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TO NON-ABELIAN GAUGE THEORIES

Non-Abelian gauge theories, such as quantum chromodynamics (QCD) or
electroweak theory, are best studied with the aid of Green’s functions that are
gauge invariant off-shell, but unlike for the photon in quantum electrodynamics,
conventional graphical constructions fail. The pinch technique provides a sys-
tematic framework for constructing such Green’s functions and has many useful
applications.

Beginning with elementary one-loop examples, this book goes on to extend the
method to all orders, showing that the pinch technique is equivalent to calculations
in the background-field Feynman gauge. The pinch technique Schwinger-Dyson
equations are derived and used to show how a dynamical gluon mass arises in
QCD. Applications are given to the center vortex picture of confinement, the
gauge-invariant treatment of resonant amplitudes, the definition of non-Abelian
effective charges, high-temperature effects, and even supersymmetry. This book is
ideal for elementary particle theorists and graduate students.
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11. R. K. Bock, H. Grote, R. Frühwirth and M. Regler: Data Analysis Techniques for High-Energy Physics,

Second edition
12. D. Green: The Physics of Particle Detectors
13. V. N. Gribov and J. Nyiri: Quantum Electrodynamics
14. K. Winter (ed.): Neutrino Physics, Second edition
15. E. Leader: Spin in Particle Physics
16. J. D. Walecka: Electron Scattering for Nuclear and Nucleon Scattering
17. S. Narison: QCD as a Theory of Hadrons
18. J. F. Letessier and J. Rafelski: Hadrons and Quark-Gluon Plasma
19. A. Donnachie, H. G. Dosch, P. V. Landshoff and O. Nachtmann: Pomeron Physics and QCD
20. A. Hoffmann: The Physics of Synchroton Radiation
21. J. B. Kogut and M. A. Stephanov: The Phases of Quantum Chromodynamics
22. D. Green: High PT Physics at Hadron Colliders
23. K. Yagi, T. Hatsuda and Y. Miake: Quark-Gluon Plasma
24. D. M. Brink and R. A. Broglia: Nuclear Superfluidity
25. F. E. Close, A. Donnachie and G. Shaw: Electromagnetic Interactions and Hadronic Structure
26. C. Grupen and B. A. Shwartz: Particle Detectors, Second edition
27. V. Gribov: Strong Interactions of Hadrons at High Energies
28. I. I. Bigi and A. I. Sanda: CP Violation, Second edition
29. P. Jaranowski and A. Królak: Analysis of Gravitational-Wave Data
30. B. L. Ioffe, V. S. Fadin and L. N. Lipatov: Quantum Chromodynamics: Perturbative and Nonperturbative

Aspects
31. J. M. Cornwall, J. Papavassiliou, and D. Binosi: The Pinch Technique and Its Applications to Non-Abelian

Gauge Theories

https://doi.org/10.1017/9781009402415 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415


THE PINCH TECHNIQUE AND
ITS APPLICATIONS TO NON-ABELIAN

GAUGE THEORIES

JOHN M. CORNWALL
University of California at Los Angeles, USA

JOANNIS PAPAVASSILIOU
University of Valencia–CSIC, Spain

DANIELE BINOSI
European Centre for Theoretical Studies in Nuclear Physics and

Related Areas, Italy

https://doi.org/10.1017/9781009402415 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415


Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment,  
a department of the University of Cambridge.

We share the University’s mission to contribute to society through the pursuit of 
education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781009402446

DOI: 10.1017/9781009402415

© John M. Cornwall, Joannis Papavassiliou and Daniele Binosi 2011 

This work is in copyright. It is subject to statutory exceptions and to the provisions  
of relevant licensing agreements; with the exception of the Creative Commons version the  

link for which is provided below, no reproduction of any part of this work may take  
place without the written permission of Cambridge University Press.

An online version of this work is published at doi.org/10.1017/9781009402415 under a  
Creative Commons Open Access license CC-BY-NC-ND 4.0 which permits re-use,  

distribution and reproduction in any medium for non-commercial purposes providing  
appropriate credit to the original work is given. You may not distribute derivative works  

without permission. To view a copy of this license, visit  
https://creativecommons.org/licenses/by-nc-nd/4.0

All versions of this work may contain content reproduced under license from third parties. 
Permission to reproduce this third-party content must be obtained from these third-parties directly.

When citing this work, please include a reference to the DOI 10.1017/9781009402415

First published 2011
Reissued as OA 2023

A catalogue record for this publication is available from the British Library.

ISBN 978-1-009-40244-6 Hardback
ISBN 978-1-009-40243-9 Paperback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of 
URLs for external or third-party internet websites referred to in this publication 

and does not guarantee that any content on such websites is, or will remain, 
accurate or appropriate.

https://doi.org/10.1017/9781009402415 Published online by Cambridge University Press

www.cambridge.org
www.cambridge.org/9781009402446
http://dx.doi.org/10.1017/9781108894562
http://dx.doi.org/10.1017/9781108894562
http://dx.doi.org/10.1017/9781108894562
https://creativecommons.org/licenses/by-nc-nd/4.0
https://doi.org/10.1017/9781009402415


To our families and friends

https://doi.org/10.1017/9781009402415 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415


https://doi.org/10.1017/9781009402415 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415


Contents

Introduction: Why the pinch technique? page xi

1 The pinch technique at one loop 1
1.1 A brief history 1
1.2 Notation and conventions 3
1.3 The basic one-loop pinch technique 6
1.4 Another way to the pinch technique 17
1.5 Pinch technique vertices 20
1.6 The pinch technique in the light-cone gauge 31
1.7 The absorptive pinch technique construction 34
1.8 Positivity and the pinch technique gluon propagator 42

References 43

2 Advanced pinch technique: Still one loop 45
2.1 The pinch technique and the operator product expansion: Running

mass and condensates 45
2.2 The pinch technique and gauge-boson mass generation 47
2.3 The pinch technique today: Background-field Feynman gauge 62
2.4 What to expect beyond one loop 72

References 73

3 Pinch technique to all orders 75
3.1 The s-t cancellation to all orders 75
3.2 Quark-gluon vertex and gluon propagator to all orders 79

References 85

vii

https://doi.org/10.1017/9781009402415 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415


viii Contents

4 The pinch technique in the Batalin–Vilkovisky framework 86
4.1 An overview of the Batalin–Vilkovisky formalism 88
4.2 Examples 93
4.3 Pinching in the Batalin–Vilkovisky framework 100

References 102

5 The gauge technique 104
5.1 The original gauge technique for QED 105
5.2 Massless longitudinal poles 108
5.3 The gauge technique for NAGTs 109

References 113

6 Schwinger–Dyson equations in the pinch technique
framework 114

6.1 Lattice studies of gluon mass generation 115
6.2 The need for a gauge-invariant truncation scheme for the

Schwinger–Dyson equations of NAGTs 117
6.3 The pinch technique algorithm for Schwinger–Dyson equations 119
6.4 Pinch technique Green’s functions from Schwinger–Dyson equations 120
6.5 Solutions of the pinch technique Schwinger–Dyson equations and

comparison with lattice data 131
6.6 The QCD effective charge 134

References 141

7 Nonperturbative gluon mass and quantum solitons 144
7.1 Notation 144
7.2 Introduction 144
7.3 The quantum solitons 150
7.4 The center vortex soliton 152

References 165

8 Nexuses, sphalerons, and fractional topological charge 167
8.1 Introduction to nexuses and junctions 167
8.2 Nexuses in SU (N ) 170
8.3 The QCD sphaleron 181
8.4 Chiral symmetry breakdown, nexuses, and fractional topological charge 186

References 188

9 A brief summary of d = 3 NAGTs 190
9.1 Introduction 190

https://doi.org/10.1017/9781009402415 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415


Contents ix

9.2 Perturbative infrared instability 193
9.3 The exact form of the zero-momentum effective action 193
9.4 The dynamical gauge-boson mass 197
9.5 The functional Schrödinger equation 201
9.6 Dynamical gluon mass versus the Chern–Simons mass: Two phases 209
9.7 Compactness and the Chern–Simons number of YMCS solitons 216

References 223

10 The pinch technique for electroweak theory 226
10.1 General considerations 227
10.2 The case of massless fermions 229
10.3 Nonconserved currents and Ward identities 242
10.4 The all-order construction 246

References 248

11 Other applications of the pinch technique 250
11.1 Introduction 250
11.2 Non-Abelian effective charges 250
11.3 Physical renormalization schemes versus MS 255
11.4 Gauge-independent off-shell form factors 256
11.5 Resummation formalism for resonant transition amplitudes 263
11.6 The pinch technique at finite temperature 270
11.7 Basic principles of thermal field theory 271
11.8 Hints of supersymmetry in the pinch technique Green’s functions 276

References 278

Appendix: Feynman rules 281
Index 285

https://doi.org/10.1017/9781009402415 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415


https://doi.org/10.1017/9781009402415 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415


Introduction: Why the pinch technique?

Non-Abelian gauge theories (NAGTs) have dominated the world of experimen-
tally accessible particle physics for more than three decades in the form of the
standard model with its SU (2) × U (1) (electroweak theory) and SU (3) (quantum
chromodynamics: QCD) components. NAGTs are also the ingredients of grand
unified theories and technicolor theories and play critical roles in supersymmetry
and string theory. It is no wonder that thousands of papers have been written on
them. But many of these papers violate the principle of gauge invariance, result-
ing in calculations of propagators, vertices, and other off-shell form factors that
are valid only in the particular gauge chosen. Until these are combined into a
gauge-invariant expression, they have very limited, if any, physical meaning. The
reason for such violation of gauge invariance is that standard and widely used
Feynman graph techniques generate gauge-dependent Green’s functions (proper
self-energies, three-point vertices, etc.) for the gauge bosons.

Of course, there is one combination of off-shell Green’s functions – the on-shell
S-matrix – that is gauge invariant no matter which gauge is used for the propaga-
tors and vertices that go into it. Thus, authors who (correctly) insist on calculating
only gauge-invariant quantities often restrict themselves to dealing only with the
S-matrix. This is fine as long as the question at hand can be answered with per-
turbation theory, but to calculate gauge invariantly a nonperturbative feature using
only S-matrix elements is not easy. Some of the processes involving off-shell
Green’s functions include confinement and chiral symmetry breakdown in QCD;
higher-order radiative corrections to gauge-boson decay widths in electroweak the-
ory; nonperturbative effects in the magnetic sector of high-temperature QCD and
electroweak theory; and physical quantities embedded in the electroweak S-matrix
such as the magnetic dipole and electric quadrupole moments of the W -boson,
the top-quark magnetic moment, and the neutrino electric charge radius. These are

xi
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xii Introduction: Why the pinch technique?

physical, measurable phenomena, and to approximate them with gauge-dependent
calculations really makes no sense.

The Abelian predecessor of NAGTs, quantum electrodynamics (QED), is also a
theory with local gauge invariance. But in QED, it is much easier than in an NAGT
to enforce this crucial property. For example, the gauge-boson (photon) propagator
in QED is gauge invariant for any momentum and any choice of gauge for internal
lines, whereas the gauge-boson propagator in an NAGT, if calculated with standard
Feynman graph techniques, is not. Enforcing gauge invariance on off-shell Green’s
functions for an NAGT is difficult even in perturbation theory, let alone in attempts
to understand nonperturbative effects such as confinement in QCD. For NAGTs
in covariant gauges, one also has to deal with Faddeev–Popov ghosts, which are
absent from QED.

Long ago, a new method for enforcing gauge invariance in off-shell Green’s func-
tions, and the Schwinger–Dyson equations that couple them, emerged; this was
later termed the pinch technique. This is a technique to disassemble and reassem-
ble the Feynman graphs of a gauge-invariant object, such as the S-matrix, into
new off-shell Green’s functions such as gauge-boson proper self-energies that are
strictly gauge invariant, just as in QED. It works by systematically identifying
parts of n-point Feynman graphs in that S-matrix element that actually belong
to Green’s functions with fewer legs through the use of elementary Ward iden-
tities. Moreover, requiring that the new pinch technique proper self-energy have
the right analytic properties in momentum as well as other physically reasonable
properties uniquely specified this new self-energy. Although the actual calcula-
tion was not carried out until considerably later, it was clear that any kind of
proper gauge-boson vertex, such as the three- or four-point vertex, could also be
made completely gauge invariant through application of the same ideas. Unique-
ness of the new self-energy and vertices was assured by requiring them to obey
Ward identities having an essentially Abelian structure, with no explicit ghost
contributions, rather than the much more complex Slavnov–Taylor identities of
conventional NAGTs. Another technique, called the gauge technique (described
later), allows for the construction of nonperturbative proper three-point vertices
for the gauge bosons that are approximately valid for small gauge-boson momen-
tum but exactly gauge invariant and that satisfy the correct pinch technique Ward
identities.

This is simple enough to do at the one-loop level, but at higher orders, a more
systematic approach is needed. The surprising and far from obvious outcome is
that the simple prescription for calculating gauge-invariant pinch technique Green’s
functions to any order is to use the conventional Feynman graphs in the background-
field Feynman gauge.
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Introduction: Why the pinch technique? xiii

The pinch technique – or its algorithmic equivalent, graphs in the background-
field Feynman gauge – even shows up in string theory. Usually we think of string
theory as yielding only on-shell amplitudes, but a consistent extrapolation of string
amplitudes off shell in the field-theory (or zero Regge slope) limit shows that
the resulting off-shell gauge-boson amplitudes are automatically presented in the
background-field Feynman gauge.

The purpose of this book is to describe the pinch technique and its evolution from
simple one-loop beginnings to a systematic method at all orders of perturbation
theory and then to fully gauge-invariant Schwinger–Dyson equations, leading to
the many applications of the pinch technique that have been developed over the
years. The pinch technique has led to the clarification of a number of problems in
NAGTs that were essentially unsolvable by techniques depending on conventional
(Feynman–graph–derived) off-shell Green’s functions because these are gauge
dependent.

A quick outline of the book

This book begins with two introductory chapters (Chapters 1 and 2) that derive two-
and three-gluon pinch technique Green’s functions at the one-loop level, showing
how a dynamical mass is demanded by infrared slavery for QCD-like gauge theo-
ries and outlining the full scope of the pinch technique program. Then Chapters 3
through 6 go into considerable detail to derive the pinch technique Green’s func-
tions to all orders; show that they are the same as the background-field Feynman-
gauge Green’s functions; derive the Schwinger–Dyson equations for the pinch
technique in QCD-like theories; apply a special gauge-invariant method called the
gauge technique to truncate these equations; and show how the pinch technique
Schwinger–Dyson equations give rise to a dynamical gluon mass in these QCD-
like theories. Chapters 7, 8, and 9 then cover applications of these results to QCD-
like theories. Chapter 10 develops the pinch technique for electroweak theory to
all orders, and Chapter 11 describes several applications of the pinch technique to
electroweak physics, thermal gauge theories, and supersymmetric gauge theories.

Once we get past one loop, it is hard slogging through all the details, so the reader
who wants a tour d’horizon of the pinch technique can find it in Chapters 1 and
2. There we hint at the nonperturbative ideas used in later chapters, making some
remarks on the Schwinger–Dyson equation for the pinch technique propagator
at the one-dressed-loop level. The reader interested in the inner workings of the
pinch technique should read the next four chapters. The remaining chapters are
on applications, so readers who are more interested in applications of the pinch
technique than in its derivation can spend their time on Chapter 7 and onward
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xiv Introduction: Why the pinch technique?

after reading introductory Chapters 1 and 2. Although the book is not intended
to be a textbook, it should be accessible, with perhaps a little extra work on such
techniques as the background-field method and the Batalin–Vilkovisky formalism,
to advanced graduate students as well as to researchers in gauge theories.

Some uses of the pinch technique

In QCD-like theories, the most important uses of the pinch technique come from
the not-unexpected discovery in solving the Schwinger–Dyson equations that
asymptotic freedom, or more accurately,1 infrared slavery, requires a dynamically
generated gluon mass to resolve the otherwise intractable infrared singularities
of infrared slavery. From this simple result – repeatedly confirmed by lattice
simulations – follows a cascade of topological quantum solitons that plausibly
explain confinement and other nonperturbative phenomena of QCD-like theories
and that are also seen in lattice simulations, as we briefly discuss at the end of this
section and in detail in Chapters 7 and 8.

The pinch technique for NAGTs has considerable physical interest in three dimen-
sions as well as four. One reason is that d = 3 NAGTs carry all of the critical
nonperturbative phenomena, stemming from infrared slavery, associated with the
sector of finite-temperature NAGTs having zero Matsubara frequency and there-
fore (perturbatively) massless magnetic gluons. There is such a sector for QCD-like
theories and also for electroweak theory above the crossover temperature at which
the standard-model Higgs field has zero vacuum expectation value. Another reason
is the instructive differences in the conditions and techniques used in d = 3; for
example, there is no asymptotic freedom, but there is infrared slavery that gives
worse infrared divergences in d = 3 than in d = 4. We cover d = 3 NAGTs in
Chapter 9 and a few other applications of the pinch technique to finite-temperature
gauge theories in Chapter 11.

The pinch technique has also been developed to all orders in electroweak theory as
the prime example of symmetry breaking in NAGTs, as we recount in Chapter 10.
Here the pinch technique makes possible many applications given in Chapter 11,
including gauge-invariant, non-Abelian, off-shell charges and form factors; the
neutrino charge radius; and gauge-invariant constructions of resonance widths that
are gauge dependent in the usual Feynman-graph formalism.

Finally, applications to NAGTs are even embedded in supersymmetric theories in
which the contributions of scalars and fermions to the off-shell gluonic Green’s

1 An NAGT in d = 3 cannot be asymptotically free, but it can show infrared slavery, that is, severe infrared
singularities coming from wrong-sign phenomena; in general, this book applies both to d = 3 and d = 4
NAGTs.
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Introduction: Why the pinch technique? xv

functions of the pinch technique confirm, by explicit calculation, well-known super-
symmetry relations that would not hold for conventional Feynman-graph definitions
of the Green’s functions. These, too, are discussed in Chapter 11.

Constructing pinch technique Green’s functions and equations

Because it is far from obvious, we will spend considerable time on the demon-
stration that the systematic all-orders construction of pinch technique Green’s
functions gives the same Green’s functions as would be calculated in the back-
ground field method exhibited in the Feynman gauge. The first suggestions that the
pinch technique and the background-field Feynman gauge are related came from
a one-loop calculation showing that the pinch technique gives the same results as
the background-field method in the Feynman gauge; we give our version of these
one-loop results in Chapters 1 and 2.

This gauge, then, transcends its usual meaning as just another gauge because it
incorporates – for kinematic reasons that we will explain – quite a different algo-
rithm: that of the gauge-invariant pinch technique. In the pinch technique (as well
as in the background-field method), the Ward identities relating a Green’s function
of n gauge potentials and no ghosts to those of fewer than n legs are not the standard
Slavnov–Taylor identities, which involve ghosts, but rather elementary Ward iden-
tities of QED type, making no reference to ghosts. There are, as is surely necessary
in any covariant gauge-invariant description of an NAGT, ghost contributions and
Green’s functions with ghost legs, but in a pinch technique Green’s function involv-
ing only gauge potentials, the internal ghost loops are not explicitly distinguishable
from gluons in the final product. We describe these developments in detail in
Chapters 3 and 4.

The next step is to consider the infinite tower of equations, the Schwinger–Dyson
equations, that couple all the pinch technique Green’s functions. For example, the
pinch technique propagator depends on the three- and four-point gluon vertex func-
tions, which in turn depend on higher-point functions – and so on. We introduce
closure to this infinite tower of equations by using the gauge technique, in which
we construct approximate n-point pinch technique Green’s functions that depend
only on fewer-point pinch technique Green’s functions and that exactly satisfy the
correct Ward identities. Gauge technique Green’s functions, which differ from their
exact counterparts by completely conserved quantities, more and more accurately
represent the exact Green’s functions as momenta on the legs become smaller
(because in the presence of a mass gap, completely conserved quantities have
kinematic zeroes at vanishing momenta of higher order than any in the gauge tech-
nique Green’s functions). In consequence, the gauge technique Green’s functions
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xvi Introduction: Why the pinch technique?

describe rather well the nonperturbative properties of gauge theories with infrared
slavery but require correction in the ultraviolet; fortunately, such corrections are
straightforward because of asymptotic freedom. We cover the gauge technique
in Chapter 5, from its simple beginnings long ago in QED to considerably more
complex forms for NAGTs.

The final step in moving toward applications is to derive the Schwinger–
Dyson equations by considering the all-order perturbative results; this is done in
Chapter 6. These Schwinger–Dyson equations include those for ghosts, although
strictly speaking, these are not necessary (e.g., in the pinch technique Schwinger–
Dyson equations as derived from light-cone gauge graphology). We should and do
derive the Schwinger–Dyson equations without reference to any particular closure
scheme, although the only practical way to use these Schwinger–Dyson equations
is with the gauge technique, with ultraviolet corrections added perturbatively. Of
course, the solutions to the Schwinger–Dyson equations closed with the gauge
technique are only approximate, as will always be the case however NAGTs are
approached, but they have the great virtue of local gauge invariance, quite unlike the
usual Schwinger–Dyson equations based on conventional Feynman graphology.

By far the most interesting feature of the solutions of these equations is that the
infrared slavery singularities are tamed by gluons’ becoming massive, yet without
any violation of local gauge invariance (cf. the d = 2 Schwinger model). It is
critical that this be a running mass that vanishes (up to logarithms) like 〈G2〉q−2 at
large momenta, where 〈G2〉 is the usual vacuum expectation value of the squared
field strengths.2 This is precisely analogous to the dynamical (constituent) quark
mass, vanishing like 〈ψ̄ψ〉q−2. If the mass did not run, it would not be a dynamical
mass but a bare mass (like the current mass of quarks), and the renormalizability of
an NAGT with a bare gluon mass is problematical. This vanishing of the running
mass is very roughly analogous to the vanishing of a Higgs field along the axis of
a soliton in symmetry-breaking theories.

The mere technical solution of the infrared-singularity problem by generation of
a dynamical gluon mass is perhaps interesting but, taken alone, seems not to bear
on the great issues of QCD such as confinement and chiral symmetry breaking.
This is far from true because gauge-invariant mass generation in an NAGT has two
important implications. First, there must be massless pure-gauge, longitudinally
coupled excitations, much like Goldstone fields, and explicit in the gauge tech-
nique Green’s functions. Second, these pure-gauge parts, which are indispens-
able parts of solitons of the massive gluon effective action, carry the long-range

2 In conventional Feynman graphs for the propagator, there are condensate contributions to something that
might have been identified with a running mass, except that there are contributions from non-gauge-invariant
condensates. Only in the pinch technique propagator is there only a gauge-invariant condensate contribution.
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Introduction: Why the pinch technique? xvii

topological properties essential for confinement and chiral symmetry breakdown.
In themselves, the massless parts would have Dirac singularities (lying on closed
sheets in d = 4 and on closed strings in d = 3), but every topological soliton has
another contribution to the gauge potential that is massive and not pure gauge,
giving rise only to short-range gauge field strengths. This massive part also has a
Dirac singularity that exactly cancels that of the massless pure-gauge part, yield-
ing a soliton that is essentially nonsingular and of finite action. There are many
solitons, but the three most interesting classes are the center vortex, essentially
a closed two-surface (responsible for confinement via a Bohm–Aharonov effect
coming from linkage of a Wilson loop to the closed surface of the massless long-
range, pure-gauge part of the center vortex); its closely related descendant, the
nexus (a monopole whose world line must lie on the center-vortex surface, thereby
dividing it into regions of different orientation and providing for the generation
of nonintegral topological charge); and the sphaleron (rather like the electroweak
sphaleron, interpretable not only as a cross section of a topology-changing con-
figuration but also as an unstable glueball). These solitons and their consequences
will be discussed in much more detail in Chapters 7 and 8, with Chapter 9 devoted
to the special case of three dimensions, which has a number of interesting features
not found in d = 4.
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1

The pinch technique at one loop

In this chapter, we present in detail the pinch technique (PT) construction at one
loop for a QCD-like theory, where there is no tree-level symmetry breaking (no
Higgs mechanism). The analysis applies to any gauge group (SU (N), exceptional
groups, etc.); however, for concreteness, we will adopt the QCD terminology of
quarks and gluons.

This introductory chapter and Chapter 2 go into both conventional technology
and the pinch technique only at the one-loop level. Here, the reader will find an
almost self-contained guide to the one-loop pinch technique with many calcula-
tional details plus some hints at the nonperturbative ideas used in later chapters
(where nonperturbative effects will be studied by dressing the loops, i.e., using a
skeleton expansion).

1.1 A brief history

Non-Abelian gauge theories (NAGTs) had been around for a long time when the
pinch technique came into play [1, 2, 3, 4]. Their first use was in defining the one-
loop PT gauge-boson propagator as a construct taken from some gauge-invariant
object by combining parts of conventional Feynman graphs while preserving gauge
invariance and other physical properties. The term pinch technique was introduced
later [4], in a paper that extended the one-loop pinch technique to the three-gluon
vertex. The name comes from a characteristic feature of the pinch technique, in
which the needed parts of some Feynman graphs look as though a particular propa-
gator line had been pinched out of existence. In all these early papers, only one-loop
phenomena were studied, including a one-dressed-loop Schwinger–Dyson equation
for the PT propagator. This equation showed how the infrared singularities arising
because of asymptotic freedom (= infrared slavery) require dynamical gluon mass
generation. Of course, the pinch technique should lead to unique results. These

1
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2 The pinch technique at one loop

considerations followed from five requirements for all PT Green’s functions not
involving ghosts:

1. All Green’s functions are independent of any gauge-fixing parameters.
2. All Green’s functions are independent of the particular S-matrix process

used to define them.
3. All Green’s functions obey Ward identities of QED type, not involving

ghosts.
4. All Green’s functions obey dispersion relations in which there are no iden-

tifiable ghost contributions or threshholds.
5. The discontinuities (imaginary parts) of Green’s functions can be calculated

with the usual Cutkosky rules, consistent with unitarity for the S-matrix.

All these are properties of Green’s functions in the background-field Feynman
gauge, later shown to be equivalent to the pinch technique.

One remark concerning the imaginary parts and unitarity is in order. The pho-
ton propagator of QED satisfies a Källen–Lehmann representation with a positive
spectral function, a property intimately related to the positivity of the beta func-
tion of QED. Because this beta function is negative for an asymptotically free
theory, it is impossible to find a NAGT gauge-boson propagator with a positive
spectral function, so unitarity holds in a generalized form, with some negative
contributions to spectral functions. However, as pointed out in Section 1.7, special
properties of the PT propagator allow its factorization into two terms, each obeying
the Källen–Lehmann representation.1 This factorization allows the rearrangement
of PT Schwinger–Dyson equations into a form in which all necessary positivity
constraints are realized.

At the beginning, how to extend the pinch technique to higher orders of pertur-
bation theory was far from clear; the pioneering technology defined in the first
papers would have been forbiddingly difficult for graphs with two or more loops.
Fortunately, the problem of the all-order pinch technique has a solution that can
be stated with remarkable simplicity: all that has to be done, as was shown [5, 6],
is to calculate conventional Feynman graphs using the background-field method-
ology [7] in the Feynman gauge. The original proof was for NAGTs such as
QCD, but it was extended [8] to all orders of electroweak theory. This work was
inspired by remarks [9, 10, 11] to the effect that the original pinch technique and
the background-field Feynman gauge gave exactly the same results at one loop in
perturbation theory. This, of course, could have been a coincidence without much

1 The product of two functions obeying the Källen–Lehmann representation need not obey it.
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1.2 Notation and conventions 3

meaning, but the all-order proof showed constructively how the PT requirements
were satisfied at all orders in the background-field Feynman gauge.2

In roughly the same time period, string-theory workers [12] studied the off-shell
extrapolation of string-theory amplitudes in the field theory, or zero Regge slope,
limit. By imposing a consistent implementation of modular invariance, these work-
ers showed that the off-shell gauge-theory amplitudes derived from string theory
were automatically given in the background-field Feynman gauge–equivalent to
the pinch technique.

The results showing the equivalence of the pinch technique and the background-
field Feynman gauge set the stage for nonperturbative applications of the pinch
technique, including the Schwinger–Dyson equations of the pinch technique and
their consequences. The output of any PT calculation is not only independence of
any gauge-fixing parameter but also freedom from contamination by unphysical
objects. For example, if one tries to find the contributions of gauge-invariant con-
densates such as 〈Tr GμνG

μν〉 to the usual gauge-boson propagator, one discovers
that they are inextricably bound with nonphysical and gauge-dependent conden-
sates involving the ghost fields. But for the PT propagator, only the gauge-invariant
condensate, field-strength condensate emerges; there are no ghost contributions
[13].

