}
as well as
Q(t, &) = V(t, E)\L(t, §).

Our assumptions imply that the multifunction (¢, £)— Q(¢, &) is lower semicon-
tinuous and its values are non-empty and closed (see Theorem 1.1 of 5] or Theorem 3.2
of [7]). Consequently, if ||+||g- denotes the underlying norm on R”, the real function
(t, &)— iQr}f 5 || ¥{lw~ is upper semicontinuous (see, for instance, Theorem 1.1 of [8]). Fix

yeQ(e,

Xo,X1,. .. ,Xx—; € R” and a compact neighbourhood W of w = (xq, X, . . . , Xx—) in (R")~.
Then, we can choose u € R in such a way that inf |y|| <p for all (¢, £) €[0,a] X W.
yeQ@, §)

For r>0, let B,={y e R":||y|lr-<r}. Now, for each (¢, vy, vy,...,v;_;) €[0,a] X W,
put

F(t,v0, V1, .., Uk) = {v1} X {va} X oo X {vp—q} X (Q(t, Vo, Uiy .+« , Ugmy) N B).

Clearly, the multifunction (¢, vy, vy,..., 1) F(t,vg,vy,...,Vr_;) is non-empty
compact-valued, lower semicontinuous and with bounded range. Consequently, by
Theorem 2 of [1], there exist b € ]0, a] and a Lipschitzian function ¢ : [0, b]— W such that

{(p'(t) eF(t, @(t)) a.e.in|0,b]
p(0)=w.

Therefore, if @(t) = (@o(t), @1(t), . . . , Pr_1(t)), we have

@o(t) = @1(1), @1(t) = @2(t), . . ., Pr—2(t) = @i_y(t) a.e.in [0, )]
(pllc—l(t) € Q(t’ (Po(’)a ¢P1(’), ] (pk—l(t)) a.c. in [0’ b]
@(0)=x; fori=0,1,...,k—-1

From this it follows at once that the function g, is a generalized solution of Problem
(CP) in [0, b] belonging to W*=([0, b], R"). Thus, (B) is proved.
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Now, let us prove (y). Under the present additional assumptions, from the proof of
Theorem 2.2 of (8], we know that V(t,8)=0Q(,&) for all (¢, 85)e(S\HU
{(0, xo, x4, . . . , Xx—1)}. Fix any non-empty bounded set E = V' (0, x¢, X1, . . . , Xx—;). Put

~ [0, 8) it (1, 8) e ([0, a] x WI\{(0, w)}
Q("E)_{W(E) it t=0, E=w,

where conv(E) denotes the closed convex hull of E. Since the set Q(0, w) is closed and
convex, one has conv(E)c Q(0,w). This implies at once that the multifunction
(t, £)— Q(t, &) is lower semicontinuous. Hence, as seen above, there is 7 € R such that

inf ||y|lg-=n for all (¢, 5)€e[0,a] X W. Fix p>max{n, sup ||y|lz-}. By the classical
yeQ(, ) yeE

Peano theorem, there exists b, € ]0, a] such that, for any continuous function w:[0, a] X
W — R" satisfying

sup |lo(t, E)llr-= p,
(¢, E)el0, a]lxwW

the problem
{x(") =w(t,x,x',...,x%V)
xY0)=x; fori=0,1,...,k—-1
admits at least one classical solution in [0, b,]. Now observe that the set Q(¢, £) N B, is
non-empty and closed for all (¢, €) € [0, a] X W, and convex for all (¢, &) € ([0, a] x W)\T.
Moreover, §(0,w) N B, =conv(E) and, of course, the multifunction (¢, &)— Q(t, ) N B,
is lower semicontinuous. Consequently, by Theorem 7.1 of [3], for every fixed y, € E,
there exists a continuous function @:[0, a] X W — R" such that @(t, §) € Q(¢t, ) N B, for
all (¢, §) e [0,a] x W, and @(0, w) = y,. Then, the problem
{x(") =at,x,x',...,x%D),
xO0)=x;, fori=0,1,... k-1,
has at least one classical solution « in [0, b,]. Of course, the function u solves Problem
(CP) in [0, b,] and satisfies u*)(0) = y,. Finally, let us prove (). In this case, we have
V(t, §)=Q(t, &) for all (¢, &) € S. Therefore, the (single-valued) function (¢, §)— V (¢, &)

is continuous. Let b €]0,a]. If u is any generalized solution of Problem (CP) in [0, b],
then we have

u @)=V, u(@®),u'(t),. .., u* D)) ae.in0,b]
Thus, since u*~" is absolutely continuous, one has
!
ut Ny =x,_, + f V(t,u(t),u'(7),...,u* (1)) dr
0
for all ¢ € [0, b], and hence u € C*([0, b], R"). W