1.2 Notation and conventions

Unless explicitly stated otherwise, we adopt the conventions of Peskin and
Schröeder [14]. Sometimes, such as in Chapters 7–9 and parts of Chapter 11,
it is convenient to work in Euclidean space. The canonical gauge potential Aa

μ(x)
is often combined in the Hermitian matrix form

Aμ(x) = Aa
μ(x)ta, (1.1)

where ta are the SU (N) generators satisfying the commutation relations

[ta, tb] = if abctc, (1.2)

with f abc being the group’s totally antisymmetric structure constants. The genera-
tors are normalized according to

Tr(tatb) = 1

2
δab. (1.3)

In the case of QCD, the fundamental representation is given by ta = λa/2, where
λa are the Gell–Mann matrices.

2 And in no other background-field gauge; for other than the Feynman gauge, the original PT pinching rules
would have to be applied to the background-field Green’s functions to get those of the PT.
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4 The pinch technique at one loop

In Chapters 7, 8, and 9, dealing with nonperturbative phenomena, we combine the
gauge potentials in the anti-Hermitean matrix form

Aμ(x) = −igAa
μ(x)ta,

in which case the matrix potential has a unit mass dimension in all space-time
dimensions. The changes in all other definitions are trivial. This definition has
many advantages when we go beyond perturbation theory.

The Lagrangian density for a general SU (N) non-Abelian gauge theory is given
by

L = LI + LGF + LFPG. (1.4)

LI represents the gauge invariant Lagrangian, namely,

LI = −1

4
Gμν

a Ga
μν + ψ̄ i

f

(
iγ μDμ −m

)
ij
ψ

j

f , (1.5)

where a = 1, . . . , N2 − 1 (respectively, i, j = 1, . . . , N ) is the color index for the
adjoint (respectively, fundamental) representation, and f is the flavor index. The
matrix-covariant derivative and field strength are defined according to

Dμ = ∂μ − igAμ (1.6)[
Dμ,Dν

] = −igGa
μνt

a, (1.7)

or, more explicitly,

(Dμ)ij = ∂μ(I )ij − igAa
μ(ta)ij (1.8)

Ga
μν = ∂μA

a
ν − ∂νA

a
μ + gf abcAb

μA
c
ν, (1.9)

with g being the (strong) coupling constant. Under a local (finite) gauge transfor-
mation V = exp[−iθ ],

Aμ → V
i

g
∂μV

† + VAμV
†; Gμν → VGμνV

†; ψ → Vψ, (1.10)

from which the invariance of LI follows. In terms of infinitesimal local gauge
transformations,

δAa
μ = −1

g
∂μθ

a + f abcθbAc
μ; δθψ

i
f = −iθa(ta)ijψ

j

f

δθ ψ̄
i
f = iθaψ̄j

f (ta)j i, (1.11)

where θa(x) are the local infinitesimal parameters corresponding to the SU (N)
generators ta .
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1.2 Notation and conventions 5

To quantize the theory, the gauge invariance needs to be broken; this breakup is
achieved through a (covariant) gauge-fixing function Fa , giving rise to the (covari-
ant) gauge-fixing Lagrangian LGF and its associated Faddeev–Popov ghost term
LFPG. The most general way of writing these terms is through the Becchi–Rouet–
Stora–Tyutin (BRST) operator s [15, 16] and the Nakanishi–Lautrup multipliers
Ba [17, 18], which represent auxiliary, nondynamical fields that can be eliminated
through their (trivial) equations of motion. Then, one gets

LGF = −ξ

2
(Ba)2 + BaFa (1.12)

LFPG = −c̄asFa, (1.13)

where

δBRST
 = εs
, (1.14)

with ε being a Grassmann constant parameter and s being the BRST operator acting
on the QCD fields according to

sAa
μ = ∂μc

a + gf abcAb
μc

c; sca = − 1
2gf

abccbcc

sψi
f = igca(ta)ijψ

j

f ; sc̄a = Ba

sψ̄i
f = −igcaψ̄j

f (ta)j i ; sBa = 0. (1.15)

From the preceding transformations, it is easy to show that the BRST operator is
nilpotent: s2 = 0. In addition, as a result, the sum of the gauge-fixing and Faddev–
Popov terms can be written as a total BRST variation:

LGF + LFPG = s

(
c̄aFa − ξ

2
c̄aBa

)
. (1.16)

This, of course, is expected because of the well-known property that total BRST
variations cannot appear in the physical spectrum of the theory, which in turn
implies the ξ independence of the S-matrix elements and physical observables.

As far as the gauge-fixing function is concerned, there are several possible choices.
The ubiquitous Rξ gauges correspond to the covariant choice

Fa
Rξ

= ∂μAa
μ. (1.17)

In this case, one has

LGF = 1

2ξ
(∂μAa

μ)2 (1.18)

LFPG = ∂μc̄a∂μc
a + gf abc(∂μc̄a)Ab

μc
c; (1.19)
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6 The pinch technique at one loop

the Feynman rules corresponding to such a gauge are reported in the appendix.
One can also consider noncovariant gauge-fixing functions such as

Fa
n = nμnν

n2
∂μA

a
ν, (1.20)

where nμ is an arbitrary but constant four vector. In general, we can classify these
gauges by the different values of n2, i.e., n2 < 0 (axial gauges), n2 = 0 (light-cone
gauge), and finally, n2 > 0 (Hamilton or time-like gauge). Clearly, the gauge-fixing
form of Eq. (1.20) does not work for the light-cone gauge, which needs a separate
treatment, given in Section 1.6. In the other cases,

LGF = 1

2ξ (n2)2
(nμnν∂μA

a
ν)2 (1.21)

LFPG = nμnν

n2

[
∂μc̄

a∂νc
a + gf abc(∂μc̄a)Ab

νc
c
]
. (1.22)

Notice that these noncovariant gauges, as well as the light-cone gauge, are ghost
free because the ghosts decouple completely from the S-matrix in dimensional
regularization.

Finally, because of the correspondence [9, 10, 11] between the PT and the particular
class of gauges known as background field gauges [7], the latter will be described
in depth in Chapter 2.

We end this section observing that when dealing with loop integrals, we will use
dimensional regularization and employ the shorthand notation∫

k

≡ με(2π )−d
∫
ddk, (1.23)

where d = 4 − ε is the dimension of space-time and μ is the ’t Hooft mass scale,
introduced to guarantee that the coupling constant is dimensionless in d dimensions.
In addition, the standard result, ∫

k

1

k2
= 0, (1.24)

will be used often to set various terms appearing in the PT procedure to zero.

1.3 The basic one-loop pinch technique

We begin with some notation for propagators and a special decomposition for the
free three-gluon vertex, a decomposition that also occurs in the background-field
method.
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1.3 The basic one-loop pinch technique 7

1.3.1 Origin of the longitudinal momenta

Consider the S-matrix element for the quark-quark elastic scattering process
q(p1)q(r1) → q(p2)q(r2) in QCD. We have that p1 + r1 = p2 + r2 and set q =
r2 − r1 = p1 − p2, with s = q2 being the square of the momentum transfer. The
longitudinal momenta responsible for triggering the kinematical re-arrangements
characteristic of the pinch technique stem either from the bare gluon propagator


(0)
αβ(k) or from the external bare (tree-level) three-gluon vertices, i.e., the vertices

where the physical momentum transfer q is entering.

To study the origin of the longitudinal momenta in detail, first consider the gluon
propagator αβ(k); after factoring out the trivial color factor δab, in the Rξ gauges,
it takes the form

iαβ(q, ξ ) = Pαβ(q)(q2, ξ ) + ξ
qαqβ

q4
, (1.25)

with Pαβ(q) being the dimensionless transverse projector, defined as

Pαβ(q) = gαβ − qαqβ

q2
. (1.26)

The scalar function (q2, ξ ) is related to the all-order gluon, self-energy

�αβ(q, ξ ) = Pαβ(q)�(q2, ξ ), (1.27)

through

(q2, ξ ) = 1

q2 + i�(q2, ξ )
. (1.28)

Because�αβ has been defined in Eq. (1.28) with the imaginary factor i factored out
in front, it is simply given by the corresponding Feynman diagrams in Minkowski
space. The inverse of αβ can be found by requiring that

am
αμ(q, ξ )(−1)μβmb(q, ξ ) = δabgβα , (1.29)

and it is given by

−i−1
αβ (q, ξ ) = Pαβ(q)−1(q2, ξ ) + 1

ξ
qαqβ. (1.30)

At tree level,

i(0)
αβ(q, ξ ) = d(q2)

[
gαβ − (1 − ξ )

qαqβ

q2

]
(1.31)

d(q2) = 1

q2
. (1.32)
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8 The pinch technique at one loop

Evidently, the longitudinal (pinching) momenta are proportional to the combination
λ = 1 − ξ and vanish for the particular choice ξ = 1 (Feynman gauge) so that the
free propagator is simply proportional to gαβd(q2). This is a particularly important
feature of the Feynman gauge, which, as we will see, makes PT computations much
easier. In this gauge, only longitudinal momenta from vertices can contribute to
pinching at the one-loop level. The popular case ξ = 0 (Landau gauge) gives rise
to a transverse (0)

αβ(k), which may have its advantages but really complicates the
PT procedure at this level.

Next, we consider the conventional three-gluon vertex, to be denoted by
�amn
αμν (q, k1, k2), given by the following manifestly Bose-symmetric expression (all

momenta are incoming, i.e., q + k1 + k2 = 0):

i�amn
αμν (q, k1, k2) = gf amn�αμν(q, k1, k2) (1.33)

�αμν(q, k1, k2) = gμν(k1 − k2)α + gαν(k2 − q)μ + gαμ(q − k1)ν.

This vertex satisfies the standard Ward identities:

qα�αμν(q, k1, k2) = k2
2Pμν(k2) − k2

1Pμν(k1) (1.34)

k
μ

1 �αμν(q, k1, k2) = q2Pαν(q) − k2
2Pαν(k2) (1.35)

kν2�αμν(q, k1, k2) = k2
1Pαμ(k1) − q2Pαμ(q). (1.36)

Unfortunately, the right-hand side is not the difference of inverse propagators, a
defect that shows up in higher orders as the appearance of ghost terms in the
identities, now called the Slavnov–Taylor identities.

But it is possible to decompose the vertex in a special way into two pieces, one
of which satisfies a Ward identity of an elementary (ghost-free) type and the other
contains the only longitudinal momenta capable of generating pinches [1, 19]. In
the general ξ gauge, this decomposition, as applied to the vertex of Figure 1.1(b),
is

�μνα(q, k1, k2) = �ξ
μνα + �Pξ

μνα, (1.37)

where

�ξ
μνα(q, k1, k2) = (k1 − k2)αgμν − 2qμgνα + 2qνgμα

+
(

1 − 1

ξ

)
[k2νgαμ − k1μgαν], (1.38)

and

�Pξ
μνα(q, k1, k2) = 1

ξ
[k2νgαμ − k1μgαν]. (1.39)
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1.3 The basic one-loop pinch technique 9

(a) (c)

(e)

(b)

(d)

Figure 1.1. The diagrams contributing to the one-loop quark elastic scattering
S-matrix element. (a) box contributions, (b) non-Abelian and (c) Abelian vertex
contributions (two similar diagrams omitted), (d) quark self-energy corrections
(three similar diagrams omitted), and (e) gluon self-energy contributions.

It is easy to check that �ξ obeys the elementary Ward identity:

qα�ξ
μνα(q, k1, k2) = −1

μν (k2, ξ ) −−1
μν (k1, ξ ), (1.40)

and that �Pξ is the only part of the vertex that triggers pinches. In the pinch
technique, (a trivial modification of) this ghost-free Ward identity holds to all
orders and has, as a consequence, as in QED, the equality of the gluon wave
function and vertex renormalization constants – a relation of great importance for
further developments. Note that the vertex �ξ

αμν(q, k1, k2) is Bose symmetric only
with respect to the μ and ν legs. Evidently, the preceding decomposition assigns a
special role to the q-leg, which is attached to two on-shell lines. In fact, this vertex
�ξ also occurs in the background-field method (see the appendix).3

It would be possible to carry out the (one-loop) PT manipulations with this vertex
decomposition for any ξ , but, just as for the propagator, things simplify in the
Feynman gauge, where a substantial part of �ξ vanishes. Because we will use this
gauge extensively, we record its vertex decomposition using the notation �F =
�ξ=1, �Pξ=1 = �P. Then,

�αμν(q, k1, k2) = �F
αμν(q, k1, k2) + �P

αμν(q, k1, k2), (1.41)

3 Actually, in both the pinch technique and the background-field method, there are two kinds of vertices; at the
one-loop level, only the one used here matters.
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10 The pinch technique at one loop

with

�F
αμν(q, k1, k2) = (k1 − k2)αgμν + 2qνgαμ − 2qμgαν, (1.42)

�P
αμν(q, k1, k2) = k2νgαμ − k1μgαν, (1.43)

and this allows �F
αμν(q, k1, k2) to satisfy the Ward identity

qα�F
αμν(q, k1, k2) = (k2

2 − k2
1)gμν, (1.44)

where the right-hand side is the difference of two inverse propagators in the
Feynman gauge.

1.3.2 The basic pinch operation

The term pinch arises from the operation of longitudinal momenta, such as in�P, on
vertices, which triggers Ward identities that lead to the cancellation of a preexisting
propagator by an inverse propagator coming from the Ward identity. The resulting
graph looks like a Feynman graph from which one line has been removed, as if it
had been pinched out.

Whether acting on a vertex or a box diagram, as in Figure 1.1, the effect of the
pinching momenta, regardless of their origin (gluon propagator or three-gluon
vertex), is to trigger the elementary Ward identity

kνγ
ν = (/k + /p −m) − (/p −m), (1.45)

where the right-hand side (rhs) is the difference of two inverse tree-level quark
propagators. The first of these terms cancels (pinches out) the internal tree-level
fermion propagator S(0)(k + p), and the second term on the rhs vanishes when
hitting the on-shell external leg. Diagrammatically speaking, an unphysical effec-
tive vertex appears in the place where S(0)(k + p) was, i.e., a vertex that does not
appear in the original Lagrangian; as we will see, all such vertices cancel in the
full, gauge-invariant amplitude.

First of all, it is immediate to verify the cancellation of the ξ -dependent terms at
tree level. After extracting a kinematic factor of the form

iVaα(p1, p2) = ū(p1)igtaγ αu(p2), (1.46)

the tree-level amplitude reads

T (0) = iVaα(r1, r2)i(0)
αβ(q)iVaβ(p1, p2). (1.47)

Then, because the on-shell spinors satisfy the equations of motion

ū(p)(/p −m) = 0 = (/p −m)u(p), (1.48)
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1.3 The basic one-loop pinch technique 11

the longitudinal part coming from 
(0)
αβ vanishes, and we obtain

T (0) = iVaα(r1, r2)d(q2)Va
α (p1, p2). (1.49)

Next, let us concentrate on the two box diagrams, direct and crossed, shown in
Figure 1.1(a). The sum of the two graphs gives

(a) = g2
∫
k

ū(r1)γ αtaS(0)(r2 − k)γ ρtru(r2)(0)
αβ(k − q)(0)

ρσ (k)

× g2ū(p1)
{
γ βtaS(0)(p2 + k)γ σ tr + γ σ trS(0)(p1 − k)γ βta

}
u(p2).

(1.50)

To see how the pinch technique works, we now study the action of the longitudinal
momenta appearing in the product (0)

αβ(k − q)(0)
ρσ (k). Look, for example, at the

term kρkσ coming from (0)
ρσ (k). Using Eqs. (1.45) and (1.48), we find that the

contraction of kσ with the term contained in the brackets in the second line on
the rhs of Eq. (1.50) gives rise to the expression

g2ū(p1)kσ {· · ·}βσ u(p2) = g2ū(p1)γ β
{
tat r − t r ta

}
u(p2)

= ig2f arnū(p1)γ βtnu(p2)

= gf arnP β
ν (q)ū(p1)igγ νtnu(p1)

= [
gf arnP β

ν (q)
]

iVnν(p1, p2). (1.51)

Notice that in the second step, we have used the commutation relation of Eq. (1.2),
and in the third step, we have used the fact that for the on-shell process, longitudinal
pieces proportional to qβqν may be added without consequence since they vanish
because of current conservation, thus converting gβν to Pβ

ν (q). The term in the
last line of Eq. (1.51) couples to the external on-shell quarks as a propagator;
evidently all reference to the internal (off-shell) quarks inside the brackets has
disappeared. To continue the calculation, (1) multiply the result by kρ , (2) contract
kρ with γ ρ in the first line of Eq. (1.50), (3) employ again the Ward identity of
Eq. (1.45), and (4) use the relation if abctatb = −1/2CAt

c, whereCA is the Casimir
eigenvalues of the adjoint fundamental representation.4 The final result is a purely
propagator-like term, i.e., a term that only depends on q (even though it originates
from a box diagram) and couples to the external on-shell quarks as a propagator

4 We denote with CA (Cf ) the Casimir eigenvalue of the adjoint (fundamental) representations. For SU (N ),
CA = N and Cf = (N2 − 1)/2N .
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Figure 1.2. The pinching contributions coming from the different one-loop
S-matrix diagrams.

(see Figure 1.2). Armed with these observations, it is relatively easy to track down
the action of all terms proportional to (1 − ξ ); in fact, we can write the two boxes
as follows:

(a) = (a)ξ=1 + iVa
α (r1, r2)id(q2)�αβ

box(q, λ)id(q2)iVa
β (p1, p2), (1.52)

https://doi.org/10.1017/9781009402415 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415


1.3 The basic one-loop pinch technique 13

Table 1.1. Contributions of the box, vertex, and self-energy diagrams to the
different ξ -dependent structures appearing in the various �αβ

(i) (q, λ) terms
generated during the PT process

λ2
∫
k

kαkβ
k4(k+q)4 λ

∫
k

kαkβ
k4(k+q)2 λ

∫
k

1
k2(k+q)4 λ

∫
k

1
k4

�(a)
1
2CA 0 −CA 0

2�(b) 0 0 0 CA − 2Cf

2�(c) −CA 2CA 2CA −2CA

4�(d) 0 0 0 2Cf

�(e)
1
2CA −2CA −CA CA

Total 0 0 0 0

where the ξ -dependent propagator-like term �
αβ

box is given by

�
αβ

box(q, λ) = λg2CAq
4

[
λ

2
Pαμ(q)Pβν(q)

∫
k

kμkν

k4(k + q)4

− Pαβ(q)
∫
k

1

k4(k + q)2

]
. (1.53)

It turns out that all the ξ -dependent parts isolated using the PT procedure are
effectively propagator-like, whether they come from box-, vertex-, or propagator-
like diagrams. So the general result is

(i) = (i)ξ=1 + iVa
α (r1, r2)id(q2)�αβ

(i) (q, λ)id(q2)iVa
β (p1, p2), (1.54)

where i runs over all possible different topologies appearing in Figure 1.1
(i = a, b, c, d, e). The value of the corresponding self-energy-like piece is shown
in Table 1.1. The sum of each of its columns is zero, which explicitly shows at one
loop the ξ -independence property of S-matrix elements.

In the PT framework, the ξ -dependent terms are eliminated in a very particular
way. All ξ -dependent pieces turn out to be propagator-like so that all ξ -dependence
has canceled, giving rise to subamplitudes that maintain their original kinematic
identity (boxes, vertices, and self-energies) and are, in addition, individually ξ -
independent. It is important to appreciate that the explicit cancellation carried out
amounts effectively to choosing the Feynman gauge, ξ = 1, from the beginning.
Of course, there is no doubt that this can be done for the entire physical amplitude
considered; the point is that, thanks to the pinch technique, one may move from
general ξ to ξ = 1 without compromising the notion of individual topologies.
Such a notion would have been lost if, for instance, the demonstration of the
ξ -independence involved integration over virtual momenta; had the integrations
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14 The pinch technique at one loop

+=
Aα Aβ Aα Aβ

q

Π̂αβ(q) + 2 q2Pαβ(q)

Figure 1.3. Diagrammatic representation of the one-loop pinch technique gluon
self-energy �̂αβ as the sum of the conventional gluon self-energy terms and the
pinch contributions coming from the vertex.

been done first, one would have eventually succeeded in demonstrating the ξ -
independence of the entire S-matrix element but would have missed out on the
ability to identify ξ -independent subamplitudes, as we did. In addition, this result
suggests that there is no loss of generality in choosing ξ = 1 from the beginning,
thereby eliminating a major source of longitudinal pieces that are bound to cancel
anyway through the special pinching procedure outlined earlier.

1.3.3 The pinch technique gluon self-energy at one loop

Next, we construct the PT gluon self-energy, to be denoted by �̂αβ(q). It is given
by the sum of the conventional and self-energy-like parts extracted from the two
vertices, as shown in Figure 1.3, i.e.,

�̂αβ(q) = �αβ(q) + 2�P
αβ(q). (1.55)

Specifically, in a closed form,

�̂αβ(q) = 1

2
g2CA

[∫
k

�αμν�
μν
β

k2(k + q)2
−
∫
k

kα(k + q)β + kβ(k + q)α
k2(k + q)2

]

+ 2g2CA

∫
k

q2Pαβ(q)

k2(k + q)2
, (1.56)

where we have symmetrized the ghost contribution for later convenience and
neglected the fermion contribution.

It would be elementary to compute �̂αβ directly from the rhs of Eq. (1.56). It is
very instructive, however, to identify exactly the parts of the conventional �αβ

that combine with (and eventually cancel) the term �P
αβ . To make this cancellation

manifest, one may carry out the following rearrangement of the two elementary
three-gluon vertices appearing in Eq. (1.56):

�� = �F�F + �P� + ��P − �P�P, (1.57)
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1.3 The basic one-loop pinch technique 15

PT

+=

Âα Âβ Âα Âβ

+=
Aα Aβ Aα Aβ

q

q

Παβ(q)

− 2 q2Pαβ(q)

Figure 1.4. The conventional one-loop gluon self-energy before (first line) and
after (second line) the pinch technique rearrangement. A shaded circle at the end
of an external gluon line denotes that the corresponding gluon behaves as if it were
a background gluon.

where, in this symbolic equation, all Lorentz indices have been suppressed, and
the product of any two �s means

�� → �αμν�
μν
β . (1.58)

Dropping terms leading to tadpolelike diagrams (which vanish by dimensional
regularization), one then finds

�P� + ��P = −4Pαβ(q)q2 − 2kαkβ − 2(k + q)α(k + q)β (1.59)

�P�P = 2kαkβ + (kαqβ + qαkβ). (1.60)

We see that the conventional gluon self-energy can be cast in the following form
(see also Figure 1.4):

�
(1)
αβ(q) = 1

2
g2CA

[∫
k

�F
αμν�

Fμν
β

k2(k + q)2
− 2

∫
k

(2k + q)α(2k + q)β
k2(k + q)2

]

− 2g2CA

∫
k

q2Pαβ(q)

k2(k + q)2
. (1.61)

It is easy to prove, using the vanishing of one-loop tadpoles, that each term appear-
ing in the preceding equation is individually conserved so that we have the first
ghost-free Ward identity:

qα�̂αβ = 0. (1.62)

The PT re-arrangement has created three manifestly transverse structures, all admit-
ting a unique diagrammatic representation and field theoretical interpretation: the
first two terms have in fact precisely the structure of the background-field Feynman
gauge at one loop (studied in Chapter 2), whereas the last term represents the one-
loop version of a very special auxiliary function that will be thoroughly studied
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16 The pinch technique at one loop

when extending the algorithm to the Schwinger-Dyson equations of non-Abelian
gauge theories (Chapter 6). It exactly cancels the pinching contribution coming
from the vertex (see Eq. (1.56)) so that one is left with the result

�̂αβ(q) = 1

2
g2CA

[∫
k

�F
αμν�

Fμν
β

k2(k + q)2
−
∫
k

2(2k + q)α(2k + q)β
k2(k + q)2

]
. (1.63)

Using

�F
αμν�

Fμν
β = d(2k + q)α(2k + q)β + 8q2Pαβ(q), (1.64)

and ∫
k

(2k + q)α(2k + q)β
k2(k + q)2

= −
(

1

d − 1

)∫
k

q2Pαβ(q)

k2(k + q)2
, (1.65)

the one-loop PT propagator can be written in the simple form

�̂αβ(q) = 1

2
g2CA

(
7d − 6

d − 1

)∫
k

q2Pαβ(q)

k2(k + q)2
, (1.66)

valid at d = 3, 4. Writing

�̂αβ(q) = Pαβ(q)�̂(q2), (1.67)

and following the standard integration rules for the Feynman integral, we obtain
the following for the unrenormalized �̂ in d = 4:

�̂(q2) = ibg2q2

[
2

ε
+ ln 4π − γE − ln

q2

μ2
+ 67

33

]
, (1.68)

where γE is the Euler–Mascheroni constant (γE ≈ 0.57721) and

b = 11CA

48π2
(1.69)

is the gauge-invariant one-loop coefficient of the β function of QCD (β = −bg3)
in the absence of quark loops5 (for the d = 3 case, see Chapter 9).

The gauge-invariant constant b in front of the logarithm corresponds to an analogous
gauge-invariant number in the vacuum polarization of QED, where the correspond-
ing coefficient is −α/3π ; of course, the difference in the sign occurs because QCD
is asymptotically free whereas QED is not. That the PT gluon propagator captures
the leading renormalization group (RG) logarithms is a direct consequence of the
Ward identity Eq. (1.92) and the consequent relation Ẑ1 = Ẑ2. (This means [3] that

5 For comparison, the standard one-loop Feynman self-energy replaces b by (CA/32π2)(13/3 − ξ ), which is
obviously gauge dependent and not yielding the correct coefficient b even in the Feynman gauge.

https://doi.org/10.1017/9781009402415 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415


1.4 Another way to the pinch technique 17

the product of the unrenormalized charge g2
0 and the unrenormalized PT propagator

is the same as this product of renormalized quantities – again, just as in QED –
and so this product defines a coupling constant-propagator combination that is not
only gauge invariant but renormalization group invariant.) Indeed, if Ẑ1 = Ẑ2, then
the charge renormalization constant, Zg, and the wave function renormalization of
the PT gluon self-energy, ẐA, are related by Zg = Ẑ

−1/2
A , exactly as in QED.

Finally, notice that since both the �F�F term and the ghostlike term are separately
conserved, the ghostlike term is no longer needed to satisfy the Ward identity for
the proper self-energy (Eq. (1.62)). One might ask what quantitative difference it
makes to drop the ghostlike term, which, in a Schwinger–Dyson context, would
amount to a truncation of the series. The answer it that without the ghostlike
term, the proper self-energy has exactly the same transverse form but is 10/11
times the self-energy with the ghostlike term. Interestingly, the pinch technique
already offers at one loop the ability to truncate gauge invariantly, i.e., preserving
the transversality of the truncated answer. This will have profound consequences
when addressing the issue of devising a gauge-invariant truncation scheme for the
Schwinger–Dyson equations of QCD (Chapter 6).

1.4 Another way to the pinch technique

So far, to develop the pinch technique, we have used a specific S-matrix element
for quark-quark scattering. The question naturally arises: is the PT result found
this way independent of the process used to define it? This is surely what we must
expect from any sensible definition of Green’s functions. The answer is yes, as
we indicate in the next subsection. Another natural question, given the answer to
the first question, is whether one can define the pinch technique in an intrinsically
process-independent way. Again, the answer is yes. We do not make any reference
to background-field techniques, where the answer to both questions is clearly yes.

1.4.1 Process independence

It is important to stress at this point that the only completely off-shell Green’s
function involved in the previous construction was the gluon self-energy; instead,
the quark-gluon vertex has the incoming gluon off shell and the two quarks on
shell, whereas the box has all four incoming quarks on shell. These latter quantities
were also made ξ independent in the process of constructing the fully off-shell,
ξ -independent gluonic two-point function. Similarly, the construction of a fully
off-shell PT quark self-energy requires its embedding in a process such as quark-
gluon elastic scattering. The generalization of the methodology is now clear; for
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18 The pinch technique at one loop

q1

q2

q3

q4

qn

Figure 1.5. S-matrix embedding necessary for constructing a ξ -independent, fully
off-shell gluonic n-point function.

pinch

ΓF

+

Figure 1.6. The pinching procedure when the embedding particles are on-shell
gluons. Despite appearances, the vertex by which the pinching contribution is
connected to the external gluons is a three-gluon vertex.

example, for constructing a ξ -independent, fully off-shell gluonic n-point function
(i.e., with n off-shell gluons), one must consider the entire ξ -independent process
consisting of n pairs of quarks, q(p1)q(k1), q(p2)q(k2), . . . , q(pn)q(kn) and hook
each gluon Ai to one pair of test quarks; the off-shell momentum transfer qi of
the ith gluonic leg will be qi = pi − ki (see Figure 1.5). Note, however, that one
may equally well use gluons as external test particles or as even fictitious scalars
carrying color. Provided that the embedding process is ξ -independent, the answer
that the pinch technique furnishes for a given fully off-shell n-point function
is unique; that is, it is independent of the embedding process. The PT Green’s
functions are process independent or universal – a property of Green’s functions
that can hardly be violated. The universality of the one-loop gluon self-energy has
been demonstrated through explicit computations using a variety of external test
particles. For example, when gluons are used as external test particles, the pinching
isolates propagator-like pieces that are attached to the external gluons through a
tree-level three-gluon vertex (see Figure 1.6). In this case, the analog of the quark-
gluon vertex �̂a

α is the one-loop vertex with one off-shell and two on-shell gluons,
which, as we will see in Section 1.5.2, is the one-loop generalization of �F. This
latter vertex should not be confused with the PT three-gluon vertex with all three
gluons off shell, which can be constructed by embedding it into a six-quark process
(one pair for each leg), to be discussed in Section 1.4.2. The distinction between
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1.4 Another way to the pinch technique 19

these two three-gluon vertices is crucial and will be made more explicit later on;
in addition, a more precise field-theoretic notation will be adopted that will allow
us to distinguish the three-gluon vertices unambiguously.

We emphasize that the PT construction is not restricted to the use of on-shell
S-matrix amplitudes and works equally well inside, for example, a gauge-invariant
current correlation function or a Wilson loop. This fact is particularly relevant for
the correct interpretation of the correspondence between the pinch technique and
the background-field method to be discussed in Chapter 2. Actually, in the first PT
calculation ever [3], the set of one-loop Feynman diagrams studied were the ones
contributing to the gauge-invariant Green’s function:

G(x, y) =
〈
0
∣∣∣T {

Tr
[

(x)
†(x)

]
Tr
[

(y)
†(y)

]}∣∣∣ 0
〉
, (1.70)

where 
(x) is a matrix describing a set of scalar test particles in an appropriate
representation of the gauge group. In this case, the special momentum with respect
to which the vertex decomposition of Eq. (1.41) should be carried out (i.e., the
equivalent of q in that same equation) is the momentum transfer between the two
sides of the scalar loop (i.e., one should count loops as if the
 loop had been opened
at x and y). The advantage of using an S-matrix amplitude is purely operational:
the PT construction becomes more expeditious because several terms can be set to
zero directly owing to the equation of motion of the on-shell test particles. Instead,
in the case of a Wilson loop, one would have to carry out the additional step of
demonstrating explicitly their cancellation against other similar terms.

1.4.2 Intrinsic pinch technique

The central achievement of the previous sections has been the construction of
the ξ -independent, off-shell gluon self-energy, �̂αβ , through its embedment into a
physical S-matrix element, corresponding to quark-quark elastic scattering. This
was accomplished by identifying propagator-like pieces from the vertices and boxes
contributing to the embedding process and reassigning them to the conventional
gluon self-energy, �αβ . This procedure has been carried out for a general value of
the gauge-fixing parameter ξ , leading to a unique answer that is most economically
reached by choosing the Feynman gauge from the beginning. Thus �̂αβ is obtained
by adding to �αβ the propagator-like pieces 2�P

αβ extracted from the vertices, as
shown in Eq. (1.56). In the analysis following Eq. (1.56), it became clear that
these latter terms cancel very precise terms of the conventional self-energy �αβ ,
furnishing, finally, �̂αβ . Specifically, after the vertex decomposition of Eq. (1.57),
the terms �P acted on the corresponding �, triggering the Ward identities (1.34),
(1.35), and (1.36): the term 2�P

αβ cancels against the terms of the Ward identities
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20 The pinch technique at one loop

that are proportional to q2Pαβ . This observation motivates the following, more
expeditious, course of action: instead of identifying the propagator-like pieces
from the various graphs, focus on �αβ , carry out the decomposition of Eq. (1.57),
and discard the terms coming from the Ward identities that are proportional to
q2Pαβ ; what is left is then the PT answer.

This alternative, and completely equivalent, approach to pinching was first intro-
duced in [4] and is known as the intrinsic pinch technique. Its main virtue is that
it avoids as much as possible the embedment of the Green’s function under con-
struction into a physical amplitude. As we shall see later, the intrinsic approach
is particularly suited for extending the PT construction in the context of the
Schwinger–Dyson equation.

1.5 Pinch technique vertices

After the propagator, the next step is, of course, three-leg vertices. We can extract
one of the vertices, the quark-gluon vertex, from the graphs of Figure 1.1 in much
the same way that we found the pinch technique gluon propagator. The other vertex
under consideration here, the three-gluon vertex, is much more complicated and
needs a nontrivial extension of the work we have already done. We begin with the
quark-gluon vertex.

1.5.1 The one-loop pinch technique quark-gluon vertex and its Ward identity

Let us now turn to the longitudinal terms contained in the pinching part �P
αμν of the

three-gluon vertex (see Eq. (1.43)) appearing in the non-Abelian vertex graph and
two such vertices inside the gluon self-energy graph. One may ask at this point,
what is the purpose of carrying the PT decomposition of the vertex given that
one has already achieved ξ -independent structures? The answer is that the effect
of the pinching momenta of �P

αμν is to make the effective ξ -independent Green’s
functions satisfy ghost-free Ward identities instead of the usual Slavnov–Taylor
identities.

This is best seen in the case of the one-loop quark-gluon vertex �a
α(p1, p2), com-

posed by the graphs of Figures 1.1(b) and 1.1(c), now written (after the gauge-
fixing parameter cancellations described earlier) in the Feynman gauge. It is well
known that the QED counterpart of �a

α(p1, p2), namely, the photon-electron vertex
�α(p1, p2), satisfies to all orders (and for every ξ ) the Ward identity

qα�α(p1, p2) = ie
[
S−1
e (p1) − S−1

e (p2)
]
, (1.71)
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q, a

iHa(p, q) = −gta +

p

p + q

Figure 1.7. The auxiliary function H appearing in the quark-gluon vertex
Slavnov–Taylor identity. The shaded blob represents the (connected) ghost-
fermion kernel appearing in the usual QCD skeleton expansion.

where Se is the (all-order) electron propagator; Eq. (1.71) is the naive, all-order
generalization of the tree-level identity (1.45).

The quark-gluon vertex �a
α(p1, p2) also obeys the Ward identity of Eq. (1.45) at

tree level (multiplied by ta):

qα�a
α(p1, p2) = igta

[
S−1(p1) − S−1(p2)

]
. (1.72)

However, at higher orders, it obeys a Slavnov–Taylor identity that is not the naive
generalization of this tree-level Ward identity. Instead, �α

a (p1, p2) satisfies the
Slavnov–Taylor identity [20]

qα�a
α(p1, p2) =

[
q2Daa′

(q)
] [
S−1(p2)Ha′

(q, p1) + H̄ a′
(p1, q)S−1(p2)

]
, (1.73)

whereDaa′
(q) and S(p) represent the full ghost and quark propagator, respectively,

and Ha is a composite operator defined as (see also Figure 1.7)

iS(p)iDaa′
(q)iHa(p, q) = −gtd

∫
d4x

∫
d4y eip·x eiq·y

×
〈
0
∣∣∣ T {

q̄(x)c̄a
′
(y)

[
cd(0)q(0)

]}∣∣∣ 0
〉
, (1.74)

where T denotes the time-ordered product of fields and H̄ is the Hermitean conju-
gate of H . At tree level, Ha

ij reduces to H (0)a
ij = taij .

After these general considerations, let us carry out the decomposition of Eq. (1.41)
to the non-Abelian vertex of Figure 1.1(b). Then let us write, suppressing again the
color indices,

(b)ξ=1 = iVα
a id(q2)ū(p1)i�̃a

α(p1, p2)u(p2), (1.75)

and concentrate on the (one-loop) non-Abelian contribution to the quark-gluon
vertex �̃a

α. We have

i�̃a
α(p1, p2) = 1

2
g3CAt

a

∫
k

[
�F
αμν + �P

αμν

]
γ νS(0)(p2 − k)γ μ

k2(k + q)2
, (1.76)
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iΓ̂a
α(p1, p2) =

ΓF

a,α
+

a,α

Figure 1.8. Diagrammatic representation of the pinch technique quark-gluon ver-
tex at one loop.

where, in this case,

�F
αμν = gμν(2k + q)α + 2qνgαμ − 2qμgαν (1.77)

�P
αμν = −(k + q)νgαμ − kμgαν. (1.78)

Despite appearances, if we use the Dirac equations of motion, the part of the vertex
graph containing �P is in fact purely propagator-like:

∫
k

�P
αμνγ

νS(0)(p2 − k)γ μ

k2(k + q)2

PT
Dirac Eq.−→ 2γα

∫
k

1

k2(k + q)2
. (1.79)

So also, in this case, one obtains from the one-loop, quark-gluon vertex a
propagator-like contribution given by

�P
αβ(q) = g2CA

∫
k

q2Pαβ(q)

k2(k + q)2
. (1.80)

As before, this term plus the equal one coming from the mirror vertex ought to be
re-assigned to the PT self-energy. Let us then concentrate on the remaining terms
in the vertex. In fact, the part of the vertex graph containing �F remains unchanged
because it has no longitudinal momenta. Adding it to the usual Abelian-like graph,
we obtain the one-loop PT quark-gluon vertex, to be denoted by �̂a

α, given by (see
Figure 1.8)

i�̂a
α(p1, p2) = g3ta

[
1

2
CA

∫
k

�F
αμνγ

νS(0)(p2 − k)γ μ

k2(k + q)2

+
(
Cf − CA

2

)∫
k

γ μS(0)(p1 + k)γαS(0)(p2 + k)γμ
k2

]
. (1.81)
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Now it is easy to derive the Ward identity that �̂a
α(p1, p2) satisfies. Using Eq. (1.44),

we get

qα�̂a
α(p1, p2) = −ig3Cf t

a

[∫
k

γ μS(0)(p2 + k)γμ
k2

−
∫
k

γ μS(0)(p1 + k)γμ
k2

]
= igta

{
�̂(p1) − �̂(p2)

}
. (1.82)

Clearly, Eq. (1.82) is the naive generalization of Eq. (1.72) at one loop, i.e., the
Ward identity satisfied by �a

α at tree level; this makes the analogy with Eq. (1.71)
fully explicit. An immediate consequence of Eq. (1.82) is that the renormalization
constants of �̂a

α and �̂, to be denoted by Ẑ1 and Ẑ2, respectively, are related by the
relation Ẑ1 = Ẑ2, which is none other than the textbook relation Z1 = Z2 of QED
realized in a non-Abelian context.

A direct comparison of the Slavnov–Taylor identity (1.73), satisfied by the con-
ventional vertex �a

α, with the Ward identity (1.82), satisfied by the PT vertex �̂a
α,

suggests a connection between the terms removed from �a
α during the process of

pinching and the ghost-related quantities Dab and Ha
ij . As we will see in detail in

Chapter 4, such a connection indeed exists and is, in fact, of central importance for
the generalization of the pinch technique to all orders.

1.5.2 The one-loop, three-gluon vertex and its Ward identity

The S-matrix construction The same general principles used for the propagator
also apply to the proper three-gluon (or four-gluon) vertex: choose a convenient
S-matrix element in which the vertex is embedded, in our case, at one loop. This
S-matrix element has not only the one-loop vertex that we want but many other
graphs. Extract the pinch graphs from these and add them to the conventional vertex.
The resulting proper vertex �̂αμν is completely gauge invariant (independent of ξ
in an Rξ gauge) and satisfies ghost-free Ward identities involving the gluon PT
inverse propagator. It also satisfies all other properties that we could demand of a
three-point vertex: complete Bose symmetry, conventional analytic properties with
physical threshholds only, and independence of the S-matrix process used to create
the vertex.

Figure 1.9 shows a three-quark S-matrix element, with all quark momenta pi, (p −
q)i on shell, from which we will find the PT proper three-gluon vertex. We denote
the one-loop corrections by �̂μνα and find the full one-loop PT vertex by adding
the bare vertex. There are two ways to do this: one is to add the conventional
fully symmetric bare vertex �(0)

αμν and the other is to add the free vertex with one
line singled out, as in Eq. (1.42). This is immaterial because the only difference is
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(a) (b)
three graphs

(c)
three graphs

(d)
two graphs

(e)
two graphs

(f)
three graphs

(g)
three graphs

(h)
three graphs

Figure 1.9. S-matrix graphs from which the one-loop pinch technique vertex is
derived.

(a)
three graphs

(b)
three graphs

Figure 1.10. Pinched graphs for the vertex.

in gauge-dependent terms, receiving no radiative corrections. The unique gauge-
invariant, ghost-free Ward identities relate the radiative correction term �̂αμν to
the PT proper self-energy; we give these subsequently.

The pinch parts from these graphs are shown in Figure 1.10. Actually, what
we construct by pinching is an improper vertex that has PT propagators hooked
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on6:

F̂αμν(q1, q2, q3) = ̂λ
α(q1)̂ρ

μ(q2)̂σ
ν (q3)�̂λρσ (q1, q2, q3). (1.83)

As with the PT propagator, we will work in theRξ Feynman gauge (ξ = 1). For any
ξ , the longitudinal terms in the propagators of Eq. (1.83) strike the external quark
lines and give no contribution, so we recover �̂ from F̂ by truncating, for example,
all propagators to the form gλμd

−1(q1). It is not necessary to calculate F̂μνα and then
truncate it; instead, the truncation is done by omitting the normal propagator graphs
of Figure 1.4(b) and subtracting the pinch parts shown in Figure 1.10(a) rather
than adding them. Subtraction rather than omission follows from a straightforward
evaluation of combinatoric factors.

After a very lengthy computation, using the decomposition of the bare vertex into
�F and pinch parts and a recombination of three vertex terms analogous to the term
used for the proper self-energy in Eq. (1.57) (see Eq. (1.95)), we find (with the
momenta assignment shown in Figure 1.12)

�̂αμν(q1, q2, q3) = − i

2
g2CA

∫
k1

1

k2
1k

2
2k

2
3

N̂αμν + 8B̂αμν, (1.84)

where

N̂αμν = �F
αλρ(q1, k3,−k1)�F

μσλ(q2, k2,−k3)�F
νρσ (q3, k1,−k2)

− 2(k1 + k3)α(k2 + k3)μ(k1 + k2)ν (1.85)

B̂αμν = (
gανq1μ − gαμq1ν

)
I (q1) + (

gμνq2α − gαμq2ν
)
I (q2)

+ (
gανq3μ − gμνq3α

)
I (q3), (1.86)

and the integrals I (qi) are given by

I (qi) = i

2
g2CA

∫
k

1

k2(k + qi)2
. (1.87)

The first term in Eq. (1.85) is the vertex analog of the�F�F term in the numerator of
the proper self-energy (Eq. (1.63)); the other term comes from ghosts and pinches.

It is now interesting to compare the Slavnov–Taylor identity satisfied by the con-
ventional and PT vertex when contracted with one of its momenta (say, q1; the
other identities are obtained by cyclic permutation of the indices and momenta). At
tree level, the identity satisfied by the conventional Rξ vertex has been derived in

6 Of greater physical significance is a half-proper vertex function Ĝ(q1, q2, q3), defined [4] by Ĝλρσ (q1, q2, q3) =
g−2ḡ(q1)ḡ(q2)ḡ(q2)�̂λρσ (q1, q2, q3), where ḡ(q) is the pinch technique running charge. This half-proper vertex
is not only gauge invariant but also renormalization group invariant.
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26 The pinch technique at one loop

Hμν(k, q) = igμν +

k,μ

q − k

q
ν

Figure 1.11. The auxiliary function H appearing in the three-gluon vertex
Slavnov–Taylor identity. Shaded blobs represent the (connected) Schwinger–
Dyson kernel corresponding to the ghost-gluon kernel appearing in the usual
QCD skeleton expansion.

Eq. (1.34). At higher orders, the derivation of this identity is a textbook exercise:
one starts from the trivial identity

〈T [
c̄a(x)Am

μ (y)An
ν(z)

]〉 = 0 (1.88)

and re-expresses it in terms of the BRST-transformed fields, making use of the
equal-time commutation relations. The result is [21]

qα1 �
amn
αμν (q1, q2, q3) = igf amn

[
q2

1D(q1)
] {
−1(q2

3 )P γ
ν (q3)Hμγ (q2, q3)

− −1(q2
2 )P γ

μ (q2)Hνγ (q3, q2)
}
. (1.89)

The function H , shown in Figure 1.11, is the (amputated) one-particle irreducible
(1PI) part7 of the function (q1 + q2 + q3 = 0):

Lamn
μν (q2, q3) = gf nrs

∫
d4y

∫
d4z e−iq2·ye−iq3·z 〈T [

c̄a(0)Am
μ (y)Ar

ν(z)cs(z)
]〉
,

(1.90)

which naturally appears when following the described procedure. The kernel
appearing in this function is the conventional connected ghost-gluon kernel appear-
ing in the usual QCD skeleton expansion; in addition, the function Hμν(k, q) is
related to the full gluon-ghost vertex �μ(k, q) (with k being the gluon and q being
the antighost momentum) by the identity

qνHμν(k, q) = −i�μ(k, q), (1.91)

where, at tree level, H (0)
μν = igμν and �(0)

μ (k, q) = �μ(k, q) = −qμ.

For the PT vertex, by contracting Eq. (1.84) with q1, we instead immediately get
the result

qα1 �̂
amn
αμν (q1, q2, q3) = gf amn

{
̂−1(q2)Pμν(q2) − ̂−1(q3)Pμν(q3)

}
, (1.92)

7 Let us recall that a diagram is called 1PI if it cannot be split into two disjoined pieces by cutting a single internal
line; when this is not the case, it is called one-particle reducible (1PR).
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(a)

a, α

m, μn, ν

q1

q3 q2s, σ

r, ρ �, λ
k1 k3

k2

(c)

three graphstwo graphs

(b)

Figure 1.12. Rξ diagrams contributing to the one-loop three-gluon vertex. Dia-
grams (c) carry a 1/2 symmetry factor. Fermion diagrams are not shown.

with ̂−1(q) = q2 + i�̂(q2); thus we find the naive one-loop generalization of the
tree-level identity of Eq. (1.44). Notice that (except in ghost-free gauges) the rhs
of the preceding equation is not the difference of two inverse gluon propagators
because the projection operator P has no inverse; also notice that there is no longer
reference to auxiliary ghost Green’s functions so that Eq. (1.92) is completely
gauge invariant.

The intrinsic construction As an application of the intrinsic PT algorithm
described in the previous section, let us see in detail how one can construct the one-
loop PT three-gluon vertex. The conventionalRξ diagrams are shown in Figure 1.12
and read

�αμν(q1, q2, q3) = − i

2
g2CA

∫
k1

1

k2
1k

2
2k

2
3

Nαμν + 9

2
B̂αμν, (1.93)

with

Nαμν = �αλρ(q1, k3,−k1)�μσλ(q2, k2,−k3)�νρσ (q3, k1,−k2)

− k1αk2νk3μ − k1αk2νk3μ. (1.94)

Let us then introduce the shorthand notation �1�2�3 for the combination of three-
level three-gluon vertices appearing in Eq. (1.94). In this notation, all Lorentz
indices are suppressed, and the number appearing in each vertex is the number
corresponding to the vertex’s external momentum qi . Then, decomposing each of
the �i into �F

i + �P
i , we obtain

�1�2�3 = �F
1�

F
2�

F
3 + �P

1�2�3 + �1�
P
2�3 + �1�2�

P
3 − �P

1�
P
2�3 − �P

1�2�
P
3

−�1�
P
2�

P
3 + �P

1�
P
2�

P
3 . (1.95)
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28 The pinch technique at one loop

The first term contains no pinching momenta and therefore will be kept in the PT
answer, giving rise to the term

(̂a) = − i

2
g2CA

∫
k1

1

k2
1k

2
2k

2
3

�F
αλρ(q1, k3,−k1)�F

μσλ(q2, k2,−k3)�F
νρσ (q3, k1,−k2).

(1.96)

Each of the other six terms has pinching terms generated when �P
i acts on the full

�s that trigger the corresponding Ward identities; according to the rules of intrinsic
pinching, we will then discard all the terms that are proportional to d−1(q2

i ).
However, these d−1 terms can also refer to a virtual momentum ki , in which case,
they give rise to an integral with only two propagators. The last term on the rhs of
Eq. (1.95) yields terms of this sort as well as a contribution that adds to the ghost
graph

�P
1�

P
2�

P
3 = −d−1(k2

1)
(
gμνk3α + gαμk1α

) − d−1(k2
2)
(
gαμk1ν + gανk3μ

)
− d−1(k2

3)
(
gανk2μ + gμνk1α

) − k1αk2μk3ν − k1νk2μk3α. (1.97)

The rest of the terms instead have external pinches, which we drop, keeping only
the relevant terms:

�P
1�2�3 = d−1(k2

3)
[
�ναμ(k1,−k2) + �μνα(k2,−k3)

]
+ k2μ

[
d−1(k2

1)gαν − k1αk1ν
] + k2ν

[
d−1(k2

3)gαμ − k3αk3μ
]

(1.98)

�P
1�

P
2�3 = d−1(k2

3)�ναμ(k1,−k2) − k3α
[
d−1(k2

2)gμν − k2μk2ν
]

− k3μ
[
d−1(k2

1)gνα − k1νk1α
]
. (1.99)

Similar expressions can be found for all the other terms appearing on the rhs of
Eq. (1.95). Isolating all the pinching terms that do not pinch out any (internal)
propagator and adding them to the conventional ghost graph of Figure 1.12(b), we
get the result

(̂b) = 2
i

2
g3CA

∫
k1

1

k2
1k

2
2k

2
3

2(k1 + k3)α(k2 + k3)μ(k1 + k2)ν, (1.100)

with the remaining pinching contribution giving

(c)P = − i

2
g2CA

∫
k2

1

k2
2k

2
3

[
gαμ(k1 − q3)ν + 2gαν(q3 − q1)μ + gμν(k1 + q1)α

]
− i

2
g2CA

∫
k1

1

k2
1k

2
3

[
gαμ(k2 + q3)ν + gαν(k2 − q2)μ + 2gμν(q2 − q3)α

]
− i

2
g2CA

∫
k1

1

k2
1k

2
2

[
2gαμ(q1 − q2)ν + gαν(k3 + q2)μ + gμν(k3 − q1)α

]
.

(1.101)
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+

(d1) (d1)
P (d′1)

P

pinch

Figure 1.13. 1PR diagram giving rise to effectively 1PI pinching contributions
(diagram (d1)P). Two more diagrams (corresponding to having the gluon self-
energy correction on the remaining legs) that give rise to similar terms are not
shown.

As we have seen, in the presence of longitudinal momenta, the topology of a
Feynman diagram is not a well-defined property because longitudinal momenta
will pinch out internal propagators, turning t-channel diagrams into s-channel dia-
grams. This same caveat applies also to the notion of one-particle reducibility. It
turns out that by pinching out internal propagators, one can effectively convert 1PR
diagrams into 1PI diagrams (see Figure 1.13); of course, the opposite cannot hap-
pen. Evidently, one-particle reducibility is a gauge-dependent concept. Thus, when
constructing the purely (1PI) gauge-invariant three-gluon vertex at one loop, one
has to take into account possible 1PI pinching contributions coming from apparently
1PR diagrams, like those coming from the graphs shown in Figure 1.13. Notice
also that not all the pinching terms coming from the diagrams of Figure 1.13 will be
producing 1PI terms but only those that will remove the internal gluon propagator
(diagram (d1)P). Those removing the external gluon propagator (diagram (d ′

1)P)
ought to be discarded, in full accordance with the rules of the intrinsic pinch tech-
nique, because they will inevitably cancel against analogous contributions coming
(in the S-matrix PT implementation) from non-Abelian vertices attached to the
external test-quark.

We show in detail what happens in the case shown in Figure 1.13. One has

(d1) = − i

2
g2CA�αμ′ν(q1, q2, q3)d(q2

2 )gμ
′ν ′

×
∫
k

1

k2(k + q2)2
�ν ′ρσ (−q2, k + q2,−k)�ρσ

μ (−q2, k + q2,−k). (1.102)

As explained, of all the possible pinching contributions appearing after the splitting
of the two self-energy three-gluon vertices, shown in Eqs (1.59) and (1.60), one
needs to retain only half of the first term appearing on the rhs of Eq. (1.59); the
other half removes instead the external propagator, thus generating diagram (d ′

1)P

of Figure 1.13. Therefore one has

(d1)P = ig2CA�αμν(q1, q2, q3)I (q2), (1.103)
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30 The pinch technique at one loop

where we kept only the gμσ part of the Pμσ appearing in the pinching term because
the qμ2 q

σ
2 term will remove the external propagator and thus ought to be discarded.

All that is left to do is to add this term to the first term appearing in Eq. (1.101),
denoted by (c1)P; a straightforward (setting k2 = k) calculation shows then
that

(c1)P + (d1)P = i
7

2
g2CA(gμνq2α − gαμq2ν)I (q2). (1.104)

The same procedure can be repeated for the diagrams (d2) and (d3), which would
show the gluon self-energy on the ν and α leg, respectively; after adding them to
the corresponding contributions (c2)P and (c3)P, we get

(c2)P + (d2)P = i
7

2
g2CA(gανq3μ − gμνq3α)I (q3) (1.105)

(c3)P + (d3)P = i
7

2
g2CA(gανq1μ − gανq1ν)I (q1). (1.106)

Because these terms have exactly the same structure as the conventional (c) dia-
grams of Figure 1.12, they can be combined with them (viz. with the last term in
Eq. (1.93)). Then, putting everything together, we recover exactly the same result
found in Eq. (1.84).

1.5.3 The four-gluon vertex

Clearly, there should be a generalization of the three-gluon pinch technique to
the four-gluon proper vertex; it has been given at one-loop order in [22] with the
by-now standard technique of forming an S-matrix element with, in this case, eight
on-shell quark legs and then finding the pinch graphs in the Feynman gauge. We
will state here only the Ward identity that this vertex satisfies, which is the naive
ghost-free generalization that we have learned to expect. This one-loop ghost-free
Ward identity has exactly the structure of the tree-level Ward identity. One of four
Ward identities, one for each momentum qi , reads

qα1 �
amnr
αμνρ (q1, q2, q3, q4) = gf adm�̂dnr

μνρ(q1 + q2, q3, q4)

+ gf adr �̂drm
νρμ (q1 + q3, q4, q2)

+ gf adn�̂dmr
νμρ (q1 + q4, q2, q3), (1.107)

where the �̂ with three indices are the PT three-gluon vertices we found earlier.
Note that a possible new renormalization constant Ẑ4 for the four vertex is, by virtue

https://doi.org/10.1017/9781009402415 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415


1.6 The pinch technique in the light-cone gauge 31

of the Ward identity, equal to Ẑ3. We now have four ghost-free Ward identities (at
least at the one-loop level), as given by Eqs. (1.62), (1.82), (1.92), and (1.107).

1.6 The pinch technique in the light-cone gauge

The light-cone gauge is one of a class of gauges that is ghost free, which simplifies
our conceptual tasks in understanding the pinch technique (in fact, it was the first
gauge used [1, 2, 3] in the development of the pinch technique). We recount here
the pinch technique as explained in [3]. It is not necessarily any easier to compute
in this gauge – in fact, in some respects, it is harder. But it is easier, as we will see,
than the axial gauge, which is similar but also definable in Euclidean space.

The light-cone gauge can only be defined in Minkowski space, but that will not
prevent us from using it in Euclidean space after cancellation of all gauge-dependent
terms has taken place. In fact, this cancellation takes place before any momentum-
space integrations are done, so we can convert easily to Euclidean integrals in
stating PT results derived from the light cone; this is useful for applications to
finite-temperature gauge theory [23].