2. Some remarks. As we said in the introduction, this section is devoted to some
remarks on Theorem 1. First, it should be observed that, in (8), we have ue
W5=([0, b], R"), although the set Y, where u® takes its values, is not assumed to be
bounded.
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Furthermore, observe that assertion (y) can be used to obtain multiplicity results for
(CP). For instance, we have the following result.

THEOREM 2. Let Y be a linear subspace of R" of dimension greater or equal to 2. Let f
be continuous and such that, for every (t,5) €S, the function f(t,§,+) is affine and
non-constant in Y. Then, for every x¢,x,,. .. ,Xr—1 € R", there exists b €10, a] such that
the set of all classical solutions of Problem (CP) in [0, b] has the continuum power.

Proof. It is immediate to check that f satisfies (i), (ii), and each set V (¢, &) is, of
course, an affine manifold of positive dimension. Hence, (y) holds. Fix x¢,x,,... , X, €
R” as well as any bounded set E c V(0, xg, Xy, ... ,X,—;) having the continuum power.
Denote by % the set of all classical solutions of Problem (CP) in [0, b¢], where b has
the property expressed in (y). For each y, € E, choose u, € U such that u{?(0) = y,. Of
course, the mapping y,— u,, is one-to-one, and so its range has the continuum power. On
the other hand, C*([0, bg], R™) has the continuum power, since, endowed with one of
the usual metrics, it is separable (see [2, p. 251]). Hence, %, has the continuum power
and the conclusion follows by taking b =b,. B

Let us observe also that the conditions (i) and (ii) are not sufficient to ensure the
existence of classical solutions for Problem (CP). For example, let n=k=1, Y=R and
let f:R*— R be defined by

y_l < ‘ ) ( 1 ) '
arctg x — 2 +sin exp| ——— ) ifxeR, yeR\{1}),
Ty y =1 y—1i )

arctg x ifxeR,y=1.

fx,y)=

It is not hard to check that such an f satisfies (i), (ii) and belongs to C*(R?). Nevertheless,
for each b > 0, the problem

{f(x,x’)=0
x(0)=0

has no classical solution in [0, b]. Indeed, assume, on the contrary, that u is a classical
solution of this problem in [0, b]. Then, one has u'(0) =1, and so, since u’ is continuous,
there is b* € ]0, b] such that u is strictly increasing in [0, b*]. In particular, u(r) > 0 for all
t €]0, b*]. This implies that there is £ >1 such that ©'(]0, b*]) = ]1, €] and that

arctgu(t) = (2 + sin u’(t:)s — 1>exp<1 _ i’(t))

for all ¢ € ]0, b*]. Therefore, the function

= (2 +sin u'(j - 1)“"(1 . i’(t))

is strictly increasing in ]0, b*]. From this it follows that the function

)eeli)
7=1 exp =y

is one-to-one in |1, ], which is clearly false.

y—><2+sin
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The last remarks concern conditions (i) and (ii). Condition (i) is a very weak
continuity assumption which we do not see how to weaken further, unless f is of the form

£t &) = (») (9D

In (ii), the requirement “Oeint(f(¢, &,Y))” is essential. In other words, it is not
enough to assume that “Oef(¢, &, Y)”. To see this, it suffices to take n=k=1, Y=R
and f(t,y)=|@() —y|, where @:[0,a]>R is such that | , ¢ L'([0, b)) for every
b €0, a).

Finally, always in (ii), the assumption that the interior of V(¢,§) in Y is empty,
cannot be dropped. In this connection, we refer the reader to a very recent (and rather
complicated) example by J. Saint Raymond (see [10, Théoréme 11]).
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