The light-cone gauge introduces a lightlike vector nμ, with n2 = 0, for the gauge-
fixing:

nμAμ = 0. (1.108)

To fix the gauge completely, some other lower-dimensional constraints are needed
that give a precise meaning to operators like (n · ∂)−1. But we do not even need to
know the constraints because all such inverse operators will disappear from the PT
propagator before it is necessary to define them.

Although it is not required to implement light-cone gauge fixing as we do here, it
is convenient; the alternative is canonical quantization in a gauge such as A0 = A3.
We replace the gauge-fixing term of the Rξ gauges by

1

2η
Tr
(
nμAμ

)2
; (1.109)

later, we will take the limit η = 0 to enforce the light-cone gauge. This limit
can only be taken after all calculations are done. The free propagator and inverse
propagator are as follows:

i(0)
μν(q) = 1

q2
Qμν(q) + η

qμqν

(n · q)2
, (1.110)

−i[(0)]−1
μν (q) = q2Pμν(q) + nμnν

η
,
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32 The pinch technique at one loop

where8

Qμν(q) = gμν − nμqν + nνqμ

n · q . (1.111)

The propagator should be annihilated by nμ and indeed nμQμν = 0. The term
multiplying η does not vanish on multiplication bynμ, but this is no surprise because
it comes from the gauge-dependent gauge-fixing term. Of course, it vanishes in the
physical limit η → 0.

The virtue of the light-cone gauge is that (except for the unphysical η-dependent
term) the propagator is homogeneous of degree zero in the vector nμ, as a moment’s
thought shows it must be. Any scalar function of a single momentum constructed
from the light-cone gauge propagator can only depend on q2 and not in any way on
nμ itself because of this homogeneity requirement. It would seem to follow that the
only way in which the gauge choice can be manifested in the propagator is through
kinematic factors such as nμnν/(n · q)2. This is to be contrasted with the explicit
dependence of the Rξ -gauge propagators on ξ .9 So results for the propagator in the
light-cone gauge must be very close to those of the pinch technique, even without
taking pinching into account.

The conventional one-loop Feynman propagator calculated in the light-cone gauge
is [3]

iμν(q) = i(0)
μν(q) +Qμν(q)

[
22

3
I (q) + 8I ′(q)

]
+ nμnν

(n · q)2

[
8I (q) + 8I ′(q)

]
,

(1.112)
where I (q) has already been defined in Eq. (1.87), while

I ′(q) = i

2
g2CA(n · q)

∫
k

1

k2(k − q)2(n · k)
. (1.113)

The radiative corrections have the most general form allowed in the light-cone
gauge, where the propagator must be annihilated (except for the gauge-fixing term)
bynμ ornν . The integral I (q) = 1/(16π2) ln(−q2/�2) + · · · is the one appearing in
theRξ pinch technique, and if the first term on the rhs were the only contribution, we
would again recover exactly the same PT propagator involving the gauge-invariant
running charge, except for the kinematics such as the factor Qμν(q). As for the
integral I ′(q), it is, as advertised, homogeneously degree zero in nμ, but it is not
clear how to evaluate it. In fact, many learned papers have been written on how to
regulate the 1/(n · k) singularity and to evaluate integrals such as I ′(q), but we do

8 The notation used here differs slightly from that of [3]; in particular Qμν is defined with the opposite sign.
9 Certain integrals arise, such as I ′, that have nμ in their definition, and their value is not clear. Fortunately, the

pinch technique cancels all such terms before the integrations need to be done.

https://doi.org/10.1017/9781009402415 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415


1.6 The pinch technique in the light-cone gauge 33

not need them. The reason is that when we add the pinch terms to the conventional
light-cone propagator, now stemming from the longitudinal terms in Qμν(q), the
terms in I ′(q) and the terms multiplying nμnν are all canceled before one needs to
face up to the task of doing the strange integral in I ′(q). The only term remaining
is the one giving the gauge-invariant running charge. We can therefore write the
PT propagator in the light-cone gauge as

îμν(q) = Qμν(q)
1

q2

[
1 − bg2 ln

(−q2

�2

)
+ . . .

]
+ η

qμqν

(n · q)2
, (1.114)

where b is the by-now familiar one-loop coefficient in the running charge (see
Eq. (1.69)).

The absence of the nμnν term in the PT propagator persists to all orders. Such a
term is kinematically allowed because it is annihilated by nμ or nν , and its absence
to all orders is not a trivial matter.

The light-cone version of the PT propagator differs from the earlier PT propagator
not only through the gauge-dependent term multiplying η but also in the kinematical
factor Qμν , which depends on the gauge. The first gauge dependence is expected,
but perhaps not the second. We can exhibit a more exact correspondence between
PT propagators in various gauges by looking not at the propagator but at its inverse
(or more to the point, at the PT proper self-energy).

It is straightforward to calculate the inverse of the pinch propagator given in
Eq. (1.114); the renormalized version follows:

− î−1
μν (q) = Pμν(q)

{
q2

[
1 + bg2 ln

(−q2

μ2

)]}
+ nμnν

η
. (1.115)

We see that the inverse of the light-cone PT propagator is exactly what we found
earlier, except for the η-dependent terms. These gauge-dependent terms never
receive radiative corrections, except for a multiplicative renormalization of η. In
effect, they are only associated with free Green’s functions.

The importance of the inverse PT propagator, or equivalently, the proper self-energy
as well as proper vertices, is that they are the natural ingredients of Ward identities.
No matter what gauge is used, the proper self-energy has the simple transverse
form (cf. Eq. (1.55))

�̂μν(q) = Pμν(q)�̂(q), (1.116)

where �̂(q) is independent of any gauge choice. There are, as we have seen, PT
three-point vertices �̂μνα that obey, in any gauge, certain ghost-free Ward identities
(cf. Eq. (1.92)). In the light-cone gauge, this Ward identity actually has true inverse
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propagators on the rhs:

qα�̂μνα(k, q − k,−q) = ̂−1
μν (k) − ̂−1

μν (q − k). (1.117)

Note that although the inverse of the PT propagator (Eq. (1.115)) depends on the
gauge parameter η, the difference of two inverse propagators is independent of η so
that all terms in the Ward identity are strictly gauge invariant. This is just the naive
Ward identity that one would expect if NAGTs behaved like QED, with no ghosts
to worry about. Of course, this Ward identity is not the Slavnov–Taylor identity
satisfied by the conventional full vertex �, which has ghost contributions and is
gauge dependent.

Just as in QED, this Ward identity ensures that Ẑ1 = Ẑ3g, as we found earlier in
the covariant gauge.

1.7 The absorptive pinch technique construction

Here we show how unitarity is defined for the pinch technique, with one-loop
examples. In one respect, unitarity for PT Green’s functions is the same as for the
S-matrix; in another respect, it differs – and it must differ, or it is impossible to
reconcile with asymptotic freedom.

The two aspects of PT unitarity are as follows:

1. Off-shell PT Green’s functions obey dispersion relations of conventional type,
having only physical threshholds (i.e., Goldstone and ghost masses, which are
generically gauge dependent, cannot occur in the set of allowed threshholds).
The Feynman (background-field) gauge is singled out here because the ghost
and Goldstone masses are the same as the gauge-boson mass in this gauge,
and so a threshhold criterion cannot rule out that a propagator ultimately
stemmed from a ghost or Goldstone particle.

2. The absorptive parts of PT Green’s functions are calculated from the PT
Green’s functions with the standard (Cutkosky rules) construction. However,
because the PT Green’s functions differ from the conventional ones by terms
that subtract out gauge dependence and ghost lines, it happens for a NAGT –
but not for QED – that there can be absorptive parts with a negative sign.
This is in no way inconsistent with physical unitarity for the S-matrix, which
contains not only PT parts but other parts that restore positivity for the
absorptive parts of the S-matrix.

The difference between QED and NAGTs is the following: the PT is empty for
QED, which is a situation realized by an exact cancellation of terms that would
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1.7 The absorptive pinch technique construction 35

contribute to the pinch parts. But for QCD, the cancellation is not exact, as we have
seen. The study of unitarity properties for the pinch technique reveals a similar
situation: unitarity has its familiar form for QED, which means, among other
things, that the imaginary part of the photon propagator is positive definite (i.e.,
essential for the propagator to obey the Källen–Lehmann representation) and the
beta function of QED is also positive definite. But as we show here, the construction
of the absorptive part of a PT Green’s function, such as the propagator, usually
involves an incomplete cancellation between positive and negative terms that can
leave negative terms in absorptive parts where a positive term would normally be
expected. This is essential for a negative beta function in an asymptotically free
theory. The appearance of negative absorptive terms in a PT propagator is certainly
not an indication that the PT fails to respect normal unitarity for the S-matrix, any
more than the need for ghosts means a violation of unitarity.

Such cancellations have appeared in a related context, even before there was a
pinch technique. Long ago, people asked whether it was possible to derive the fun-
damental structure of a renormalizable theory of multiple massive vector mesons
from some straightforward assumption such as high-energy unitarity, or whether
one simply had to adopt by fiat theories of the NAGT-Higgs type. Several authors
[24, 25, 26] gave the answer: starting from the most general Lagrangian of spin
0, 1/2, and 1 particles that is renormalizable by power counting for massless
vector bosons, one can, by imposing the requirements of high-energy unitarity,
derive uniquely the structure of a NAGT–Higgs theory coupled minimally to spin
0 and 1/2 matter fields. The issue is that the massive vector mesons of a general
Lagrangian have longitudinal modes that, if their effects were uncanceled because
of some relations among couplings that give the Lagrangian a very specific struc-
ture, would lead through the usual optical theorem to unbridled growth in energyE
of perturbative amplitudes through a power of E/M for every longitudinal mode.
Another way to say this is that, in the unitary gauge, a massive vector propagator
has a longitudinal numerator part ∼kμkν/M

2 that is unrenormalizable unless the
theory has a special form – that of an NAGT. These authors showed that requiring
the longitudinal modes to be canceled led uniquely to an NAGT–Higgs theory
(at least in perturbation theory). But they did not cancel completely; they simply
were tamed to the point where total amplitudes behaved like positive powers of
M rather than negative powers. Studies of PT unitarity show similar incomplete
cancellations for NAGTs [27, 28], as we review here.

Because positivity is often an important physical constraint on absorptive parts, one
might question whether PT unitarity, with some negative terms, can be physically
useful. In [29], it was conjectured that the product of the PT propagator and
the coupling g2 factors into two terms, both with positive absorptive parts, and
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the product fails to have a positive absorptive part only because of asymptotic
freedom. This factorization allows a re-organization of terms in the Schwinger–
Dyson equations for higher-point PT Green’s functions such that ordinary positivity
requirements still hold.

1.7.1 The strong version of the optical theorem

The T -matrix element of a reaction i → f is defined via the relation

〈f |S|i〉 = δf i + i(2π )4δ(4)(Pf − Pi)〈f |T |i〉, (1.118)

where Pi (Pf ) is the sum of all initial (final) momenta of the |i〉 (|f 〉) state.
Furthermore, imposing the unitarity relation S†S = 1 leads to the generalized
optical theorem

〈f |T |i〉 − 〈i|T |f 〉∗ = i
∑
j

(2π )4δ(4)(Pj − Pi)〈j |T |f 〉∗〈j |T |i〉. (1.119)

In Eq. (1.119), the sum
∑

j is over the entire phase space and spins of all possible
on-shell intermediate particles j .

An important corollary of this theorem is obtained if f = i, corresponding to the
case of so-called forward scattering. Then, Eq. (1.119) reduces to


m〈i|T |i〉 = 1

2

∑
j

(2π )4δ(4)(Pj − Pi)|〈j |T |i〉|2. (1.120)

In what follows, we will refer to the relation given in Eq. (1.120) as the optical
theorem.

The rhs of the optical theorem consists of the sum of the (squared) amplitudes,Mij ,
of all kinematically allowed elementary processes connecting the initial and final
states. Note in particular that only physical particles may appear as intermediate
|j〉 states. If the particles involved are fermions, gauge bosons, or both when
calculating Mij , one averages over the initial-state polarizations and sums over the
final-state polarizations. In addition, the integration over all available phase space,
implicit in the sum

∑
j , must be carried out. The left-hand side (lhs) of the optical

theorem is given by the imaginary part of the entire amplitude, i.e., including all
Feynman diagrams contributing to it. For example, in the case of NAGTs, to obtain
the lhs of the optical theorem, one must calculate the imaginary part of all diagrams,
regardless of whether they contain physical (gluons, quarks) or unphysical (ghosts
or would-be Goldstone bosons) fields inside their loops. To do that, one usually
uses the Cutkosky rules or cutting rules, whereby in all diagrams, the propagators
of physical and unphysical particles are put simultaneously on shell.
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Figure 1.14. The strong version of the optical theorem in QED.

An issue of central importance for what follows is the way the optical theorem is
realized at the level of the conventional diagrammatic expansion, or equivalently,
at the level of the individual propagator-, vertex-, and boxlike amplitudes. Specifi-
cally, in its general formulation of Eq. (1.120), the optical theorem is a statement at
the level of entire amplitudes and not individual Feynman graphs or Green’s func-
tions. Thus, the imaginary part of a given diagram appearing on the rhs does not
necessarily correspond to an easily identifiable diagrammatic (or kinematic) piece
on the rhs. Of course, there are theories in which the optical theorem holds also
at the level of individual graphs and kinematic subamplitudes. This strong version
of the optical theorem is realized in scalar theories and QED (see Figure 1.14)
but fails in NAGTs (see Figure 1.15). This is so because, with the exception of
certain gauges, in the NAGTs, the propagator-, vertex-, and box-like subamplitudes
of each side of the optical theorem are totally different. For example, in the case
of the forward QCD process q(p1)q̄(p2)→q(p1)q̄(p2), the propagator-like part of
the lhs, computed in the renormalizable gauges, is determined by cutting through
one-loop graphs containing ξ -dependent gluon propagators and unphysical ghosts
(omit quark loops), whereas the propagator-like part of the rhs contains the polar-
ization tensors corresponding to physical massless particles of spin 1 (two physical
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Figure 1.15. The strong version of the optical theorem in QCD, which holds for
the quark loop but fails for the gluon loop.

polarizations). This profound difference complicates the diagrammatic verification
of the optical theorem and invalidates, at the same time, its strong version. A crucial
advantage of the PT is that it permits the realization of the optical theorem at the
level of kinematically distinct, well-defined subamplitudes, even in the context of
non-Abelian gauge theories; these privileged subamplitudes are, of course, none
other than the PT Green’s functions. In other words, the strong version of the optical
theorem holds if and only if the identification of the subamplitudes on each side
occurs after the application of the PT.

1.7.2 The fundamental s-t cancellation

As we demonstrate in this section, the application of the PT on the rhs (the physical
side) of the optical theorem is tantamount to the explicit use of an underlying
fundamental cancellation between s-channel and t-channel graphs [27, 28]. This
cancellation results in a nontrivial reshuffling of terms, which, in turn, allows for
the definition of kinematically distinct contributions; interestingly enough, they
correspond to the imaginary parts of the one-loop PT subamplitudes constructed
in the previous section.

To see all this in detail, we consider the forward-scattering process q(p1)q̄(p2) →
q(p1)q̄(p2) and concentrate on the optical theorem to lowest order. Obviously,
the intermediate states appearing on the rhs may involve quarks or gluons. The
quarks can be treated essentially as in QED and are, in that sense, completely
straightforward. We will therefore focus on the part of the optical theorem where
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Figure 1.16. Diagrams defining (a and b) the amplitudes Tt and (c) Ts . Diagram
(d) is related to the amplitude S defined in Eq. (1.126).

the intermediate states are two gluons; we have that


m〈qq̄|T |qq̄〉 = 1

2
× 1

2

∫
PSgg

〈qq̄|T |gg〉〈gg|T |qq̄〉∗, (1.121)

where
∫

PSgg
is the two gluon phase space measure integral.10 The extra 1

2 factor is
statistical and arises from the fact that the final on-shell gluons should be considered
identical particles in the total rate. Let us now focus on the rhs of Eq. (1.121) and set
T ≡ 〈qq̄|T |gg〉. Diagrammatically, the tree-level amplitude T is the sum of two
distinct parts: t- and u-channel graphs that contain an internal quark propagator,
Ttmnμν , as shown in of Figure 1.16(a) and 1.16(b), and an s-channel amplitude, Tsmnμν ,
given in Figure 1.16(c). Defining Va

α = v̄(p2)taγαu(p1) , we have that

Tsmnμν = g2f mncVc
αd(q)�α

μν(q, k1, k2) (1.122)

Ttmnμν = ig2v̄(p2)
[
tnγνS

(0)(p1 + k1)tmγμ + tmγμS
(0)(p1 + k2)γνt

n
]
u(p1).

The subscripts s and t refer, as usual, to the corresponding Mandelstam variables,
i.e., s = q2 = (p1 + p2)2 = (k1 + k2)2 and t = (p1 − k1)2 = (p2 − k2)2. We then
have

M = [Ts + Tt ]mnμν Lμμ′
(k1)Lνν ′

(k2)
[
Ts∗ + Tt∗

]mn
μ′ν ′ , (1.123)

where the polarization tensor Lμν(k) corresponding to a massless spin one particle
is given by

Lμν(k) = −gμν + nμkν + nνkμ

n · k + η2 kμkν

(n · k)2 . (1.124)

For on-shell gluons, i.e., for k2 = 0, kμLμν(k) = 0. By virtue of this last property,
we see immediately that if we carry out the PT decomposition of Eq. (1.41) to

10 In general the (4-dimensional) two body phase space integral
∫

PS is defined as∫
PS

= 1

(2π)2

∫
d4k1

∫
d4k2δ+(k2

1 −m2
1)δ+(k2

2 −m2
2)δ(4)(q − k1 − k2),

where m1 and m2 are the masses of the intermediate particles produced.

https://doi.org/10.1017/9781009402415 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415


40 The pinch technique at one loop

kμ1 ×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

k1

k2 p2

p1

p2

p1 p1

p2

−

+= kν2 ×kμ1×
μ, m

ν, n

k1
μ, m

ν, n

k2

k1
μ, m

ν, n

k2

Figure 1.17. The s-t cancellation at tree level.

the three-gluon vertex �, the term �P vanishes after being contracted with the
polarization vectors, and only the �F piece of the vertex survives. Thus Eq. (1.123)
becomes

M = [T F
s + Tt ]mnμνLμμ′

(k1)Lνν ′
(k2)[T F

s + Tt ]mn∗μ′ν ′ , (1.125)

where T F
s is given by Figure 1.16(c) after substituting � by �F.

Let us now define the quantities Smn and Rmn
μ (see Figure 1.16(d)):

Smn = 1

2
gf amnd(q2)(k1 − k2)μVa

μ Rmn
μ = gf amnVa

μ, (1.126)

where Va
ρ (p2, p1) = v̄(p2)gtaγρu(p1); they are related by k

μ

1 Rmn
μ = −kμ2 Rmn

μ =
q2Smn. Then, using the conditions k2

1 = k2
2 = 0, together with current conservation

qρVa
ρ = 0, we obtain the WI

k
μ

1 �
F
αμν(q,−k1,−k2) = −q2gαν + (k1 − k2)αk2ν. (1.127)

Now the crucial point is that the q2 term on the rhs of the preceding Ward identity
will cancel against the d(q2) inside TsF, allowing the communication of this part
with the (contracted) t-channel graph. Specifically,

k
μ

1 [T F
s ]mnμν = 2k2νSmn − Rmn

ν k
μ

1 [Tt ]mnμν = Rmn
ν (1.128)

so that

k
μ

1 [TsF + Tt ]mnμν = 2k2νSmn. (1.129)

This is the s-t cancellation: the term R comes with opposite sign and drops out
in the sum (see Figure 1.17). An exactly analogous cancellation takes place if we
contract by kν2 .

It is now easy to check that, indeed, all dependence on both nμ and η2 cancels in
Eq. (1.125), as it should, and we are finally left with (omitting the fully contracted
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color and Lorentz indices)

M =
(
T F
s T F

s

∗ − 8SS∗
)

+
(
T F
s T ∗

t + T F
s

∗Tt
)

+ TtT ∗
t . (1.130)

The reader may wonder what happens if, in Eq. (1.125), we do not eliminate �P

using the transversality of the polarization tensors and keep the full � instead of
just �F. In that case, the tree-level WI to use would be that of Eq. (1.35) instead of
Eq. (1.127). This modification leaves the s-t cancellation unaffected but changes
the terms proportional to Smn. However, the presence of the longitudinal parts
in �P triggers further s-t cancellations, exposed by using the decomposition of
Eq. (1.57). As was shown in [27] and [28], the end result of this equivalent but
slightly lengthier procedure is exactly that given in Eq. (1.130).

At this point, i.e., after the implementation of the s-t cancellation, we can define the
genuine propagator-like, vertexlike, and boxlike subamplitudes, corresponding to
the first, second, and third terms on the rhs of Eq. (1.130). Thus the propagator-like
part of the rhs of the optical theorem, to be denoted by (rhs)1, is given by

(rhs)1 = 1

2
× 1

2

∫
PSgg

(
T F
s T F

s

∗ − 8SS∗
)
. (1.131)

It is elementary to verify that

T F
s T F

s

∗ − 8SS∗ = g2CAVa
μd(q2)

[
8q2Pμν(q) + 2(k1 − k2)μ(k1 − k2)ν

]
d(q2)Va

ν .

(1.132)

For the case of two massless gluons in the final state, the phase-space integrals give∫
PSgg

= 1

8π
,

∫
PSgg

(k1 − k2)μ(k1 − k2)ν = − 1

24π
q2Pμν(q), (1.133)

and thus Eq. (1.131) becomes

(rhs)1 = Va
μd(q2)[πbg2q2Pμν(q)d(q2)]Va

ν . (1.134)

On the other hand, for the propagator-like part of the lhs of the optical theorem, we
have

(lhs)1 = Va
μd(q2)
m�̂μν(q)d(q2)Va

ν , (1.135)

where the 
m�̂μν(q) should be obtained from the one-loop expression for �̂μν(q)
in Eqs (1.67) and (1.68); it is then obvious that, indeed, (lhs)1 = (rhs)1, namely,
that the PT gluon self-energy satisfies the strong version of the optical theorem, as
announced.
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1.8 Positivity and the pinch technique gluon propagator

The Ward identity of Eq. (1.92) (or Eq. (1.119), in the light-cone gauge) tells us
that the renormalization constant ẐV for the PT proper vertex is the same as the
wave function renormalization constant ẐG for the PT propagator; just as in QED,
the charged vertex renormalization constant Z1 equals the charged propagator
renormalization constant Z2. In view of this equality, the relations between the
radiatively corrected but unrenormalized PT propagator d̂U and the bare coupling
gU , and their renormalized counterparts, both renormalized at momentum μ, are
as follows:

d̂(μ; q2) = Ẑ−1
G d̂U (q2) g(μ) = gUẐ

1/2
G , (1.136)

from which it follows that the renormalized product g2d̂ is not only gauge invariant
but renormalization group invariant (i.e., independent of μ). The same is true of
the running charge ḡ2(q2), so it is natural to make the factorization

g2d̂(q2) = ḡ2(q2)Ĥ (q2), (1.137)

where Ĥ is a propagator of conventional type; for example,

−Ĥ (q2) = 1

m2(q2) − q2 − iε
, (1.138)

which is also gauge and renormalization group invariant. Both the running charge
ḡ2(q2) and the other factor −Ĥ (q2) should obey the Källen–Lehmann (K-L) rep-
resentation, for example,

ḡ2(q2) = 1

π

∫ ∞

4m2
dσ

ρ(σ )

σ − q2 − iε
, (1.139)

with a positive spectral function ρ and threshholds determined by the gluon mass
m. This ensures that ḡ2 is always positive for spacelike (negative) q2 and has no
real zeroes.

Now consider the product ḡ2Ĥ . Asymptotic freedom tells us that as |q2| grows,
ḡ2(q2) → 1/[b ln(−q2/�2)], and we certainly expect that in the same limit, Ĥ
behaves like a free propagator so that −Ĥ ∼ 1/q2. But their product decreases
faster than 1/q2 and therefore cannot obey a K-L representation with a positive
spectral function.11

It turns out [29] that the Schwinger–Dyson equations for both the PT propagator
and gluonic PT proper vertices can be expressed solely in terms of the well-behaved

11 In QED, where e2 times the photon propagator is gauge and renormalization group invariant, it is possible to
write a K-L representation for the photon propagator. But this only holds because QED is asymptotically unsta-
ble and has a positive beta function, consistent with positivity of the spectral function, as the renormalization
group equation for the propagator shows.
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factor Ĥ and other pieces that are both gauge and renormalization group invariant,
such as given in Eq. (1.84) for the three-gluon PT vertex and Eq. (1.137) for the PT
propagator. Thus, as a matter of practice, the nonpositivity of the PT propagator
spectral function is not apparent or harmful.

As one might expect, the ansatz of factorization of the PT propagator into parts
obeying the K-L represesntation is feasible only if the (zero-momentum) dynamical
gluon massm is large enough; in a simple model of the PT gluon gap equation [29], it
was estimated thatm/� should exceed about 1.2. This corresponds to an upper limit
on the strong coupling at zero momentum of roughly αs(0) = ḡ2(0)/(4π ) � 0.7.
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2

Advanced pinch technique: Still one loop

In this chapter, we study several more advanced aspects of the pinch technique
(PT), still sticking to one-loop processes, mostly in perturbation theory but with
some discussion of one-dressed-loop effects related to gluon mass generation. One
of these applications of the pinch technique also has nonperturbative consequences,
coming from the invocation of a gauge-field condensate; it allows us to conclude,
as we show in this chapter, that the dynamical gauge-boson mass in QCD vanishes
like q−2, modulo logarithms, at large momentum. Finally, we introduce one of the
main themes of the rest of the book: the pinch technique is realized to all orders by
calculating conventional Feynman graphs in the background-field Feynman gauge.
The subjects covered include the following:

1. The pinch technique and the operator product expansion (OPE) at one loop,
where we see how only gauge-invariant condensates such as 〈TrGμνG

μν〉
arise in PT Green’s functions and how this condensate governs the vanishing
at large momentum of dynamically generated gauge-boson mass in QCD.

2. Uses of the pinch technique in studying gauge-boson mass generation, both
dynamic in QCD (no symmetry breaking, whether by Higgs–Kibble fields
or other mechanisms) and with spontaneous symmetry breaking.

3. The background field method and the effective action.
4. The one-loop equivalence between the pinch technique and the background

field method in the Feynman gauge.

2.1 The pinch technique and the operator product expansion:
Running mass and condensates

As mentioned more than once, the pinch technique is essential to unveiling the
nonperturbative effects that are vital in understanding confinement in QCD. One of
the oldest and most familiar nonperturbative phenomena of QCD is the gauge-field

45
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condensate 〈TrGμνG
μν〉 appearing in the OPE of hadronic or leptonic currents.

This condensate is explicitly gauge invariant, so it has physical significance.1

If there is to be dynamical mass generation (by which we mean generation of
mass where gauge invariance of the usual classical action forbids such a mass),
the dynamical mass must be a function of the momentum and must decrease
at large momentum. If it did not vanish at infinite momentum, there would be a
corresponding bare mass, not allowable in cases of interest to us. From the viewpoint
of Schwinger–Dyson equations, there simply would be no massive solution for the
gauge propagator unless the mass vanished at infinite momentum. This situation is
already familiar for the constituent mass of the light quarks in QCD, which for all
practical purposes have zero bare mass protected by a chiral symmetry forbidding
a quark mass at any finite order of perturbation theory. Nevertheless, there is a
large constituent mass that must also decrease with momentum. The mass is a sign
of spontaneous chiral symmetry breaking, and there is another characteristic sign
of chiral symmetry breaking: a nonzero value of the quark condensate 〈q̄(x)q(x)〉.
One cannot exist without the other. The OPE tells us how these are related: the
running quark mass M(q) decreases at large momentum as

M(q) → const.
−〈q̄q〉
q2

. (2.1)

What is the corresponding relation between gluon mass and gauge-field conden-
sate? As in every use of the OPE, the first step is to pick a matrix element with
the right quantum numbers and bring together the space-time arguments of the
condensate fields, thereby picking up the appropriate c-number multiplier of the
condensate for that particular matrix element.

The OPE was used to find the contribution of the 〈TrGμνG
μν〉 condensate to the

conventional gluon propagator, with disappointing but not unexpected results at
one-loop order. Not only did this condensate appear, but gauge-dependent conden-
sates involving the ghost fields c and c̄ also appeared. It seemed that no physical
results could be obtained from the OPE for a gauge-dependent quantity such as
the usual gluon propagator. Then Lavelle [1] did the same calculation for the
PT propagator in d = 3, 4, with very different results. Only the gauge-invariant
condensate appeared and in just such a way that it could be interpreted as con-
tributing to a running mass. Lavelle’s results are equivalent to saying that the scalar

1 The condensate 〈TrAμAμ〉, which is explicitly not gauge invariant, can be made gauge invariant by turning it
into the gauged nonlinear sigma model, as we indicate in Section 2.2.4. This is equivalent to minimizing the
space-time integral of TrAμA

μ over all local gauge transformations.
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inverse of the PT propagator, in Euclidean space, behaves in d = 3, 4, and at large
momentum as

d̂−1(q) → q2 + cd
g2〈TrGμνG

μν〉
q2

, (2.2)

where

c3 = 29N

30(N2 − 1)
c4 = 17N

18(N2 − 1)
. (2.3)

(Actually, powers of logarithms of q can also occur, but we ignore them here.) The
constants are positive, so this OPE correction has the right sign to represent a run-
ning mass because the condensate is also positive. In both cases, quark constituent
mass and dynamical gluon mass, the running mass decreases like q−2 times a
vacuum expectation value (VEV) of a gauge-invariant condensate. The difference
is, of course, that there is no symmetry breaking for gluon mass generation, and
indeed the gauge-field condensate is in no sense an order parameter for any kind
of symmetry breaking. The simple physical reasoning for the connection of the
condensate and the gluon mass is that a gluon mass allows for the construction of
many different quantum solitons that cannot exist at the classical (zero-mass) level,
including center vortices and nexuses. Condensates of these solitons are favored
because of their large entropy (large number of possible space-time configurations)
relative to their (finite) action and so lead to a gauge-field condensate. Lavelle’s find-
ing is the converse: a condensate allows for gluonic mass generation. Ultimately,
this connection exists only because the gauge theories of interest show infrared
slavery – the infrared manifestation of the ultraviolet phenomenon of asymptotic
freedom in d = 4. Infrared slavery means that the perturbative PT propagator has
a one-loop proper self-energy of the wrong sign (opposite to that of QED), with
consequent intolerable infrared diseases such as tachyons. These theories must
find a cure for infrared slavery, and that cure is dynamical gluon mass generation.

2.2 The pinch technique and gauge-boson mass generation

2.2.1 General remarks

As in Chapter 1, we consider only the one-loop case, postponing the all-orders
generalization to later chapters.

There are several closely related ways of endowing a gauge boson with mass.
The most straightforward way to generate gauge-boson masses is through
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Higgs–Kibble–Goldstone symmetry breaking2 with elementary scalar fields, as
in the Georgi–Glashow model [2] or the electroweak (EW) sector of the standard
model. A second way [3, 4] of generating gauge-boson mass is through dynamical
effects associated with taming the infrared singularities of strongly coupled gauge
theories such as QCD, which has no elementary scalars. Some gauge theories with
no scalar fields can show dynamical symmetry breaking, in which the elementary
scalar fields are replaced by composites arising from homogeneous solutions of
the Schwinger–Dyson equations. A variant of these cases has elementary Higgs–
Kibble–Goldstone fields and possibly symmetry breaking, but the VEVs in the
scalar sector are too small (perhaps even zero, as in the EW sector at high tempera-
ture) to remove the infrared singularities of the underlying NAGT [5]. A third, rather
specialized way, is through a Chern–Simons term in three dimensions. It can hap-
pen that the perturbative gauge-boson mass coming from the Chern–Simons term
is too small to overcome infrared slavery, and dynamical mass generation comes
into play. The pinch technique is important in estimating the critical Chern–Simons
coupling (which is quantized) separating perturbative behavior of the theory from
the need for nonperturbative dynamical mass generation [6].

All these cases have two vital ingredients in common. First, they require massless
longitudinally coupled scalars, one for each gauge boson that gets mass. This is
a subtle matter because the massless scalars do not appear (at least directly) in
the S-matrix, yet they can appear in the pinch technique proper Green’s functions.
Every Goldstone-like scalar, whether elementary or composite, that is eaten by a
gauge boson to give it mass is canceled out of the S-matrix by other massless poles
or current conservation.

If the massless scalars are not elementary Goldstone fields, then they arise as com-
posite excitations in a strongly coupled gauge theory.3 By a composite excitation,
we mean a pole in an off-shell Green’s function representing a field that does not
exist in the classical action but that occurs in the solution of the Schwinger–Dyson
equation for that Green’s function, as a sort of bound state. Therefore, the second
vital ingredient is strong coupling, which, as far as we know, can only come from
the infrared instabilities of a NAGT.

The residue, at zero momentum, of these Goldstone-like poles is essentially
the square m2 of a gauge-boson mass. The classical action does not have the

2 If the gauge theory has local gauge symmetry at the classical level, so-called spontaneous symmetry breaking
is not actually breaking this local gauge symmetry but simply realizing it in a different way. Without explicit
symmetry breaking, such as fermion masses for local axial symmetries, no gauge-dependent object can have
a nonzero VEV, as Elitzur’s theorem tells us. Gauge-fixing terms break a gauge symmetry explicitly, but the
pinch technique effectively removes such breaking.

3 Other massive composite excitations may have to arise as well to save unitarity at high energies; see Lee
et al. [7].
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corresponding elementary field because if it did, there would be a symmetry viola-
tion, or a violation of perturbative renormalizability, or both. If renormalizability
is at issue, the squared mass runs with momentum q and vanishes at large q;
when mass generation is an infrared effect, as it will always be for us, a typi-
cal decrease is m2(q) ∼ q−2 (modulo logarithms), as Lavelle [1] found. Without
some such large-momentum falloff, the Schwinger–Dyson equation would have no
solutions without extra infinities not corresponding to perturbative renormalization
principles.

Here we will introduce two cases of the dynamical gauge-boson mass generation,
saving other examples for later chapters. The first case is dynamical mass generation
in QCD; the second is the well-known case of elementary Higgs–Kibble–Goldstone
scalars. In both cases, the pinch technique is an essential tool for ensuring gauge
invariance of the results.

2.2.2 Dynamical gauge-boson mass generation in QCD

In d = 4, the necessary strong coupling comes from asymptotic freedom as
expressed in the wrong sign of the beta function (see Eq. (1.69)). Unfortunately, it is
not helpful to associate the infrared phenomenon of mass generation with the ultra-
violet phenomenon of asymptotic freedom. This is only a question of terminology
because (perturbative) asymptotic freedom necessarily implies infrared singulari-
ties that are more virulent than in QED. The situation is actually more clearly seen in
d = 3, where NAGTs are superrenormalizable, there is no renormalization group,
and the ideas of asymptotic freedom are not relevant. Yet d = 3 NAGTs have – in
even worse form than in d = 4 – serious infrared singularities.4 We prefer, then, to
suggest these low-momentum singularities with the term infrared slavery because,
ultimately, they lead to confinement. The one-loop PT propagator in d = 3 clearly
shows infrared slavery through the negative (and, as with asymptotic freedom,
wrong) sign of a certain gauge-invariant constant [3, 4]. This sign is absolutely
critical because if it were positive, the infrared behavior of radiatively corrected
gluon propagators would be less singular than at tree level. But in the physical
case of a negative sign, the infrared singularities show up as potential tachyons
or ghost particles, that is, unphysical objects with imaginary mass or couplings.
No other solution for the wrong sign is known aside from dynamical gauge-boson
mass generation, which generates positive terms in the PT proper self-energy that
overcomes the negative and singular behavior.

4 This was not fully appreciated until the pinch technique came along because, before that, people had only
investigated the standard Feynman propagator, which is gauge dependent. For the PT results, see [3, 4, 8].
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We will briefly explore here, at the one-loop level, the nonperturbative dynamics
leading to gauge-boson mass generation, deferring a detailed treatment of the PT
Schwinger–Dyson equations to Chapter 6. Dressed propagators and vertices come,
at least formally, from resumming Feynman graphs and have the power to inform
us about phenomena that do not occur even when perturbation theory is summed
to all orders in the coupling g. This kind of resummation is familiar from the
skeleton graph expansion of Schwinger–Dyson equations and the resummation of
the effective potential [9]. To truncate the otherwise infinite series of Schwinger–
Dyson equations requires us to understand how to construct approximate forms
for three- and higher-point Green’s functions that, in spite of their approximate
nature, exactly satisfy the PT Ward identities and that are expressed in terms of
lower-point functions such as the PT propagator itself. If the vertex functions used
do not obey exactly the Ward identities, gauge invariance is lost. The method of
vertex constructions that satisfies these Ward identities is called the gauge technique
and is discussed in Chapter 5. Because the d = 3 case is so instructive, we begin
with it.

2.2.3 The need for dynamical mass in d = 2 + 1 QCD

We will easily see the problems of infrared slavery in d = 2 + 1 by calculating the
one-loop perturbative PT proper self-energy. This goes exactly as in the d = 3 + 1
case of Section 1.3.3 except for the values of the integrals. The result [3, 4] for the
scalar part of the one-loop PT inverse propagator is

d̂−1(q) = q2 + πb3g
2
3(−q2)1/2 + O(g4

3), (2.4)

where

b3 = 15N

32π
(2.5)

and g3 is the d = 3 coupling with dimensions of (mass)1/2. Infrared slavery is
simply the fact that b3 is positive, which has the implication that there is a pole
in the propagator for a spacelike momentum (q2 < 0). This indicates a tachyonic
pole – a pole corresponding to an imaginary mass.

There is also a tachyonic pole in d = 4, as one can see from the renormalized
version of Eq. (1.68): the propagator has a pole at

−q2 = const.× μ2e−1/bg(μ)2
, (2.6)

again satisfied with tachyonic q2.

What could be the cure for this unphysical behavior? At first glance, it could be
easy: Because the coupling g2

3 has dimensions of mass, the omitted g4
3 term might
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well provide a sufficiently positive term to overcome the negative one-loop term.
This is indeed what happens nonperturbatively but not to any order of perturbation
theory, where the coefficient of g4

3 is identically zero to all orders. (If it were not
zero, we could add a bare mass term to the action, which is not perturbatively
renormalizable.)

This is only the beginning of the bad perturbative behavior. At O(g2N
3 ), each

perturbative integral, by simple dimensional reasoning, has the infrared behavior
g4

3(g2
3/q)N−2, with poles of infinitely high order in the inverse propagator. But with

nonperturbative generation of a (nontachyonic) mass m, the infrared behavior of
every propagator in a loop is ∼ 1/m2, and an easy power counting shows that |q|
in the perturbative ordering expression is replaced by the dynamical mass m ∼ g2

3

so that all terms are of O(m2) for order N ≥ 2.

Of course, a one-loop pinch technique calculation only clearly shows us (i.e., gauge
invariantly) the disease, not the cure. We take up the cure in Chapter 9, but for now,
it is important to know something about what this cure looks like.

2.2.4 What do vertices and propagators look like
when dynamical mass is generated?

The question is how to write PT Schwinger–Dyson equations with the right structure
to represent composite massless scalars in both d = 3 and d = 4. There is a quite
simple answer [10]: abstract this structure from an infrared-effective action in
which we add to the usual NAGT action a mass term that is a gauged nonlinear
sigma model. We add to the classical action,5 the integral of Eq. (1.5), the term

Sm =
∫

ddx m2 Tr
(
U−1DμUU

−1DμU
)

(2.7)

to arrive at a total infrared-effective action (without fermions):

S{A,m} =
∫

ddx

[
−1

2
TrGμνG

μν +m2Tr
(
U−1DμUU

−1DμU
)]
. (2.8)

Here U depends on R, the N ×N unitary matrix representative of the group
element R. We also add the prescription that the exponential of this effective
action is to be integrated over the Haar measure of the local gauge group.

We emphasize that we are not proposing to take Sm seriously as an addition to the
true NAGT action, which always consists only of the usual Yang–Mills term. It is
only part of an effective action, whose consequences should be studied only at the

5 This action is to be used in d = 3, 4; for simplicity, we do not explicitly indicate the dimension as we did in the
previous section.
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classical level. However, it is legitimate for us to guess, from this classical study,
what kind of structure the ingredients of the (PT) Schwinger-Dyson equation must
have and then show that the Schwinger-Dyson equation with the assumed structure
is actually self-consistent and physical. What we will find is what we spoke of
earlier: massless longitudinally coupled Goldstone-like scalars, with couplings
proportional to squared gauge-boson masses.

Because Sm is an effective action, we interpret integration over the group as finding
the extrema over R of Sm. The matrix U undergoes gauge transformations along
with the potential

U → VU, Aμ → VAμV
−1 + V

i

g
∂μV

−1. (2.9)

It is then elementary that the modified potential

Cμ ≡ U−1DμU, (2.10)

is formally gauge invariant. (Furthermore, it is a gauge transformation byU−1 of the
gauge potential Aμ.) We define a potential that is gauge covariant by multiplication
from the left by U and from the right by U−1:

Ãμ ≡ UCμU
−1 = Aμ + i

g
(∂μU )U−1 Ãμ → V ÃμV

−1. (2.11)

It appears that we have added new degrees of freedom to the NAGT action by
introducing U , but we have not, at least perturbatively. The reason is that the
classical equations of motion for U are not independent of those for Aμ but follow
from them, and U can be solved as a (nonlocal) functional of Aμ. The equations
of motion for Aμ are as follows:[

Dμ,Gμν

] +m2Ãν = 0. (2.12)

Because of the identity [
Dν,

[
Dμ,Gμν

]] ≡ 0, (2.13)

it must be that

[Dν, Ãν] = 0. (2.14)

But this equation is precisely the equation of motion found by varying U . After
a certain amount of algebra, one can show that this U equation of motion is
equivalent to

∂νCν = 0. (2.15)
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In other chapters, we will find nonperturbative features of these equations and
connect them to confinement via center vortices and to the Gribov ambiguity.6 In
particular, there are massless scalar excitations longitudinally coupled to the gauge
potential. These massless scalars must be present if a gauge boson is to have mass
in a way that preserves local gauge symmetry. We will see that such scalar fields
actually represent long-range pure-gauge parts of the gauge potential that carry
critical topological information about confinement and topological charge.

For now, we pursue the perturbative solution of the equation of motion for U and
find massless scalars there. Write U = exp[iω] and find [10]:

iω = − 1

�
∂ · A− 1

2

[
1

�
∂ · A, ∂ · A

]
+ 1

�

[
Aμ, ∂

μ 1

�
∂ · A

]
+ O(A3). (2.16)

Substitution of Eq. (2.16) in the gauged nonlinear sigma model action reveals an
infinite set of vertices for the potential Aμ, longitudinally coupled to the massless
scalars. This massless scalar is completely analogous to the Goldstone scalar of
spontaneous symmetry breaking even though, in the present case, there is no
symmetry breaking (and no elementary Higgs field). The lowest-order vertex is
quadratic and yields a transverse mass term of the form∫

ddx m2 Tr

[(
Aμ − ∂μ

1

�
∂ · A

)(
Aμ − ∂μ

1

�
∂ · A

)]
(2.17)

and a free gauge-boson propagator that has the structure expected from a pinch
technique propagator:

i(0)
αβ(q) = Pαβ(q)d(q) + ξ

qαqβ

q4
, (2.18)

where

d(q) = 1

q2 −m2
. (2.19)

The next vertex is a three-gluon vertex, to be added to the conventional free vertex.
We convert the result to PT form by choosing the free vertex to be �ξ of Eq. (1.37)
and find [4, 11] that

�̂
m,ξ
μαλ(q, k,−q − k) = �

ξ
μαλ(q, k,−q − k) −

[
m2

2

qμkα(q − k)λ
q2k2

+ c.p.

]
, (2.20)

where c.p. stands for cyclic permutations. This vertex obeys the PT Ward identity of
Eq. (1.40) with the propagator of Eqs. (2.18) and (2.19). The new vertex �̂m,ξ has,

6 The Gribov ambiguity is that setting up a covariant gauge fixing in the usual way does not completely fix the
gauge, so the gauge potential is ambiguous for a given field strength. For example, suppose that Aμ is in the
Landau gauge; then, by Eqs. (2.10) and (2.15), so is Cμ, which is a gauge transformation by U−1 of Aμ.
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as we mentioned earlier, terms with longitudinally coupled massless poles whose
residue is m2. This is the only way that the Ward identity can be satisfied if the
propagator is transverse and has mass, just as the only way a massive gauge-boson
propagator can be transverse is if it has similar poles in the transverse projector
Pμν . There are infinitely many other vertices coming from the gauged nonlinear
sigma model term, all with these poles, but we will go no further in exhibiting any
of them explicitly.

Now apply the usual pinch technique to the mass-modified action of Eq. (2.8), in
which we substitute the solution for U , as in Eq. (2.16). After much calculation
[11] (originally done in the light-cone gauge), we find the one-loop pinch technique
proper self-energy. In d = 4, it is as follows:

�̂(q2) = bg2

π2

∫
d4k

[
−q2d(k)d(k + q) + 4

11
d(k) + m2

11
d(k)d(k + q)

]
. (2.21)

(We will take up the d = 3 analog later.) This reduces, as it must, to the formerly
calculated one-loop proper self-energy of Eq. (1.68) in the limit of zero mass. Note
that there are no massless poles in �̂. In fact, the only trace of the massless poles
comes from the second and third terms on the right-hand side (rhs), which do not
vanish at q = 0. There are then massless poles in the tensorial proper self-energy
coming from the longitudinal term in the transverse projector Pμν that multiplies
�̂. Ultimately, these terms cannot appear in the S-matrix because of gauge current
conservation.

With Eq. (2.21), we are actually only a few steps away from being able to study
nonperturbative dressed-loop effects and analyze gauge-boson mass generation.
The next steps are to integrate the rhs of this equation over m2, with a spectral
weight that is used in the Källen–Lehmann7 representation of the pinch technique
propagator; by this means, we construct a simple example of a gauge technique
vertex and a PT Schwinger–Dyson equation for the proper self-energy. But we will
postpone this study until later and use our work here to draw a few lessons that
apply to such a nonperturbative study:

1. However gauge-boson mass is generated, it is accompanied by Goldstone-
like longitudinally coupled scalars.

2. These scalar poles appear in vertices of all order, as, for example, in the
transverse mass term of Eq. (2.17) and the three-vertex of Eq. (2.20), with
couplings proportional to squared gauge-boson masses.

7 The spectral weight is not positive definite, but this is not required for the existence of a spectral representation.
See the discussion of Section 1.7.
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3. These scalars do not appear in the S-matrix and (in our gauged nonlinear
sigma model approach) even cancel out in the final expression for the pinch
technique proper self-energy, as in Eq. (2.21).

4. (This lesson will be learned in part through a one-loop calculation in the next
chapter.) A gauge-boson mass violating a symmetry or perturbative renor-
malizability must be a running mass, vanishing at large q, or the Schwinger–
Dyson equation has no finite solution. Furthermore, a nonrunning mass by
itself leads to violations of unitarity at high energy.

5. Dynamical generation of mass does not interfere with satisfaction of ghost-
free Ward identities.

Next, we see if these lessons apply to Higgs–Kibble symmetry breaking.

2.2.5 Mass generation through Higgs–Kibble–Goldstone fields

There are two ways of describing mass generation in this case, depending on the
description of gauge fixing in the theory (which, of course, is ultimately irrelevant).
The method we mostly use in this book for the pinch technique was first developed
in [12] for the Georgi–Glashow model and was later generalized to all orders of
electroweak (EW) theory in [13]. Numerous other authors have used a similar form
of the pinch technique for EW processes; Degrassi and Sirlin [14] have pointed out
the relation of the pinch process to equal-time commutators of symmetry currents
and given explicit expressions for the one-loop PT proper self-energies. All these
authors use a modified Rξ gauge analyzed by Fujikawa et al. [15] and originally
from ’t Hooft [16], which we will term the FLS gauge. In the FLS gauge, the
Goldstone bosons decouple from the gauge bosons that eat them, at least at tree
level (but not beyond). The value of this gauge, as we will see shortly, is that the
tree-level gauge propagators have no longitudinal parts in the Feynman version of
the FLS gauge (or ’t Hooft–Feynman gauge), just as there are none for the free
gauge propagator in the Feynman Rξ gauge with ξ = 1 (see Eq. (1.31)). But this
is not an unalloyed virtue because the PT calculations in the FLS gauge seem
to differ from what we have said so far: the Goldstone bosons in general have a
gauge-dependent mass that is the same as that of the ghosts.8 This is a sign that the
Goldstone bosons as well as the ghosts do not appear in the S-matrix. Moreover, the
proper self-energies and vertices are independent of ξ but satisfy Ward identities
ostensibly different from those we have already used, such as transversality of the
gauge boson proper self-energy. However, these pieces can be reshuffled [12] to

8 In the FLS–Feynman gauge, ξ = 1, the ghosts and Goldstone bosons, and the gauge bosons that eat them, all
have the same mass.
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yield transverse proper self-energies and vertices that do have the properties listed
in our lessons from dynamical mass generation in QCD.

There is another approach that is more similar in spirit to what we have done
so far for QCD-like theories; it uses the standard sort of Rξ gauge that we have
used for QCD. In this gauge, the Goldstone bosons and ghosts are massless scalar
fields longitudinally coupled to gauge bosons. The massless poles do not appear in
the S-matrix but are important in enforcing current conservation (Ward identities).
Demanding that these Ward identities be satisfied leads uniquely to a set of PT
Green’s functions that are independent of ξ and obey other physical requirements.
It is worthwhile to understand this approach because similar massless scalar exci-
tations must and do occur in the vertices of QCD-like gauge theories if there is
to be dynamical gluon mass generation. Although these Goldstone-like excitations
do not contribute to the perturbative S-matrix, they are the carriers of long-range
topological information that is responsible for nonperturbative phenomena, includ-
ing confinement and chiral symmetry breakdown. We will begin with a brief sketch
of what happens in this QCD-like description. Needless to say, either description
results in the same physics, as described by the pinch technique.

Symmetry breaking in a standard Rξ gauge The main new feature with symme-
try breaking is that Ward identities used for pinching, though unchanged in basic
structure (see Eq. (1.62)), have new vertex terms involving the massless Goldstone
bosons even at tree level, similar in structure to those found for dynamical mass
generation in QCD. These new terms are essential for current conservation or, more
generally, for satisfaction of the Ward identities.

To be explicit, consider the Georgi–Glashow model [2] in d = 4, containing an
SU (2) gauge field, a Fermion doublet ψ , and a triplet φa of scalar bosons. With
these scalars and fermions, the Georgi–Glashow model is asymptotically free, with
the beta function coefficient b of the pure gauge-boson theory (see Eq. (1.69))
changed to 19/(48π2). The action is as follows:

SGG =
∫

d4x

{
− 1

2
TrGμνG

μν + iψ̄ [D/−M0]ψ + 1

2

[(
Dμφa

)
(Dμφa

)
−V (φ2

a) − hψ̄τaψφa

}
, (2.22)

to which we will add a gauge-fixing term. We will also use the convenient matrix
notation

φ = 1

2
τaφa, (2.23)
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where the τa are the Pauli matrices. The potential V has the form

V (φ2
a) = λ

2
(φ2

a − v2)2, (2.24)

with the symmetry-breaking minimum taken by convention to be in the 3 direction
so that φa = vδa3 at the classical level. This gives a Higgs mass to the gauge bosons
with group indices 1,2, with value Mg = vg, and the third gauge boson remains
massless. There is also a symmetry-breaking term in the fermion mass matrix M,
which becomes

M = M0 + hvτ3 ≡ M0 +mτ3. (2.25)

In the presence of symmetry breaking, we write the scalar fields in matrix form:

φ = 1

2
[vτ3 + χaτa], (2.26)

where, by definition, the VEV of χa vanishes.

In a conventional Rξ gauge, there is a quadratic coupling term between the original
gauge potential and the χa for a = 1, 2. This is just what tells us that the gauge
bosons with a = 1, 2 swallow the corresponding Goldstone bosons and become
massive (the gauge potential A3μ remains massless, and χ3 describes a massive
Higgs–Kibble field). From now on, we use the notation Wμ for the massive gauge
bosons.

This quadratic coupling is no particular problem. Because the Goldstone fields are
eaten by the W -bosons, they become – at least in perturbation theory – dependent
fields, expressible entirely in terms of the gauge potential and possibly other fields.
Save only the W -bosons and the φ fields with indices a = 1, 2 and write the
quadratic part of the Lagrangian, including the gauge-fixing term:

S2 =
∫

d4x

{
−1

2
T̃r
(
∂μWν − ∂νWμ

)
(∂μWν − ∂νWμ) (2.27)

+ T̃r

(
∂μχ + v

[
Wμ,

1

2
τ3

])2

− 1

ξ
T̃r
(
∂μWμ

)2
}
,

where T̃r means taking the trace only over terms involving τ1,2. We define an
anti-Hermitean Goldstone matrix G = 1

2iτaGa , with a = 1, 2, by a re-ordering of
χ1,2:

χ =
[
G,

1

2
τ3

]
or χ1 = −G2, χ2 = G1. (2.28)

Now couple the fields Wμ and G to currents Vμ and T , respectively. A short
calculation using the action S2, in terms of G rather than χ , yields (in momentum
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space) the two equations(
q2gμν − qμqν

)
Wν + 1

ξ
qμqνW

ν −M2
g

(
Wμ − qμG

Mg

)
= Vμ (2.29)

q2G−MgqνW
ν = T .

The solution for the G equation is

G = MgqμW
μ + T

q2
, (2.30)

and this, substituted in the equation for Wμ, yields an equation for this potential
with a modified source term:(

q2 −M2
g

) (
gμν − qμqν

q2

)
Wν + 1

ξ
qμqνW

ν = Vμ − qμMgT

q2
. (2.31)

Note that the inverse propagator (coefficient of Wν on the left-hand side) has just
the form of Eq. (1.30) that we expect of a PT propagator, with the proper self-energy
given by M2

g .

We are concerned, as usual, with the gauge dependence of amplitudes, so we note
that the ξ -dependent term in the solution of Eq. (2.31) is

Wν = ξqνqμ

q4

(
Vμ − qμMgT

q2

)
+ · · · . (2.32)

Without gluon mass generation by symmetry breaking (i.e., if Mg and m were
zero), the current Vμ would have to be conserved on shell,9 or otherwise there
would be ξ dependence even in the tree-level S-matrix. The situation would then
be just the same as for QCD-like theories. But with symmetry breaking, a different
current is conserved on shell; the massless Goldstone pole has modified the massive
gauge-boson source and is essential for current conservation and Ward identities,
as we now show. This modification of the source term is essential because it must
happen that the combined source in Eq. (2.31) must be conserved on shell:

qμV
μ −MgT = 0 on-shell. (2.33)

It is this quantity multiplied by ξ that would appear in the tree-level S-matrix and
so must vanish.

The Goldstone contribution is necessary because with symmetry breaking, the
divergence qμV

μ is generally not zero, even at tree level. Consider our earlier
example Vμ = ū1(p + q)γμu2(p), where the fermion momenta p, p + q are on

9 For example, Vμ ∼ ū1(p + q)γμu2(p), where the labels 1,2 distinguish different SU (2) fermion eigenstates.
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x y
p2p1

Figure 2.1. Part of a one-loop Feynman graph for on-shell quark-quark scattering.
Gauge propagators end at space-time points x, y on the quark line.

shell and the mass of the fermion labeled 1 is M0 +m and of the fermion labeled
2 is M0 −m. Then qμV μ is

qμū1(p + q)γ μu2(p) = ū1(p + q)
[
S−1(p + q) − S−1(p) − 2m

]
u2(p)

= −2mū1u2. (2.34)

The last equation follows because the inverse propagators annihilate the on-shell
spinors. The Goldstone source term of Eq. (2.31), proportional to MgT , turns
out to be 2mū1(p + q)u2(p)qμ/q2 when one recognizes that m = (h/g)Mg. Now
we see that the vertex Vμ −MgT qμ/q

2 does obey the expected on-shell Ward
identity. One reads off from Eq. (2.34) the off-shell Ward identity of our tree-level
example:

qμ

[
V μ −MgT

qμ

q2

]
= S−1(p + q) − S−1(p). (2.35)

This is the same as the Ward identity used earlier for QCD-like theories, and the
pinch technique proceeds from it as before.

We digress to give the Degrassi–Sirlin explanation of how the symmetry currents
coupled to the gauge bosons are related to the pinching out of various propagators.
Figure 2.1 shows a part of a Feynman graph that occurs in the S-matrix. This could
be a part of several of the complete S-matrix graphs shown in Figure 1.1. This
figure by itself is the tree-level version of the matrix element:

〈p1|T
[
J a
μ(x)J b

ν (y)
] |p2〉, (2.36)

aside from the two gauge propagators, which we do not exhibit explicitly. The T
operation is covariant time ordering, and the currents J a,b

α are symmetry currents
coupled to the gauge bosons. A gauge propagator with a longitudinal momentum
acts to take the divergence of this time-ordered product, say, with respect to x. The
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currents themselves are supposed to be conserved, so the only effect is the matrix
element of the equal-time commutator:

〈p1|δ (x4 − y4)
[
J a

0 (x), J b
ν (y)

] |p2〉. (2.37)

The equal-time commutator here is

ifabcδ(x − y)〈p1|J c
ν (y)|p2〉, (2.38)

in which the points x and y are made to coincide and a fermion propagator is
missing, just as would happen with our standard PT formalism.

If just the currents Vμ that we introduced in Eq. (2.29) were used for the symmetry
currents, our pinch arguments would fail because these are not conserved. We must
add the T currents, sources of the Goldstone bosons, to get conserved currents, and
conservation arises through the coupling of the massless Goldstone field. It is not
hard to check, by resumming graphs, that these Goldstone particles and currents
come from the tree-level mixing of Goldstone fields and gauge fields that is no
longer eliminated when we use a standard Rξ gauge.

The Goldstone poles cannot appear in theS-matrix because they are not independent
elementary fields; their appearance at one place must be canceled by another
appearance elsewhere. The pinch technique, of course, shows this cancellation.
The essence of it is that in the pinch technique, the inverse propagator has the
form

−î−1
αβ (q) = Pμν(q)

[
q2 + i�̂(q)

] + 1

ξ
qαqβ. (2.39)

For the charged bosons, �̂(q = 0) = 0, so the Goldstone bosons appear as the
longitudinal massless poles of the transverse projector. In the S-matrix, these terms
in the propagator itself strike currents that are conserved and cannot contribute to
the S-matrix. On the other hand, the Goldstone poles that allow these currents to
be conserved annihilate the physical part of the propagator or inverse propagator,
leaving only gauge-dependent kinematic terms. We know that these must cancel
in the pinch technique. Now we go on to the more widely used, and equivalent,
formulation in the FLS gauge.

Symmetry breaking in the FLS gauge In the FLS gauge, the gauge-fixing term
is chosen to cancel the quadratic coupling of Wμ and ∂μS:

LGF = −1

ξ
T̃r
(
∂μWμ −MWξS

)2
. (2.40)
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The quadratic cross-term between Wμ and ∂μS now cancels. However, the S2 term
in the gauge-fixing Lagrangian now makes these Goldstone fields, and also the
ghosts, massive. A short calculation gives the following:

iμν = gμν

q2 −M2
g

+ qμqν(ξ − 1)

(q2 −M2
g )(q2 − ξM2

g )
(2.41)

iS = igh = 1

q2 − ξM2
g

,

where μν is the W propagator, S is the Goldstone propagator, and gh is
the ghost propagator. Clearly, all the ξ dependence in these propagators must
cancel in the S-matrix and therefore in the pinch technique, and they do, after
some very lengthy calculations [12]. At ξ = 1, the tree-level gauge propaga-
tor has no longitudinal terms that can pinch, which considerably simplifies the
calculations. Moreover, in this Feynman gauge, the gauge bosons, ghosts, and
Goldstone particles all have the same mass MW , and no unphysical masses can
appear.

For general ξ , one often decomposes the W propagator as follows [12, 15]:

iμν = i1
μν + i2

μν, (2.42)

i1
μν =

[
gμν − qμqν

M2
g

]
1

q2 −M2
g

,

i2
μν = qμqν

M2
g (q2 − ξM2

g )
.

This is one way of isolating the gauge dependence of the free propagator into
2. The first term, 1, is the propagator in the so-called unitary gauge ξ = ∞.
The one-loop pinch technique decomposition has been worked out [12] with this
separation of the W -propagator, followed by a demonstration of how to recover the
usual results with massless Goldstone particles that we discussed earlier. The idea
is simply to recompose the W -propagator by writing the 1/M2

g term in 1 with the
identity

1

M2
g

= q2 −M2
g

q2M2
g

+ 1

q2
. (2.43)

This shows not only the massless Goldstone poles but one of the ways in which
they cancel out in the S-matrix.

The pinch technique has been worked out to all orders for the standard electroweak
model [13]. We will discuss it in Chapter 10.
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2.3 The pinch technique today: Background-field Feynman gauge

It would be very awkward to carry on with the pinch technique in the light-cone
gauge (see Section 2.2.4). Even two-loop calculations would be exceptionally
difficult, not only because of the intrinsic difficulties of working in a noncovariant
gauge but also because what we have done so far at the one-loop level does not
really suggest how to generalize the pinch technique. Fortunately, there is a simple
way to generalize the pinch technique to all orders of perturbation theory (and to
nonperturbative applications, with the help of the gauge technique). It consists of
calculating ordinary Feynman graphs in the Feynman gauge of the background-
field method. Just as with ordinary Feynman graphs, the sum of such graphs can
be reorganized into a dressed-loop expansion from which nonperturbative effects
can arise. Much of the rest of this book is devoted to demonstrating these points,
which are not at all evident.

The background-field method [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27] goes back
decades in the study of general relativity and NAGTs. It gives an effective action as
a functional of specified background fields (gauge potentials) – an effective gauge
action guaranteed to depend on the background fields only through gauge-invariant
constructs such as TrG2

μν . Unfortunately, just as in any other covariant formulation
of NAGTs, there has to be gauge fixing and ghosts, and the coefficient functions
of the background field constructs depend on the specific gauge chosen (so they
depend on ξ in anRξ gauge). If these coefficient functions were gauge independent,
there would be no need for an independent pinch technique. It is essential that the
gauge-fixing term can be chosen to have full local non-Abelian gauge invariance
for the background fields in order that this effective potential be gauge invariant
for these fields. In other words, gauge fixing is used only for the quantum fields –
those integrated out in the functional integral defining the effective potential.

As we said earlier, the first connection was made at the one-loop level [28, 29, 30],
where it was shown that the one-loop pinch technique and the one-loop background
Feynman gauge method gave precisely the same results. This raises the question
of why these two seemingly disparate approaches should give the same answer but
by no means answers it. It does not seem plausible that calculations in a specified
gauge should actually give gauge-invariant results for Green’s functions, as the
pinch technique does. In fact, if one were to calculate Green’s functions in some
other version of the background-field method, for example, the Landau gauge, the
results would not be the same as the pinch technique gives. The pinch technique can
be used to combine pieces of Feynman graphs in the background Landau gauge, just
as in any other gauge, and the usual pinch technique results emerge. Ultimately, as
the rest of this book shows, the background Feynman gauge is singled out because
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of the absence, in this particular gauge, of certain longitudinal numerator parts that
give pinches.

We cannot emphasize too strongly that the pinch technique is a way of enforcing
gauge invariance and several other physical properties for off-shell Green’s func-
tions. The background-field method, in a general gauge, is not. It is a remarkable
and extraordinarily useful result that PT Green’s functions can also be calculated
in the background Feynman gauge, but this needs a very extensive demonstration.

Before presenting the background-field method, we first quickly review the well-
known construction of the effective action and the problems encountered with it in
gauge theories.

2.3.1 The effective action

A brief review of the scalar field case Consider first a Euclidean d = 4 φ4 field
theory. The generating functional is written

Z[J ] =
∫

[dφ] exp

{
iS[φ] + i

∫
d4x J (x)φ(x)

}
≡ eiW [J ], (2.44)

where S[φ] is the scalar field action. Functional derivatives of W with respect to
the source J yield connected quantum Green’s functions. In particular,

δW

δJ (x)
= 〈φ(x)〉 ≡ 
(x), (2.45)

the expectation value of the quantum field in the presence of the source J .

The Legendre transform of W is more useful because it generates the 1PI graphs:

�[
] = W [J ] −
∫

d4x J (x)
(x);
δ�

δ
(x)
= −J (x). (2.46)

The functional �[
] is the effective action, and its functional derivatives with
respect to 
 yield 1PI Green’s functions. Usually, we are interested in setting the
source J to zero at the end of the calculation, and so the preceding equation shows
that � is stationary in 
. This condition of stationarity is the Schwinger–Dyson
equation for 
.

The effective action can be found directly by introducing a background field 


and shifting the argument φ of the action S[φ] by this amount. At the outset, this
shift field 
 is arbitrary and independent of J . The shift yields a new generating
functional Z̃:

Z → Z̃ =
∫

[dφ] exp

{
iS[φ +
] + i

∫
d4x J (x)φ(x)

}
≡ eiW̃ [J,
]. (2.47)
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We might as well write this by shifting variables back, through φ → φ −
, so
that

W̃ [J,
] = W [J ] −
∫

d4x J (x)
(x). (2.48)

This is precisely the effective action �[
], provided that J and 
 are related by
Eq. (2.45). This equation amounts to δW̃/δJ = 0.

Let us calculate the effective action �̃ corresponding to Z̃. Do the Legendre trans-
form:

�̃[φ̄ +
] = W̃ [J,
] −
∫

d4x J (x)φ̄(x), (2.49)

where the Legendre-transform variable φ̄ is defined by

φ̄(x) = δW̃

δJ (x)
. (2.50)

When the equations of motion (2.45) are satisfied, φ̄ vanishes.

We have written �̃ as a functional of only one variable. To show this, use

δW̃

δ
(x)
= −J (x), (2.51)

to find the total variation of �̃:

δ�̃ = −Jδ(φ̄ +
). (2.52)

The final conclusion is that when the equations of motion in Eq. (2.45) hold,

�̃[φ̄ = 0,
] = �[
]. (2.53)

A possible construction of � comes from summing all connected 1PI Feynman
graphs, using the field-shifted action of Eq. (2.47) to find the 1PI graphs. Or, one
can simply integrate the Schwinger–Dyson equation for 
, written in terms of 1PI
skeleton graphs.

All the scalar-field results have analogs for NAGTs but with certain complications
from gauge fixing and ghost terms. There is a further generalization [9] of effective-
action methods that allows us to construct an effective action that is 2PI, so that
no connected graph in � can be separated by cutting only two (distinct) lines. We
discuss this generalization briefly in the following section.

The two-particle-irreducible effective action By introducing a two-point source
K(x, y) and corresponding Legendre transform, we can [9] define a generating
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functional and its Legendre transform, the effective action �[
,G] that depends
on a propagator function  as well as on 
:

Z[J,K] =
∫

[dφ] exp

{
iS[φ] + i

∫
d4x J (x)φ(x)

− i

2

∫
d4x

∫
d4y φ(x)K(x, y)φ(y)

}
= eiW [J,K]

�[
,] = W [J,K] −
∫

d4x J (x)
(x)

− 1

2

∫
d4x

∫
d4y [
(x)K(x, y)
(y) +(x, y)K(x, y)]. (2.54)

The functional derivatives

δW

δJ (x)
= 〈φ(x)〉 ≡ 
(x) (2.55)

δW

δK(x, y)
= 1

2
[
(x)
(y) +(x, y)] ,

where  is the connected two-point function, lead to the functional derivatives for
the effective action:

δ�

δ
(x)
= −J (x) −

∫
d4y K(x, y)
(y)

δ�

δ(x, y)
= −1

2
K(x, y). (2.56)

As before, physical processes correspond to vanishing sources, so now � is station-
ary with respect to both the one- and two-point functions. The vanishing variation
of δ�/δ yields the Schwinger–Dyson equation for . The graphical construction
for � now involves the sum of connected 2PI graphs, those that cannot be separated
by cutting only two (distinct) lines. These graphs necessarily have dressed prop-
agators for their lines. There are, in addition, some one-dressed-loop terms. Even
if � is approximated by saving only a few terms in the dressed-loop expansion,
the equations resulting from requiring stationarity may well reveal nonperturbative
effects not visible even in resummed perturbation theory.

One can go further and introduce sources for three- and four-point functions,
along with Legendre transforms analogous to those of Eq. (2.54). The resulting
� is now stationary (at vanishing sources) with respect to N -point functions with
N = 1, 2, 3, 4, and the stationarity requirements are the corresponding Schwinger–
Dyson equations. Or [31], one can simply look at the sum of connected graphs (with

https://doi.org/10.1017/9781009402415 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415


66 Advanced pinch technique: Still one loop

correct combinatoric factors!) for W in the absence of sources and resolve these
into skeleton graphs for these N -point functions. The derivatives of W with respect
to these N -point functions come out to be the Schwinger–Dyson equations.

2.3.2 The background-field method for gauge fields

The goal is to produce an effective action that is gauge invariant in terms of the
classical potentials Âμ that appear in it so that it is a functional of the classical field
strengths such as Tr ÂμνÂ

μν . We would like to imitate the principle of shifting the
variable of integration (which we also call the quantum potential) by a classical
potential and then shift back to produce the effective action, as we did for scalar
fields. So we want to split the original quantum variable Aμ in the functional
integrals into a classical part Âμ and a quantum part Qμ:

Aμ = Âμ +Qμ. (2.57)

The original action of Eq. (1.5) is invariant under the inhomogeneous gauge trans-
formation of Eq. (1.10), which is just a change of variable of integration. How do
we apportion this gauge transformation,

Aμ → V
i

g
AμV

−1 + V ∂μV
−1, (2.58)

between Âμ and Qμ? Furthermore, the NAGT generating functional with no back-
ground field given in Eq. (1.5), which we repeat here:

Z[Jμ] =
∫

[dQμ][dc̄][dc] exp

{
iS[Q]

+ i
∫

d4x

[
1

2ξ
Tr
(
∂μQ

μ
)2 + (c̄∂νDνc) + Jμ(x)Qμ(x)

]}
≡ eiW [Jμ], (2.59)

is not gauge invariant because of the ghost-antighost and gauge-fixing terms, as
well as the term involving J · A. So how do we get overall gauge invariance of
some sort in W [J ] and its Legendre transformation, the effective action?

Gauge invariance of the effective action as a functional of the classical potential Âμ

means that it is invariant under a standard gauge transformation of this potential
in which the full inhomogeneous term goes with Âμ (and it would seem that no
inhomogeneous term goes with the quantum potential Qμ):

Âμ → V
i

g
ÂμV

−1 + V ∂μV
−1; Qμ → V

i

g
QμV

−1. (2.60)
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The combined transformations preserve gauge invariance of the NAGT action
S[Âμ +Qμ]. Following the scalar field construction, we proceed by coupling only
the quantum potential to the current so that the term J ·Q remains unchanged.

Next is the gauge-fixing term. If it involves derivatives (and therefore has ghosts),
we can replace the ordinary derivatives with the covariant derivative with respect
to the classical potential. For example, in Rξ gauges,

1

2ξ
Tr
(
∂μQμ

)2 → 1

2ξ
Tr
([
Dμ(Â),Qμ

]2
)
, (2.61)

where Dμ(Â) = ∂μ − igÂμ is the covariant derivative with respect to the classical
potential.10 The Faddeev–Popov determinant undergoes a corresponding change.

At this point, the new generating functional Z̃, given by

Z̃[Jμ, Âν] =
∫

[dQμ][dc̄][dc] exp

{
iS[C +Q]

+
∫

d4x i

[
1

2ξ
Tr
([
Dμ(Â),Qμ

])2 + Lc̄c(x) + Jμ(x)Qμ(x)

]}
≡ eiW̃ [Jμ,Cν ], (2.62)

(whereLc̄c is the Lagrangian expressing the Faddeev–Popov determinant), is invari-
ant under the combined transformations of Eq. (2.60) plus a homogeneous rotation
of the current under which

Jμ → V JμV
−1. (2.63)

The corresponding Legendre transform

�̃[Aμ, Âμ] = W̃ [Jμ, Âμ] −
∫

d4x Jμ(x)Aμ(x)

δW̃

δJμ(x)
= 〈Qμ(x)〉 ≡ Aμ(x), (2.64)

is also invariant.

Just as with the scalar field, the next step is to change the variable of integration
back so that in Eq. (2.62), Qμ → Qμ − Âμ. This changes the argument of the
action back to a conventional form. Then the generating functional becomes

eiW̃ [Jμ,Âμ] = eiW [Jμ]+i
∫

d4x Jμ(x)Aμ(x). (2.65)

Here W is the conventional exponent, except that it is calculated in a special gauge.
Making the shift Qμ → Qμ − Âμ in the gauge-fixing term of Eq. (2.61) yields the

10 The unadorned covariant derivative Dμ is always with respect to the quantum potential.
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gauge-fixing term

1

2ξ
TrG2; G = [

Dμ(C),Qμ − Cμ

]
. (2.66)

This is somewhat unconventional because this term depends on the classical poten-
tial. One must also calculate the Faddeev–Popov determinant,

det
δG

δθ
, (2.67)

for an infinitesimal gauge transformationV ≈ I − iθ , under which the new variable
of integration Qμ transforms as

δQμ = −1

g
[Dμ, θ ]. (2.68)

Note that this corresponds to transforming Qμ inhomogeneously, as in Eq. (2.58),
which is necessary because the action is only invariant under such a gauge
transformation.

For the scalar field case, we were finished at this point because it was trivial to
show that W̃ = �. It is only slightly more elaborate [23] to show that

W̃ [Aμ = 0, Âμ] = �C[Âμ], (2.69)

where �C is the conventional effective action with the gauge-fixing term of
Eq. (2.66). The complication is that the gauge-fixing term in the conventional
effective action also depends on the external potential.

The Feynman rules for the effective action, consisting, as usual, of the sum of
1PI connected graphs in the presence of the external potential Cμ, are given by
Abbott [23] and in the appendix. They are different from the usual rules because
this external potential appears in the gauge-fixing term and in the ghost-antighost
action. As far as we are concerned right now, two of the main differences are
that the three-gluon vertex with one external potential leg is precisely the same as
the vertex �ξ of Eq. (1.38) and that the ghost-external potential vertex, unlike the
conventional (asymmetric) ghost-gluon vertex, is conserved.

One can, of course, use any value for ξ in the gauge choice for the background-
field method without affecting the fact that the effective action is a gauge-invariant
functional ofCμ. Unfortunately, the coefficient functions found from the functional
integrals over Qμ still lead to ξ -dependent quantities, and so we are only part way
along the path to true quantum gauge invariance. It is nevertheless true that simply
by setting ξ = 1, we do get the gauge-invariant Green’s functions of the pinch
technique. In fact, Chapter 1 and our subsequent remarks already give us what
amounts to a proof of this for one-loop quantities. The integrands in Eq. (1.61)
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a,α b,β

(â)

a,α b,β

(b̂)(a) (b)

Figure 2.2. Feynman diagrams contributing to the one-loop background gluon
self-energy. Shaded circles on external lines represent background fields.

for the PT proper self-energy and Eq. (1.84) for the three-gluon vertex are pre-
cisely those that would be found using the background-field method at ξ = 1. The
background-field method at ξ = 1 does not give the PT results, but these can be
recovered by applying the pinch technique as usual, thereby coming back to the
background-field method results at ξ = 1.

2.3.3 Pinch technique and background Feynman gauge correspondence

Let us have a closer look at the announced connection between the pinch technique
and the background Feynman gauge. The key observation [28, 29] is that at ξQ = 1,
the tree-level vertex that occurs in the action multiplying Âα(q)Aμ(k1)Aν(k2), to
be denoted by �̃

ξQ
αμν(q, k1, k2) (see Feynman rules of the appendix), collapses to the

expression for �F
αμν(q, k1, k2), given in Eq. (1.42). Because in addition, at ξQ = 1,

the longitudinal parts of the gluon propagator vanish, one realizes that at this point,
there is nothing there that could pinch. Thus, ultimately, the background Feynman
gauge is singled out because of the total absence, in this particular gauge, of any
pinching momenta.

It is relatively straightforward to verify at the one-loop level the correspondence
between the PT two- and three-point functions and those of the background Feyn-
man gauge [28, 29]. For example, the two Feynman diagrams contributing to the
background Feynman gauge gluon self-energy are shown in Figure 2.2. Using the
background Feynman gauge Feynman rules, we obtain

(̃a)αβ = 1

2
g2CA

∫
k

1

k2(k + q)2
�̃αμν(q,−k − q, k)�̃μν

β (q,−k − q, k)

(̃b)αβ = −g2CA

∫
k

1

k2(k + q)2
(2k + q)α(2k + q)β. (2.70)

We can simply compare the two terms on the rhs of Eq. (1.63) with the two terms
given in Eqs. (2.70). Evidently, the PT and background Feynman gauge gluon
self-energies are identical at one loop.
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+ 1 graph

(â) (b̂)

a,α

m,μn, ν

q1

q3 q2s,σ

r,ρ λ
k1 k3

k2

+ 2 graphs

(ĉ)

+ 2 graphs

(d̂)

(a) (b)

(c) (d)

Figure 2.3. One-loop diagrams contributing to the three-gluon vertex in the BFM.
Diagrams (̃c) carries a 1/2 symmetry factor.

Similarly, the one-loop diagrams contributing to the background Feynman gauge
three-gluon vertex are shown in Figure 2.3; it is easy to see that the sum (̃a) + (̃b)
coincides with the term N̂αμν of Eq. (1.85), while diagrams (̃c) give exactly the
term B̂αμν of Eq. (1.86). Finally, diagrams (d̃) vanish by virtue of elementary
group-theoretical identities.

Although it is a remarkable and extremely useful fact that the one-loop PT Green’s
functions can be calculated in the background Feynman gauge, particular care
is needed for the correct interpretation of this correspondence. First, the pinch
technique enforces gauge independence (and several other physical properties,
such as unitarity and analyticity) on off-shell Green’s functions, whereas the BFM,
in a general gauge, does not. This is reflected in the gauge invariance of the BFM
n-point functions in the sense that they satisfy (by construction) QED-like Ward
identities, but are not gauge independent, i.e., they depend explicitly on ξQ. For
example, the BFM gluon self-energy at one loop is given by [30]

�̃
(ξQ)
αβ (q) = �̃

(ξQ=1)
αβ (q) + i

4(4π )2
g2CA(1 − ξQ)(7 + ξQ)q2Pαβ(q). (2.71)

Had the BFM n-point functions been ξQ independent, in addition to being gauge
invariant, there would be no need to introduce the pinch technique independently.

We emphasize that the objective of the PT construction is not to derive diagrammat-
ically the background Feynman gauge but rather to exploit the underlying BRST
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symmetry to expose a large number of cancellations and eventually define gauge-
independent Green’s functions satisfying Abelian Ward identities. Thus, that the
PT Green’s functions can also be calculated in the background Feynman gauge
always needs a very extensive demonstration. Therefore, the correspondence must
be verified at the end of the PT construction and should not be assumed beforehand.
Moreover, the ξQ-dependent BFM Green’s functions are not physically equivalent.
This is best seen in theories with spontaneous symmetry breaking: the dependence
of the BFM Green’s functions on ξQ gives rise to unphysical thresholds inside
these Green’s functions for ξQ = 1, which limits their usefulness for resummation
purposes (this point will be studied in detail in Chapter 11). Only the case of the
background Feynman gauge is free from unphysical poles because then (and only
then) do the BFM results collapse to the physical PT Green’s functions.

It is also important to realize that the PT construction goes through unaltered
under circumstances in which the BFM Feynman rules cannot even be applied.
Specifically, if instead of an S-matrix element, one were to consider a different
observable, such as a current correlation function or a Wilson loop (as was in fact
done in the original formulation [4]), one could not start out using the background
Feynman rules because all fields appearing inside the first nontrivial loop are
quantum ones. Instead, by following the PT rearrangement inside these physical
amplitudes, the unique PT answer emerges again.

Perhaps the most compelling fact that demonstrates that the PT and BFM are
intrinsically two completely disparate methods is that one can apply the PT within
the BFM. Operationally, this is easy to understand: away from ξQ = 1, even in
the BFM, there are longitudinal (pinching) momenta that will initiate the pinching
procedure. Thus, one starts out with the S-matrix written with the BFM Feynman
rules using a general ξQ and applies the PT algorithm as in any other gauge-fixing
scheme; one will recover again the unique PT answer for all Green’s functions
involved (i.e., the Green’s functions will be projected to ξQ = 1).

2.3.4 The generalized pinch technique

As we have seen in detail, the PT projects us dynamically to the background
Feynman gauge, regardless of the gauge-fixing scheme from which we may start.
A question that arises naturally at this point is the following: could we devise a
PT-like procedure that would project us to some other value of the background
gauge-fixing parameter ξQ? As was shown by Pilaftsis [32], such a construction is
indeed possible; the systematic algorithm that accomplishes this is known as the
generalized pinch technique.

The starting point of the generalized PT is precisely the decomposition given in
Eqs. (1.37), (1.38), and (1.39). However, unlike the pinch technique where all
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longitudinal momenta are allowed to pinch, in the generalized pinch technique, the
�ξ of Eq. (1.38) does not trigger any pinching (even though it contains longitudinal
momenta), playing essentially the role of �F; the pinching momenta of the general-
ized pinch technique come from the �Pξ of Eq. (1.39) and, of course, the tree-level
gluon propagators. At the end of this procedure, one recovers diagrammatically the
background Green’s functions calculated at the desired value of ξ → ξQ.

To be sure, the generalized pinch technique represents a fundamental departure
from the primary aim of the pinch technique, which is to construct gauge-fixing,
parameter–independent, off-shell Green’s functions. The generalized pinch tech-
nique, instead, deals exclusively with gauge-fixing, parameter–dependent Green’s
functions, with all the pathologies that this dependence entails. Nonetheless, it
is certainly useful to have a method that allows us to move systematically from
one gauge-fixing scheme to another at the level of individual Green’s functions.
In addition to the possible applications mentioned by Pilaftsis [32], we would
like to emphasize the usefulness of the generalized pinch technique in truncating
gauge-invariant (i.e., maintaining transversality) sets of Schwinger–Dyson equa-
tions written in gauges other than the Feynman gauge (see Chapter 6). This pos-
sibility becomes particularly relevant, for example, in attempts to compare SDE
predictions with lattice simulations, which are carried out usually in the Landau
gauge.

The method can be systematically generalized to more complicated situations [32].
For instance, a method may be projected from the Rξ gauges to one of the gen-
eralized BFM gauges, such as the BFM axial gauge. This, of course, leads to a
proliferation of pinching momenta; the resulting construction is therefore more
cumbersome but remains conceptually rather straightforward.

2.4 What to expect beyond one loop

Everything in Chapters 1 and 2 illustrates the pinch technique at the one-loop level.
The pinch technique would be of little interest unless everything in these chapters
had an all-order generalization. A good part of the rest of the book is devoted to
showing that the PT propagator has the following indispensable properties to all
orders, and even nonperturbatively:

1. It truly is gauge independent.
2. It is independent of what group representation or spin the external particles

used to construct the S-matrix have. (The reader should check this for the
one-loop pinch technique.)

3. It has only physical threshholds even if (or especially if) the gluons get a mass
through the strong interactions. There are no unphysical ghost contributions.
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4. Its Green’s functions have conventional analytic properties and spectral repre-
sentations, except that in certain cases, conventional positivity requirements
do not hold.

5. It, along with similarly defined pinch technique vertices, participates in ghost-
free Ward identities that are analogous to those of QED and with similar
consequences such as generalizations of the familiar QED identity Z1 = Z2.

6. The PT propagator defines a running charge that is gauge invariant and
scheme independent.

7. Once the ghost-free Ward identities are imposed, it is unique, which can
be understood because (as we will show) PT propagators and vertices are
simply those of the background Feynman gauge, which is a uniquely defined
graphical prescription with the same Ward identities.

As a result of the preceding requirements – and we emphasize once again not the
other way around – we show that the PT Green’s functions to all orders are identical
to those of the background-field method in the Feynman gauge.

After the technical developments that establish these points come the applications.
They range from perturbative effects, such as a physical and gauge-invariant defi-
nition of the neutrino charge radius, to nonperturbative effects, such as the all-order
resummation needed to define the widths of unstable gauge bosons beyond tree
level, to setting up the tools necessary for calculating the dynamical mass of gauge
bosons in the magnetic sector of QCD or of high-temperature electroweak theory.
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3

Pinch technique to all orders

In this chapter, we present the generalization of the pinch technique (PT) beyond
one loop. The key observation is that the one-loop PT rearrangements described
in Chapter 1 constitute the lowest-order manifestation of a fundamental cancella-
tion taking place between graphs of distinct kinematic nature. This cancellation
is encoded in the Slavnov–Taylor identity satisfied by a special Green’s function,
which serves as a common kernel to all higher-order self-energy and vertex dia-
grams. This allows for the collective treatment of entire sets of diagrams, providing
a compact way of extending the PT construction to higher orders. In addition, we
will show that, quite remarkably, the correspondence between the pinch technique
and the background Feynman gauge established in Chapter 1 is not accidental but
persists to all orders.

3.1 The s-t cancellation to all orders

The generalization of the pinch technique to all orders relies on the following basic
observations. The vast PT cancellations between one-loop Feynman diagrams,
studied in Chapter 1, are in fact encoded in the Slavnov–Taylor identity obeyed
by the kernel AμAνqq̄ (with the gluons off shell and the quarks on shell). In
the Feynman gauge, this Slavnov–Taylor identity is triggered by the longitudinal
momenta k

μ

1 and kν2 contained in �P
αμν(q, k1, k2). The tree-level version of this

Slavnov-Taylor identity gives rise precisely to the s-t cancellation discussed in
Section 1.7.2 (but with the gluons on shell) for the tree-level process gg → qq̄,
namely, the lowest-order contribution to the aforementioned amplitude AμAνqq̄.

Indeed, as explained in Section 1.7.2, at tree-level, the preceding amplitude, denoted
by T mn

μν is the sum of two distinct parts: an s-channel subamplitude, T mn
s,μν , given

in Figure 1.16(c) and t- and u-channel subamplitudes containing an internal quark
propagator, T mn

t, μν , shown in diagrams (a) and (b) of the same figure.

75
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= −

Aa
α

=
ΓP

Aa
α Ab

β

ΓP

Aa
α Ab

β Aa
α

Aa
α

Figure 3.1. The one-loop pinch technique seen in terms of the fundamental s-t
cancellation. The self-energy-like contribution coming from the vertex cancels
exactly against the contribution coming from the propagator. Notice that none of
the effective vertices induced after the cancellation is contained in the original
Lagrangian of the theory; their field-theoretic interpretation will be presented in
Chapter 4.

When T mn
μν is contracted by k

μ

1 or kν2 , a characteristic cancellation takes place
between Tsmnμν and Ttmnμν . To see this, use the elementary Ward identity satisfied
by �α

μν(q, k1, k2) and note that the term proportional to q2 cancels the d(q), thus
allowing communication with the t-channel graphs (in Section 1.7.2, we used �F

instead, but this makes no difference; see the comment following Eq. (1.130)).
Using, in addition, current conservation, qαVc

α = 0, and keeping the gluons off
shell (i.e., not setting k2

1 = k2
2 = 0, as we did in Section 1.7.2), we have

k
μ

1 Tsmnμν = g2f mncVc
α(k2

2g
α
ν − k2νk

α
2 )d(q2) − g2f mncVc

ν

k
μ

1 Ttmnμν = g2f mncVc
ν , (3.1)

so that

k
μ

1 T mn
μν = g2f mncVc

α(k2
2g

α
ν − k2νk

α
2 )d(q2). (3.2)

The important point to realize is that one can recast the entire one-loop PT con-
struction in terms of the s-t cancellation. The precise way in which the preceding
cancellation is realized inside the one-loop self-energy and vertex graphs, giving
rise to the PT rearrangements described in Chapter 1, is shown schematically in
Figure 3.1.

It turns out that the pinch technique may be extended to higher orders simply
by pursuing the preceding cancellations beyond tree level [1, 2]. Specifically, the
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Aa
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μ Ar

ρ
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σAn

ν

Figure 3.2. The fundamental amplitude receiving the action of the longitudinal
momenta stemming from �P. The shaded blob represents the (connected) kernel
corresponding to the process AA → qq̄.

all-order version of the Slavnov–Taylor identity satisfied by T mn
μν , appropriately

interpreted, allows the generalization of the PT construction to all orders.

The subset of all graphs that receive the action of the longitudinal momenta con-
tained in �P

αμν(q, k1, k2) is shown in Figure 3.2: it comprises precisely the kernel
Am
μ (k1)An

ν(k2) → q(p1)q̄(p2), i.e., the all-order version of T mn
μν . In terms of Green’s

functions,

T mn
μν = ū(p1)

[
Cmnρσ (k1, k2, p1, p2)ρ

μ(k1)σ
ν (k2)

]
u(p2). (3.3)

Clearly, the two internal gluons are off shell, whereas the two external quarks are
on-shell, satisfying ū(p1)S−1(p1)

∣∣
/p1=m

= S−1(p2)u(p2)
∣∣
/p2=m

= 0, where S(p) is
the full-quark propagator.

Let us focus on the Slavnov–Taylor identity satisfied by the amplitude T mn
μν . Fol-

lowing standard techniques [3], one exploits ghost charge conservation to write the
trivial position space identity:〈

T [c̄m(x)An
ν(y)q(z)q̄(w)]

〉 = 0, (3.4)

with T denoting the time-ordered product of fields. Rewriting the fields in terms of
their BRST-transformed counterparts, using their equations of motion and equal-
time commutation relations, and Fourier transforming the final result to momentum
space, we find

k
μ

1 C
mn
μν − k2νG

mn
1 + igf nrsQmrs

1ν − gXmn
1ν − gX̄mn

1ν = 0, (3.5)

where the various Green’s functions appearing on the right-hand side (rhs) are
defined in Figure 3.3. Note that the terms X1ν and X̄1ν vanish on shell because
they are missing one fermion propagator; at lowest order, they are simply the
terms proportional to the inverse tree-level propagators (/p1 −m) and (/p2 −m)
first encountered in the one-loop PT calculations of Chapter 1. After multiplying
Eq. (3.5) by the two inverse propagators S−1(p1)S−1(p2), we thus arrive at the
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n
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n
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ν
n

k1
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Figure 3.3. Diagrammatic representation of the Green’s functions appearing in the
Slavnov–Taylor identity (Eq. (3.5)). Ghost Green’s functions receive a contribution
from similar terms with the ghost arrows reversed (not shown).

on-shell Slavnov–Taylor identity

k
μ

1 T mn
μν = Smn

1ν , (3.6)

with1

Smn
1ν = ū(p1)

[
gf nrsQmrs

1ν (k1, k2) − k2νGmn
1 (k1, k2)D(k2)

]
D(k1)u(p2), (3.7)

with Gmn
1 and Qars

1ν defined in Figure 3.3.

In perturbation theory, both T mn
μν and Smn

1ν are given by Feynman diagrams, which
can be separated into distinct classes according to their kinematic dependence and
topological properties (Figure 3.4). Graphs that do not contain information about
the external test quarks are self-energy graphs, whereas those depending on the
quantum numbers of the test quarks are vertex graphs. The former depend only on
the variable s, the latter on both s and the mass m of the test quarks; equivalently,
we will refer to them as s- or t-channel graphs, respectively. In addition to the s-t
classification, Feynman diagrams can be separated into 1PI and 1PR graphs. The
crucial point is that the action of the momentum k

μ

1 or kν2 on T mn
μν does not respect,

in general, the original s-t and 1PI-1PR separations furnished by the Feynman
diagrams. In other words, even though Eq. (3.6) holds for the entire amplitude, it
is not true for the individual subamplitudes, i.e.,

k
μ

1

[
T mn
μν

]
x,Y

= [
Smn

1ν

]
x,Y

x = s, t ; Y = I,R, (3.8)

1 In what follows, the only momenta we indicate in the Green’s functions are the ones corresponding to the gluons
(ki ); the quark momenta (pi ) will instead be omitted.
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[
T (n)
μν

]
t,I

= (n)

[
T (n)
μν

]
s,I

=
(n) [

T (n)
μν

]
s,R

=

[
T (n)
μν

]
t,R

=
(n3)

(n1)

(n2)

(n1)

(n2)

Figure 3.4. Decomposition at an arbitrary perturbative level n of the fundamental
amplitude T mn

μν in terms of s and t channels and 1PI and 1PR components.

where I (R) indicates the one-particle irreducible (reducible) parts of the amplitude
involved. Evidently, whereas the characterization of graphs as propagator- and
vertex-like is unambiguous in the absence of longitudinal momenta (e.g., in a
scalar theory or in QED), their presence in non-Abelian gauge theories tends to
mix propagator- and vertex-like graphs. Similarly, 1PR graphs can be effectively
converted into 1PI graphs (the opposite cannot happen). The inequality between
the two sides of Eq. (3.8) is precisely due to propagator-like terms, such as those
encountered in the one-loop PT calculations; they have the characteristic feature
that, when depicted by means of Feynman diagrams, contains unphysical vertices,
i.e., vertices that do not exist in the original Lagrangian (Figure 3.5). All such
terms cancel exactly against each other. Thus, after the PT cancellations have been
enforced, we have [

k
μ

1 T mn
μν

]PT

t,I
≡ [

Smn
1ν

]
t,I
. (3.9)

The nontrivial step for generalizing the pinch technique to all orders is then the
following: instead of going through the arduous task of manipulating the left-
hand side of Eq. (3.9) to determine the pinching parts and explicitly enforce their
cancellation, use directly the rhs, which already contains the answer! Indeed, the rhs
involves only conventional (ghost) Green’s functions expressed in terms of standard
Feynman rules with no reference to unphysical vertices. Thus, its separation into
propagator- and vertexlike graphs can be carried out unambiguously because all
possibility for mixing has been eliminated.

3.2 Quark-gluon vertex and gluon propagator to all orders

The considerations just presented can be used to generalize the PT construction to
all orders. In what follows, we will denote with a caret superscript the PT boxes,
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kμ
1 ×

→

+→ −

→ − −

→

kμ
1 ×

kμ
1 ×

kμ
1 ×

Figure 3.5. Some schematic two-loop examples of PT terms containing unphysical
vertices, together with the Feynman diagrams from which they originate. Notice
that the sum of all these terms is zero.

self-energies, and vertices and with a tilde the corresponding background Feynman
gauge objects; the conventional renormalizable Feynman gauge terms will not carry
any superscript.

To begin, it is immediate to recognize that in the renormalizable Feynman gauge,
box diagrams of arbitrary order n,B(n), coincide with the PT boxes B̂(n) because all
three-gluon vertices are internal; that is, they do not provide longitudinal momenta
because inside the loops there is no preferred direction. Thus, they coincide with
the background Feynman gauge boxes, B̃(n), i.e.,

B̂(n) = B(n) = B̃(n) (3.10)

for every n. The same is true for the PT quark self-energies; for exactly the same
reason, they coincide with their renormalizable Feynman gauge (and background
Feynman gauge) counterparts, i.e.,

�̂ij (n) = �ij (n) = �̃ij (n). (3.11)
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Aa
α

p2

p1

(a)

Aa
α

(b)

Aa
α

(c)

q

k2

k1

Am
μ Ar

ρ

As
σAn

ν

Figure 3.6. The Feynman diagrams contributing to the quark-gluon vertex �a
α in

the Rξ gauge. Diagram (b) has a similar contribution (b′) with the ghost arrow
reversed. Kernels appearing in these diagrams are t-channel and 1PI with respect
to s-channel cuts.

For the construction of the quark-gluon 1PI vertex �̂a
α, start by noting that of all

diagrams contributing to this vertex in the renormalizable Feynman gauge (shown
in Figure 3.6), the only one receiving the action of the pinching momenta is diagram
(a). Thus, we carry out the PT vertex decomposition of Eq. (1.41) in diagram (a)
and concentrate on the �P part only; specifically,

(a)P = gf amn

∫
k1

(gναk
μ

1 − gμα k
ν
2 )
[
T mn
μν (k1, k2)

]
t,I
. (3.12)

Following the discussion presented in the previous subsection, the pinching action
amounts to the replacements

k
μ

1

[
T mn
μν

]
t,I

→ [
k
μ

1 T mn
μν

]PT

t,I
= [

Smn
1ν

]
t,I (3.13)

kν2
[
T mn
μν

]
t,I

→ [
kν2T mn

μν

]PT

t,I
= [

Smn
2μ

]
t,I
, (3.14)

or equivalently,

(a)P → gf amn

∫
k1

{[
Smn

1α (k1, k2)
]
t,I − [

Smn
2α (k1, k2)

]
t,I

}
. (3.15)

At this point, the construction of the effective PT quark-gluon vertex has been
completed, and we have

�̂a
α(q, p2,−p1) = (a)F + (b) + (b′) + (c)

+ gf amn

∫
k1

{[
Smn

1α (k1, k2)
]
t,I − [

Smn
2α (k1, k2)

]
t,I

}
. (3.16)

We emphasize that in the construction presented thus far, we have never resorted
to the BFM formalism but have only used the BRST identity of Eq. (3.6) and the
replacements (3.13) and (3.14).

The next important question is whether the one-loop correspondence between the
pinch technique and the background Feynman gauge persists to all orders. This is
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Kmrs
σ

Aa
α

(d)

Aa
α

(e)

Qmrs
1ν =

m

+

m

ν
r

s

ν
r

s

(d) (e)

Figure 3.7. (Top) The decomposition of the auxiliary function Qmrs
1ν in terms of

its 1PI and 1PR components. Notice that the kernel Kmrs
σ is 1PI with respect to

s-channel cuts. (Bottom) Additional topologies present in the BFM quark-gluon
vertex and dynamically generated in the PT procedure. Both diagrams have similar
contributions (d ′) and (e′) with the ghost arrows reversed.

indeed so, as can be seen by comparing directly the PT vertex �̂a
α just constructed

and the quark-gluon vertex �̃a
α written in the background Feynman gauge. We start

by observing that all inert terms contained in the original renormalizable Feynman
gauge �a

α vertex carry over to the same subgroups of background Feynman gauge
graphs. To facilitate this identification, we recall (see also the Feynman rules
reported in the appendix) that to lowest order, one has the identities �F = �ÂAA

and �AAAA = �ÂAAA, so that

(a)F = (̃a) (c) = (̃c), (3.17)

where a tilde means that the (external) gluon Aa
α has been effectively converted

into a background gluon Âa
α.

As should be familiar by now, the only exception to this rule are the ghost dia-
grams (d) and (d ′): they must be combined with the remaining terms from the PT
construction to arrive at the characteristic ghost sector of the background Feyn-
man gauge (see Figure 3.7), namely, the symmetric ghost-gluon vertex�Âcc̄ and the
four-particle ghost vertex�ÂAcc̄, absent in the conventionalRξ gauge fixing. Indeed,
using Eq. (3.7), we find (omitting the spinors)

gf amn

∫
k1

[
Smn

1α (k1, k2)
]
t,I = −gf amn

∫
k1

k2αD(k1)D(k2)
[
Gmn

1 (k1, k2)
]
t,I

+ g2f amnf nrs

∫
k1

D(k1)
[
Qmrs

1α (k1, k2)
]
t,I , (3.18)
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with a similar relation holding for the S2 term. Then we find

(b) − gf amn

∫
k1

k2αD(k1)D(k2)
[
Gmn

1 (k1, k2)
]
t,I

= gf amn

∫
k1

(k1 − k2)αD(k1)D(k2)
[
Gmn

1 (k1, k2)
]
t,I = (̂b), (3.19)

and using the decomposition for the Qmrs
1ν shown in Figure 3.2,

g2f amnf nrs

∫
k1

D(k1)
[
Qmrs

1α (k1, k2)
]
t,I

= ig2f amnf nrs

∫
k1

∫
k3

D(k1)D(k3)σ
α (k4)

{[
Kmrs
σ (k1, k3, k4)

]
t,I

− i�grs
σ (−k2, k3, k4)D(k2)

[
Gmg

1 (k1, k2)
]
t,I

}
= (d̃) + (̃e), (3.20)

with Kmrs
σ representing the 1PI five-particle kernel shown in Figure 3.2, whereas

�
grs
σ is the usual ghost-gluon vertex.

In exactly the same way, the remaining S2 will generate in (b̃′) (when added to the
Rξ ghost diagram (b′)) as well as (d̃ ′) and (ẽ′) so that finally we get the relation

�̂a
α(q, p2,−p1) = �̃a

α(q, p2,−p1). (3.21)

The final step is to construct the all-order PT gluon self-energy �̂ab
αβ(q). Notice

that at this point, one would expect that it, too, coincides with the background
Feynman gauge gluon self-energy �̃ab

αβ(q) because the boxes B̂ and the vertices
�̂a
α do coincide with the corresponding background Feynman gauge quantities, and

the S-matrix is unique.

In what follows, we outline an indirect inductive proof of this result; the gluon
self-energy will not be constructed explicitly here but rather in Chapter 6, in the
more general context of the Schwinger-Dyson equations. We will use the strong
induction principle, which states that a given predicate P (n) on N is true ∀ n ∈ N,
if P (k) is true whenever P (j ) is true ∀ j ∈ N with j < k.2

To avoid notational clutter, we suppress all color, Lorentz, and momentum labels.
At one [4] and two loops (i.e., n = 1, 2) [5,6], we know from explicit calculations
that the PT and background Feynman gauge Green’s functions coincide. Let us
then assume that the PT-BFM correspondence

�̂(�) = �̃(�), �̂(�) = �̃(�), B̂ (�) = B̃(�) (3.22)

2 In simple terms, whereas in the normal induction, one assumes the validity of a property at order n− 1 (only)
and then demonstrates that it is true also at order n, the strong induction requires the property to be valid at all
previous orders 1, 2, . . . n− 1.
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holds for every � = 1, . . . , n− 1 (strong induction hypothesis). We will then show
that the PT gluon self-energy is equal to the background Feynman gauge gluon
self-energy at order n, i.e., �̂(n) ≡ �̃(n).

The S-matrix element of order n assumes the form

S(n) = {��}(n) + B(n). (3.23)

Moreover, because it is unique, whether written in the renormalizable Feynman
gauge or the background Feynman gauge, as well as before and after the PT
rearrangement, we have that S(n) ≡ Ŝ(n) ≡ S̃(n). Using then Eq. (3.10) (which is
valid to all orders, implying that Eq. (3.22) holds also when � = n), we find that

{��}(n) = {�̂̂�̂}(n) = {�̃̃�̃}(n). (3.24)

The preceding amplitudes can then be split into 1PR and 1PI parts; in particular,
because of the strong inductive hypothesis (3.22), the 1PR part after the PT re-
arrangement coincides with the 1PR part written in the background Feynman
gauge because

{��}(n)
R = �(n1)(n2)�(n3)

{
n1, n2, n3 < n

n1 + n2 + n3 = n.
(3.25)

Then Eq. (3.24) states the equivalence of the 1PI parts, i.e.,

{�̂̂�̂}(n)
I = {�̃̃�̃}(n)

I , (3.26)

which implies

0 = [
�̂(n) − �̃(n)

]
(0)�(0) + �(0)(0)

[
�̂(n) − �̃(n)

]
+�(0)(0)

[
�̂(n) − �̃(n)

]
(0)�(0). (3.27)

At this point, we do not have the equality we want yet but have only that

�̂(n) = �̃(n) + f (n)�(0) (3.28)

�̂(n) = �̃(n) − 2iq2f (n), (3.29)

with f (n) being an arbitrary function of q2. However, from the explicit construction
of the PT quark-gluon vertex of the previous section, we have the all-order identity
(3.21) so that the second of Eqs. (3.22) actually holds true even when � = n, i.e.,
�̂(n) ≡ �̃(n). Therefore f = 0, and one immediately concludes that

�̂(n) = �̃(n). (3.30)

Hence, by strong induction, the preceding relation is true for any given order n.
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Reinstating the Lorentz and gauge group structures, we arrive at the announced
result3:

�̂ab
αβ(q) ≡ �̃ab

αβ(q). (3.31)

Similar techniques have been used in [7] to generalize to all orders the PT algorithm
in the electroweak sector of the standard model (we will briefly touch on this in
Chapter 9).
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4

The pinch technique in
the Batalin–Vilkovisky framework

It is clear from the analysis presented until now that even though the PT Green’s
functions satisfy naive QED-like Ward identities, their actual derivation relies
heavily on Slavnov–Taylor identities obeyed by certain subamplitudes appearing
in the ordinary diagrammatic expansion such as the kernel AμAνqq̄ considered
in the previous chapter. Unlike QED, because of the nonlinearity of the BRST
transformations, these Slavnov–Taylor identities are realized through ghost Green’s
functions involving composite operators such as 〈0|T [s
(x) · · · |0〉, where s is
the BRST operator and 
 is a generic QCD field. It turns out that the most
efficient framework for dealing with these types of objects is the so-called Batalin-
Vilkovisky formalism [1, 2, 3, 4]. In this framework, one adds to the original
gauge-invariant action �

(0)
I the term LBRST = ∑


 

∗s
, coupling the composite

operators s
 to the BRST-invariant external sources (usually called antifields) 
∗

to obtain the new action �(0) = �
(0)
I + ∑


 

∗s
.

From the point of view of the pinch technique, there are considerable conceptual
and operational advantages to be gained from employing this formalism [5]. To
begin with, the use of antifields [6], which represent a core ingredient of the BV for-
malism itself, streamlines the derivation of Slavnov–Taylor identities, expressing
them in terms of auxiliary functions that can be constructed using a well-defined set
of Feynman rules (derived from LBRST). In addition, the formulation of the BFM
within the BV formalism gives rise to important all-order identities, to be called
background-quantum identities [5, 7], relating the BFM n-point functions to the
corresponding conventional n-point functions in the Rξ gauges. These identities
are realized by means of unphysical Green’s functions involving antifields and
background sources. The prime example of such an identity is given in Eq. (4.35),
the most important equation in this chapter: the conventional and PT gluon propa-
gators,(q) and ̂(q), respectively, are related by means of the auxiliary two-point
function G(q).

86
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The basic observation that makes the background-quantum identities so useful
is that the unphysical Green’s functions appearing in them (such as the G(q) in
Eq. (4.35)) are related to the auxiliary Green’s functions appearing in the Slavnov–
Taylor identities by simple expressions. Put simply, the parts of the diagrams
exchanged during the pinching process, namely, the terms containing the unphys-
ical vertices, are involved in relations connecting conventional and BFM n-point
functions. In Eq. (4.44), for example, the function G(q) is fully determined in
terms of quantities that are defined in the context of the conventional formal-
ism, without recourse to antifields or to the Feynman rules stemming from LBRST.
This, in turn, allows for a direct comparison of the PT and BFM Green’s func-
tions: a PT Green’s function is obtained from the conventional one by remov-
ing the pinching parts; but in doing so, one is practically generating the corre-
sponding background-quantum identity, which carries over to the BFM Green’s
function.

The background-quantum identities play a central role in the entire PT program for
one additional reason. As is already evident at the two-loop level, the two-loop PT
gluon self-energy is composed of Feynman diagrams involving the conventional
one-loop gluon self-energy and not the one-loop PT self-energy. This might suggest
at first that one cannot arrive (eventually) at a genuine Schwinger–Dyson equation
involving the same unknown quantity on both sides, i.e., either �μν or �̂μν . There
is, however, a way around this: the nonperturbative version of the background-
quantum identities, and most important, that of Eq. (4.35), allows one to convert
the new SD series into a dynamical equation involving either the conventional or
the BFM gluon self-energy only. As we will see in Chapter 6, this is instrumental
for the success of the entire approach.

In addition to Eq. (4.35), the second identity of Eq. (4.50) captures another impor-
tant result of this chapter. It turns out that in the Landau gauge (only), the func-
tion G(q) coincides with the so-called Kugo-Ojima function [8], u(q), defined in
Eq. (4.51). The latter function, and in particular its value in the deep infrared, is inti-
mately connected with the Kugo-Ojima confinement criterion [8], which requires
that u(0) = −1. The identity of Eq. (4.50) relates the Kugo-Ojima function with
the inverse of the ghost-dressing function, F (q), and an auxiliary function, L(q);
the latter can be shown to vanish in the deep infrared. The power of Eq. (4.50)
is in that it relates the value u(0) and, hence, the fulfillment or nonfulfillment of
the corresponding confinement criterion, with the value of F (0): the Kugo–Ojima
criterion is satisfied provided that F (0) diverges. However, as we will discuss
briefly in Chapter 6, this is not how QCD really works. Both lattice simulations
and Schwinger–Dyson equations reveal that F (0) is actually finite – a fact that can
ultimately be traced back to the dynamical generation of a gluon mass.
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4.1 An overview of the Batalin–Vilkovisky formalism

4.1.1 Green’s functions: Conventions

The 1PI Green’s functions of any theory are defined in terms of the time-ordered
product of interacting fields1 as

�
1···
n
(x1, . . . , xn) = 〈T [
1(x1) · · ·
n(xn)]〉1PI (4.1)

and can be efficiently constructed through a generating functional, which in Fourier
space reads

�[
] =
∞∑
n=0

(−i)n

n!

∫ n∏
i=0

d4pi δ
4

⎛⎝ n∑
j=1

pj

⎞⎠
1(p1) · · ·
n(pn)�
1···
n
(p1, . . . , pn).

(4.2)

In the preceding formula, the field 
i(pi) represents the Fourier transform of the
field 
i(xi), with pi its (in-going) momentum. Then, in terms of the generating
functional �[
], all the (momentum-space) 1PI Green’s functions can be obtained
by means of functional differentiation:

�
1···
n
(p1, . . . , pn) = in

δn�

δ
1(p1)δ
2(p2) · · · δ
n(pn)

∣∣∣∣

i=0

. (4.3)

Our convention on the external momenta is summarized in Figure 4.1. From the
definition given in Eq. (4.3), it follows that the Green’s functions i−n�
1···
n

are
simply given by the corresponding Feynman diagrams in Minkowski space.

The Green’s functions generated by�[
] can be joined together by full propagators
to construct higher-point connected amplitudes, ultimately giving rise to the S-
matrix elements of the theory. However, they are by no means a complete set, for the
nonlinearity of the BRST transformation of NAGTs implies that auxiliary Green’s
functions involving ghost fields will appear in the Slavnov–Taylor identities. The
latter are precisely the Green’s functions with which we have always been working
when applying the PT algorithm and constitute the functions we will thoroughly
study in the rest of this chapter.

4.1.2 The Batalin–Vilkovisky formalism

The Batalin-Vilkovisky formalism [1, 2, 3, 4] is a powerful quantization scheme
that allows us to address in an effective way several aspects of very general gauge

1 We let 
 run over all the fields A, ψ ,ψ̄ , c, c̄, and B. Sometimes the fields appearing in the gauge-invariant
Lagrangian will be collectively indicated as φ.
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Table 4.1. Ghost charge, statistics (B for Bose, F for Fermi), and mass dimension
of the QCD fields and antifields

Am
μ ψi

f ψ̄ i
f cm c̄m Bm A∗m

μ ψ∗i
f ψ̄∗i

f c∗m c̄∗m

Ghost charge 0 0 0 1 −1 0 −1 −1 −1 −2 0
Statistics B F F F F B F B B B B
Dimension 1 3

2
3
2 0 2 2 3 5

2
5
2 4 2

Φn−1

Φn

Φ2

Φ1

p2

pn−1
pn

Figure 4.1. Our conventions for the (1PI) Green’s functions �
1···
n
(p1, . . . , pn).

All momenta p2, . . . , pn are assumed to be incoming and are assigned to the cor-
responding fields starting from the rightmost one. The momentum of the leftmost
field 
1 is determined through momentum conservation (

∑
i pi = 0) and will be

suppressed.

theories (e.g., their quantization, renormalization, and symmetry violation due to
quantum effects), including those with open or reducible gauge symmetry algebras.

The Batalin-Vilkovisky formalism starts by introducing for each field 
 a corre-
sponding antifield, to be denoted by 
∗. The antifield 
∗ has opposite statistics
with respect to 
 as well as a ghost charge gh(
∗), which is related to the ghost
charge gh(
) of the corresponding field 
 by gh(
∗) = −1 − gh(
). The ghost
charges, statistics, and mass dimension of the various QCD fields and antifields are
summarized in Table 4.1.

Next, one adds to the original gauge-invariant action �
(0)
I [φ] (with φ representing

the physical QCD fieldsA,ψ , and ψ̄), a term coupling the antifields with the BRST
variation of the corresponding fields; then one obtains the new action

�(0)[
,
∗] = �
(0)
I [φ] +

∑




∗s
, (4.4)

https://doi.org/10.1017/9781009402415 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415


90 The pinch technique in the Batalin–Vilkovisky framework

where∑




∗s
 =
∫

d4x
[
A∗m
μ (∂μcm + gf mnrAμ

n c
r ) − 1

2
gf mnrc∗mcncr + c̄∗mBm

+ igψ̄∗i
f cmtmij ψ

j

f − igcmψ̄i
f t
m
ij ψ

∗j
f

]
, (4.5)

(f is the quark flavor index).2

The action (4.4) satisfies the master equation3∫
d4x

∑



δ�(0)

δ
∗
δ�(0)

δ

= 0. (4.6)

In fact, on one hand, the terms in Eq. (4.4) that are independent of the antifields
are zero because of the gauge invariance of the action∑

φ

sφ
δ�

(0)
I

δφ
=
∫

d4x(s�(0)
I [φ]) = 0. (4.7)

On the other hand, the terms linear in the antifields vanish because of the nilpotency
of the BRST operator:∑


′
s
′ δ(s
)

δ
′ =
∫

d4x
∑



s2
 = 0. (4.8)

The BRST symmetry is crucial for endowing a (gauge) theory with a unitary
S-matrix and gauge-independent physical observables; therefore, it must be imple-
mented to all orders. For achieving this, we establish the quantum corrected version
of the master equation (4.6) in the form of the Slavnov–Taylor identity functional

S(�)[
] =
∫

d4x
∑



δ�

δ
∗
δ�

δ

= 0, (4.9)

where �[
,
∗] is now the effective action. In the pure gluodynamics sector, the
Slavnov–Taylor functional is given by4

S(�)[
] =
∫

d4x

[
δ�

δA
∗μ
m

δ�

δAm
μ

+ δ�

δc∗m
δ�

δcm
+ Bm δ�

δc̄m

]
. (4.10)

2 It can be easily shown that this new action is physically equivalent to the gauge-fixed QCD action because the
two are related by a canonical transformation [9].

3 Our derivatives are all left derivatives, e.g., δ(ab) = (δa)b + (−1)εa aδb, with εa being the Grassmann parity
of a.

4 Quarks can be easily taken into account by adding to the Slavnov–Taylor functional (4.10) the term∫
d4x

[
δ�

δψ∗i
f

δ�

δψ̄i
f

+ δ�

δψi
f

δ�

δψ̄∗i
f

]
.
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The structure of the preceding master equation can be simplified by noticing that the
antighost c̄a and the multiplier Ba have linear BRST transformations and therefore
do not present with the usual complications of the other QCD fields. Together with
their corresponding antifields, they enter bilinearly in the action, which can be then
decomposed in the sum of a minimal and nonminimal sector:

�(0)
C [
,
∗] = �(0)[Am

μ,A
∗m
μ ,ψ,ψ∗i

f , ψ̄ i
f , ψ̄

∗i
f , cm, c∗m] + c̄∗mBm. (4.11)

The last term has no effect on the master equation (4.6), which in fact is satisfied
by �(0) alone. The fields {Am

μ,A
∗m
μ ,ψ,ψ∗i

f , ψ̄ i
f , ψ̄

∗i
f , cm, c∗m} are then often called

minimal variables, whereas {c̄m, Bm} are referred to as trivial or contractible pairs.5

Then, in the minimal sector, the reduced Slavnov–Taylor functional is given by the
complete functional of Eq. (4.10) once the last term Bmδ�/δc̄m is left out.

Taking functional derivatives of S(�)[
] and setting afterward all fields and anti-
fields to zero will generate the complete set of the all-order Slavnov–Taylor iden-
tities of the theory.6 This is an exact analogy (see Eq. (4.3)) to what happens with
the generating functional, where taking functional derivatives of �[
] and setting
afterward all fields to zero generates the Green’s functions of the theory. However,
to reach meaningful expressions, one needs to keep in mind that (1) S(�) has ghost
charge +1 and (2) functions with nonzero ghost charge vanish, for the ghost charge
is a conserved quantity. Thus, to extract nonzero identities from Eq. (4.10), one
needs to differentiate the latter with respect to a combination of fields containing
either one ghost field or two ghost fields and one antifield. The only exception
to this rule is when differentiating with respect to a ghost antifield, which needs
to be compensated by three ghost fields. Specifically, identities involving one or
more gauge fields are obtained by differentiating Eq. (4.10) with respect to the set
of fields in which one gauge boson has been replaced by the corresponding ghost
field. This is because the linear part of the BRST transformation of the gauge field
is proportional to the ghost field: sAm

μ |linear = ∂μc
m. Finally, for obtaining Slavnov–

Taylor identities involving Green’s functions that contain ghost fields, one ghost
field must be replaced by two ghost fields because of the quadratic nature of the
BRST ghost field transformation (scm ∝ f mnrcncr ).

The last technical point to be clarified is the dependence of the Slavnov–Taylor
identities on the (external) momenta. One should notice that the integral over d4x

present in Eq. (4.10), together with the conservation of momentum flow of the

5 Equivalently, the minimal sector action can be obtained by subtracting from the complete action the local term
corresponding to the gauge–fixing Lagrangian LGF.

6 In practice, the Slavnov–Taylor identities obtained from the reduced functional coincide with the ones obtained
by the complete functional (1) after implementing the Faddeev–Popov equation described in the next section [10]
and (2) taking into account that Green’s functions involving unphysical fields coincide only up to constant terms
proportional to the gauge-fixing parameter, e.g., �Am

μA
n
ν
(q) = �C

AμAν
(q) − iδmnξ−1qμqν .
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Table 4.2. Ghost charge, statistics (B for Bose,
F for Fermi), and mass dimension of the QCD
background fields and sources

Âm
μ �∗m

μ

Ghost charge 0 1
Statistics B F
Dimension 1 1

Green’s functions, implies that no momentum integration is left over. As a result,
the Slavnov–Taylor identities will be expressed as a sum of products of (at most
two) Green’s functions.

The (complete) Slavnov–Taylor functional is absolutely general and need not be
modified if one changes the way of gauge fixing the Lagrangian, e.g., switching
from a general Rξ gauge to the BFM. In this latter case, however, to control the
dependence of the Green’s functions on the background fields, some new terms,
implementing the equation of motion of the background fields at the quantum
level, are conventionally added to the Slavnov-Taylor functional. Specifically, one
extends the BRST symmetry to the background gluon field through the relations

sÂm
μ = �m

μ s�m
μ = 0. (4.12)

The expression �m
μ represents a (classical) vector field with the same quantum

numbers as the gluon but with ghost charge +1 and Fermi statistics (see also
Table 4.2). The dependence of the Green’s functions on the background fields is
then controlled by the modified Slavnov–Taylor functional

S ′(�′)[
] = S(�′)[
] +
∫

d4x �μ
m

[
δ�′

δÂm
μ

− δ�′

δAm
μ

]
= 0, (4.13)

where �′ denotes the effective action that depends on the background sources
�m
μ (with � ≡ �′|�=0), and S(�′)[
] is the Slavnov–Taylor identity functional of

Eq. (4.10). Differentiation of the Slavnov–Taylor functional (4.13) with respect
to the background source and background or quantum fields will then provide
the background-quantum identities relating 1PI Green’s functions involving back-
ground fields to the ones involving quantum fields and already briefly discussed.7

Finally, the background gauge invariance of the BFM effective action implies that
Green’s functions involving background fields satisfy linear Ward identities when

7 As it happens, for Slavnov–Taylor identities, background-quantum identities are not deformed by the renormal-
ization procedure. The new background variables enter, in fact, as BRST doublets, and they cannot change the
cohomology of the linearized Slavnov–Taylor operator [11].
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contracted with the momentum corresponding to a background leg. These Ward
identities are generated by taking functional differentiations of the Ward identity
functional

Wϑ [�′] =
∫

d4x
∑



(δϑ
)
δ�′

δ

= 0, (4.14)

where δϑ
 are given by the BRST transformation of the corresponding fields
when replacing ghosts with the local infinitesimal parameters ϑa(x) correspond-
ing to the SU (3) generators ta; the background transformations of the antifields
δϑ


∗ coincide with the gauge transformations of the corresponding quantum fields
according to their specific representation. To obtain the Ward identity satisfied by
the Green’s functions involving background gluons Â, one has then to differentiate
the functional (4.14) with respect to the corresponding parameter ϑ .

4.2 Examples

4.2.1 Slavnov–Taylor identities

One of the most useful Slavnov–Taylor identities in a PT context is definitely the
one satisfied by the three-gluon vertex. The textbook derivation of this identity has
been sketched in Chapter 1 (see Section 1.5.1); here we derive the same identity
within the Batalin-Vilkovisky formalism.

According to the rules stated in the previous section, the three-gluon Slavnov–
Taylor identity can be obtained by considering the following functional differenti-
ation:

δ3S(�)

δca(q)δAm
μ (k1)δAn

ν(k2)

∣∣∣∣∣

,
∗=0

= 0, (4.15)

which gives the result

−�caA∗α
a′ (−q)�Aa′

α A
m
μA

n
ν
(k1, k2) = �caAn

νA
∗γ
d

(k2, k1)�Ad
γA

m
μ
(k1)

+�caAm
μA

∗γ
d

(k1, k2)�Ad
γA

n
ν
(k2). (4.16)

To further simplify the preceding identity, we need to resort to the so-called
Faddeev–Popov (or ghost) equation, which describes the action of longitudinal
momenta when acting on auxiliary Green’s functions. To derive this equation in
the Rξ gauges, one observes that in the QCD action, the only term proportional to
the antighost fields comes from the Faddeev–Popov Lagrangian density, which can
be rewritten as

LRξ

FPG = −c̄m∂μ(sAm
μ ) = −c̄m∂μ δ�

δA∗m
μ

. (4.17)
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Differentiation of the action with respect to c̄m then yields the Faddeev–Popov
equation in the form of the identity

δ�

δc̄m
+ ∂μ

δ�

δA∗m
μ

= 0, (4.18)

so that, taking the Fourier transform, we arrive at

δ�

δc̄m
+ iqμ

δ�

δA∗m
μ

= 0. (4.19)

Thus, in the Rξ case, Eq. (4.19) amounts to the simple statement that the con-
traction of a leg corresponding to a gluon antifield (A∗m

μ ) by its own momentum
(qμ) converts it to an antighost leg (c̄m). Notice that the Faddeev–Popov equation
depends crucially on the form of the ghost Lagrangian, which in turn depends on
the gauge-fixing function. In the presence of background gluons and sources, the
presence of extra terms in the BFM gauge-fixing function will modify Eq. (4.18),
which will read, in this case,

δ�′

δc̄m
+
(
D̂μ δ�′

δA∗
μ

)m

− (
Dμ�μ

)m = 0. (4.20)

Notice that by setting the background field and source to zero, one correctly recovers
the Rξ equation (4.18).

Let us now differentiate Eq. (4.19) with respect to a ghost field c; after setting the
fields and antifields to zero, we get

�cmc̄n(q) + iqν�cmA∗n
ν

(q) = 0, (4.21)

which can be used to relate the auxiliary function �cmA∗n
ν

(q) with the full ghost
propagator Dmn(q). Owing to Lorentz invariance, we can in fact write �cmA∗n

ν
(q) =

qν�cmA∗n(q), and therefore

�cmc̄n(q) = −iqν�cmA∗n
ν

(q) = −iq2�cmA∗n(q). (4.22)

On the other hand, observing that iDmr (q)�cr c̄n(q) = δmn, we get the announced
relation

�cmA∗n
ν

(q) = qν�cmA∗n(q) = qν[q2Dmn(q)]−1, (4.23)

which, inserted back into Eq. (4.16), gives

qα�Aa
αA

m
μA

n
ν
(k1, k2) = [q2Daa′

(q)]
{
�ca

′
An
νA

∗γ
d

(k2, k1)�Ad
γA

m
μ
(k1)

+ �ca
′
Am
μA

∗γ
d

(k1, k2)�Ad
γA

n
ν
(k2)

}
. (4.24)
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To get the Slavnov–Taylor identity in the same form of Eq. (4.16), one factors out
the color structure igf amn, uses the relation

�Aa
αA

b
β
(q) = (−1)abαβ(q) − iδabqαqβ = iδabPαβ(q)−1(q2), (4.25)

and identifiesHμγ (k1, k2) with�cAμA∗
γ
(k1, k2). Notice then that the relation between

H and the gluon-ghost vertex is automatic, being a manifestation of the Faddeev-
Popov equation; in fact, by differentiating Eq. (4.19) with respect to a gluon and a
ghost field, we get the identity

�crAn
ν c̄

m(k, q) + iqμ�crAn
νA

∗m
μ

(k, q) = 0. (4.26)

We conclude by observing that within the Batalin–Vilkovisky formalism, one
can also obtain Slavnov–Taylor identities for kernels appearing e.g., in the usual
skeleton expansion of QCD Green’s functions. To do so, one decomposes the
kernel under scrutiny in terms of 1PI Green’s functions, calculates the correspond-
ing Slavnov–Taylor identities by taking functional differentiation of the func-
tional (4.10) with respect to suitable fields’ combinations, and then puts together all
the pieces. For example, the Batalin-Vilkovisky formalism version of the Slavnov–
Taylor identity satisfied by the fundamental PT kernel KAAψψ̄ , identified in the
previous chapter, reads (suppressing the quark flavor and color indices)

k
μ

1 KAm
μA

n
νψψ̄

(k2, p2,−p1) = [k2
1D

mm′
(k1)]

×
{
�cm

′
An
νA

∗γ
d

(k2,−k1 − k2)�Ad
γ ψψ̄

(p2,−p1)

+�ψψ̄ (p1)KAn
νψc

m′
ψ̄∗(p2, k1,−p1)

+KAn
νψ

∗ψ̄cm′ (p2,−p1, k1)�ψψ̄ (p2)

+ �cm
′
A

∗γ
d ψψ̄ (k2, p2,−p1)�Ad

γA
n
ν
(k2)

}
, (4.27)

where we have defined the auxiliary kernels

KAn
νψc

m′
ψ̄∗(p2, k1,−p1) = �An

νψc
m′
ψ̄∗(p2, k1,−p1) (4.28)

− i�ψcm
′
ψ̄∗(k1,−p1)S(�)�An

νψψ̄
(p2,−�)

KAn
νψ

∗ψ̄cm′ (p2,−p1, k1) = �An
νψ

∗ψ̄cm′ (p2,−p1, k1) (4.29)

− i�An
νψψ̄

(�,−p1)S(�)�ψ∗ψ̄cm′ (−�, k1).

4.2.2 Background-quantum identities

The first background-quantum identity we can construct is the one relating the
conventional with the BFM gluon self-energies. To this end, consider the following
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functional differentiations (q + p = 0):

δ2S ′ (�′)
δ�a

α(p)δAb
β(q)

∣∣∣∣∣

,
∗,�=0

= 0;
δ2S ′ (�′)

δ�a
α(p)δÂb

β(q)

∣∣∣∣∣

,
∗,�=0

= 0, (4.30)

which give the relations

i�Âa
αA

b
β
(q) =

[
igγα δ

ad + ��a
αA

∗γ
d

(q)
]
�Ad

γA
b
β
(q) (4.31)

i�Âa
αÂ

b
β
(q) =

[
igγα δ

ad + ��a
αA

∗γ
d

(q)
]
�Ad

γ Â
b
β
(q). (4.32)

We can now combine Eqs. (4.31) and (4.32) such that the two-point function mixing
background and quantum fields drop out; then, using the transversality of the gluon
two-point function �AA, we get the background-quantum identity

i�Âa
αÂ

b
β
(q) = i�Aa

αA
b
β
(q) + 2��a

αA
∗γ
d

(q)�Ad
γ A

b
β
(q)

− i��a
αA

∗γ
d

(q)�Ad
γ A

e
ε
(q)��b

βA
∗ε
e

(q). (4.33)

This identity can be rewritten in a more suggestive form by trading the two-point
functions �AA and �ÂÂ for the corresponding (inverse) propagators and setting8

��a
αA

∗d
γ

(q) = iδad
[
gαγG(q2) + qαqγ

q2
L(q2)

]
. (4.34)

One then gets

̂−1(q2) = [
1 +G(q2)

]2
−1(q2). (4.35)

As we know from Chapter 1, the quantity ̂(q2) appearing on the left-hand side
(lhs) of the preceding equation captures the running of the QCD beta function,
exactly as happens with the QED vacuum polarization.9 For example, to lowest
order, one can use the closed expression (4.44) to get (in the Landau gauge)

1 +G(q2) = 1 + 9

4

CAg
2

48π2
ln

(
q2

μ2

)
−1(q2) = q2

[
1 + 13

2

CAg
2

48π2
ln

(
q2

μ2

)]
, (4.36)

thus recovering the well-known result

̂−1(q2) = q2

[
1 + bg2 ln

(
q2

μ2

)]
, (4.37)

8 From Tables 4.1 and 4.2, one sees that the dimensions of the gluon antifield A∗ and background source � are,
respectively, 3 and 1; then simple power counting shows that the (logarithmically) divergent part of �

�a
αA

∗d
γ

(q)
can be proportional to gαγ only, whereas the longitudinal form factor L(q2) is ultraviolet finite.

9 Recall that this is a fundamental property of the BFM gluon self-energy, valid for every value of the (quantum)
gauge-fixing parameter [12].
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where b is the usual one-loop beta function coefficient of Eq. (1.69). As we will
see in Chapter 6, Eq. (4.35) plays a pivotal role in the derivation of a new set of
QCD Schwinger–Dyson equations [13, 14] that can be truncated in a manifestly
gauge-invariant way [15].

Other background-quantum identities involving, e.g., the quark-gluon vertex and
the three-gluon vertex read

i�Âa
αψψ̄

(p2,−p1) = [igγα δ
ad + ��a

αA
∗γ
d

(q)]�Ad
γ ψψ̄

(p2,−p1)

+�ψ∗ψ̄�a
α
(−p1, q)�ψψ̄ (p2)

+�ψψ̄ (p1)�ψ�a
αψ̄

∗(q,−p1) (4.38)

i�Âa
αA

r
ρA

s
σ
(p2,−p1) = [igγα δ

ad + ��a
αA

∗γ
d

(q)]�Ad
γ A

r
ρA

s
σ
(p2,−p1)

+��a
αA

s
σA

∗γ
d

(−p1, p2)�Ad
γA

r
ρ
(p2)

+��a
αA

r
ρA

∗γ
d

(p2,−p1)�Ad
γA

s
σ
(p1). (4.39)

Notice first that the auxiliary function appearing in square brackets on the right-
hand side (rhs) of the preceding identities is always ��A∗ : this is at the root of the
process independence of the PT algorithm. Second, observe that in more general
identities other than the two-point one, the form factor L(q2) is also relevant.

4.2.3 Closed expressions for auxiliary functions

From the PT point of view, it would be not enough to be able to derive the Slavnov–
Taylor identities and the background-quantum identities in the form given earlier. In
fact, one is really striving for a formal link between the Slavnov–Taylor identities,
which are triggered by the action of the longitudinal momenta, and the background-
quantum identities, which relate Green’s functions written in the conventional (Rξ )
and BFM gauges.

The key observation that makes this link possible is that one can always replace
an antifield or BFM source with the corresponding BRST composite operator to
which it is coupled. This means that we can use the replacements10 (see Figure 4.2)

A∗a
α (q) → −i�(0)

ce
′
An′
ν′A

∗a
α

∫
k1

ν ′ν
n′n(k2)De′e(k1) · · · (4.40)

�a
α(q) → −i�(0)

�a
αA

n′
ν′ c̄

e′

∫
k1

ν ′ν
n′n(k2)De′e(k1) · · · , (4.41)

10 For consistency with the definition (4.3), we use here (and later in Chapter 6) a definition of the full gluon
propagator in which the rhs of Eq. (1.25) corresponds to −αβ ; this will not affect the inverse propagator,
which will now be determined by the equation iαμ(−1)μβ = g

β
α . Full gluon lines will then contribute a

factor of iαβ to the corresponding amplitude (ghost lines will contribute an iD factor).
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ca

An
ν

γ

d
A∗γ

d

= igfadngγν +

ca

An
ν

p

k

q

q

γ

d

A∗γ
dcm

= −δdmqγ +

A∗γ
d

Ωa
α

γ

d
≡

≡ a

α

cm

Ωa
α A∗γ

d

=

A∗γ
d

a

α

q

Figure 4.2. (Left) Expansion of the gluon antifield and BFM source in terms of
the corresponding composite operators. Notice that if the antifield or the BFM
sources are attached to a 1PI vertex, such an expansion will in general convert the
1PI vertex into a (connected) Schwinger–Dyson kernel. (Right) The corresponding
expansion of the two-point function ��A∗ and the three-point function �cAA∗ .

to write, e.g.,11

−�cmA
∗γ
d

(q) = −δdmqγ + gf dne

∫
k1

D(k1)γν(k2)�cmAn
ν c̄

e (k2, k1), (4.42)

i�caAn
νA

∗γ
d

(k, q) = igf adngγν − igf edr

∫
k1

D(k1)γρ(k2)KcaAn
νA

r
ρ c̄

e (k, k2, k1),

(4.43)

−��a
αA

∗γ
d

(q) = gf aen

∫
k1

D(k1)ν
α(k2)�ceAn

νA
∗γ
d

(k2,−q). (4.44)

Equation (4.43) then shows explicitly the equivalence between �cAA∗ and the
function H introduced earlier (compare also Figures 1.11 and 4.2).

The systematic use of this expansion to write closed expressions for the auxiliary
functions appearing in the Slavnov–Taylor identities as well as in the background-
quantum identities allows one to unveil a pattern that will be exploited when
applying the pinch technique to the Schwinger–Dyson equations of QCD: the
auxiliary functions appearing in the background-quantum identity satisfied by a
particular Green’s function can be written in terms of kernels appearing in the
Slavnov–Taylor identities triggered when the PT procedure is applied to that same
Green’s function.

11 The expansion of Eqs. (4.40) and (4.41) is, of course, not valid at tree level, which must be explicitly accounted
for when present.
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4.2.4 A special case: The (background) Landau gauge

When choosing to quantize the theory in the background Landau gauge (D̂μAμ)m =
0, a new local equation (called the antighost equation) appears [16]:

δ�

δcm
−
(
D̂μ δ�

δ�μ

)m

− (
DμA∗

μ

)m − f mnrc∗ncr + f mnr δ�

δBn
c̄r = 0. (4.45)

This equation fully constrains the dynamics of the ghost field c and implies that
the latter will not get an independent renormalization constant. To see this, let us
differentiate Eq. (4.20) with respect to a ghost field and a background source to get
(after a Fourier transform)

�cmc̄n(q) = −iqν�cmA∗n
ν

(q)

�c̄n�m
μ
(q) = qμδ

mn − iqν��m
μA

∗n
ν

(q). (4.46)

On the other hand, differentiating the antighost equation (4.45) with respect to a
gluon antifield and an antighost, one gets

�cmA∗n
ν

(q) = qνδ
mn − iqμ��m

μA
∗n
ν

(q)

�cmc̄n(q) = −iqμ�c̄a�m
μ
(q). (4.47)

Next, contracting the first equation in Eq. (4.47) with qν , and making use of the
first equation in Eq. (4.46), we see that the dynamics of the ghost sector are entirely
captured by the ��μA∗

ν
auxiliary function because

�cc̄(q) = −iq2 − qμqν��μA∗
ν
(q). (4.48)

Introducing the Lorentz decompositions

�cA∗
μ
(q) = qμC(q2); �c̄�μ

(q) = qμE(q2), (4.49)

we find that Eq. (4.48), together with the last equations of Eqs. (4.46) and (4.47),
gives the identities [16, 17]

C(q2) = E(q2) = F−1(q2)

F−1(q2) = 1 +G(q2) + L(q2), (4.50)

where F (q2) is the so-called ghost dressing function (with D(q2) = iF (q2)/q2

being the ghost propagator).

In addition, in this gauge, one can prove that the form factor G coincides with the
well-known Kugo–Ojima function u(q2) [8], defined (in Euclidean space) through
the two-point composite operator function∫

d4x e−iq·(x−y)〈T [ (Dμc
)m
x

(
Dμc̄

)n
y

]〉 = −qμqν

q2
δmn + Pμν(q)δmnu(q2). (4.51)
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Ωm
μ Ωm

μA∗m
ν A∗m

νcrc̄s

+−Gmn
μν (q) =

Figure 4.3. Connected components contributing to the function Gmn
μν (q).

In fact, in the background Landau gauge, the function appearing on the lhs of the
preceding equation is precisely given by

− Gmn
μν (q) = δ2W

δ�m
μδA

∗n
ν

, (4.52)

whereW is the generator of the connected Green’s functions and the two connected
diagrams contributing to Gμν are shown in Figure 4.3. Factoring out the color
structure and making use of the identities (4.50), one has

Gμν(q) = ��μA∗
ν
(q) + i��μc̄(q)D(q2)�A∗

νc
(q)

= −i
qμqν

q2
+ iPμν(q)G(q2). (4.53)

Passing to the Euclidean formulation, and comparing with Eq. (4.51), we then
arrive at the announced equality12

u(q2) = G(q2). (4.54)

4.3 Pinching in the Batalin–Vilkovisky framework

It is now important to make contact between the PT algorithm and the Batalin-
Vilkovisky formalism. This is, of course, best done at the one-loop level, where all
calculations are straightforward and it is relatively easy to compare the standard
diagrammatic results with those we will be finding. Not only will this comparison
help us in identifying the pieces that will be generated when applying the PT
algorithm but it will also be useful for establishing the rules to distribute them
among the different Green’s functions appearing in the calculation.

The starting point is the embedding of the (one-loop) gluon propagator into an
S-matrix element (Figure 4.4), exactly as done in Chapter 1. Then, carrying out the
PT decomposition � = �P + �F on the tree-level three-gluon vertex of diagram
(b), we get for the pinching part

(b)P = −gf amngνα

∫
k1

1

k2
1

1

k2
2

k
μ

1 K
(0)
Am
μA

n
νψψ̄

(k2, p2,−p1). (4.55)

12 Many of the results of this section turn out to be valid also in the conventional Rξ Landau gauge [17, 18],
where, however, only an integrated version of the ghost equation (4.45) is available [19].
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(1)

(a)

K(0)

(c)

K(0)

(d)

(b)

K(0)

Figure 4.4. The S-matrix one-loop PT setting for constructing the gluon
propagator.

On the other hand, observing that �cA∗ψψ̄ is zero at tree level, we find that the
Slavnov–Taylor identity of Eq. (4.27) reduces to

k
μ

1 K
(0)
Am
μA

n
νψψ̄

(k2, p2,−p1) = −ggγν f dmn�
(0)
Ad
γ ψψ̄

(p2,−p1)

+�
(0)
ψψ̄

(p1)K(0)
An
νψc

mψ̄∗(p2, k1,−p1)

+K(0)
An
νψ

∗ψ̄cm(p2,−p1, k1)�(0)
ψψ̄

(p2). (4.56)

Now, notice that when the external legs are on shell, the last two terms of the
preceding Slavnov–Taylor identity drop out by virtue of the quark equations of
motion; thus, making use of Eq. (4.44), we are left with the final result

(b)P = g2CAδ
adgγα

∫
k1

1

k2
1

1

k2
2

�
(0)
Ad
γ ψψ̄

(p2,−p1)

= −�(1)
�a
αA

∗γ
d

(−q)�(0)
Ad
γ ψψ̄

(p2,−p1). (4.57)

At this point, the calculation is over, and one needs to reshuffle the pieces generated.
On one hand, to get the PT (on-shell) quark-gluon vertex, one adds to the Abelian
diagram (c) the �F part of diagram (b); thus one is left with the combination
(b) + (c) − (b)P or

i�̂(1)
Aa
αψψ̄

(p2,−p1) = i�(1)
Aa
αψψ̄

(p2,−p1) + �
(1)
�a
αA

∗γ
d

(−q)�(0)
Ad
γ ψψ̄

(p2,−p1). (4.58)

On the other hand, the PT self-energy will be given by adding to the diagram (a)
twice the pinching contribution (b)P (one for each vertex), i.e.,

�̂
(1)
αβ(q) = �

(1)
αβ(q) + 2i�(1)

�a
αA

∗γ
d

(q)�(0)
Ad
γ A

b
β

(q). (4.59)
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The comparison of the PT Green’s functions with those of the background Feynman
gauge is now immediate by virtue of the background-quantum identities.
Equation (4.58) represents the one-loop (on-shell) version of the background-
quantum identity (4.38), and, recalling that −�Am

μA
n
ν
= δmn�μν , we find that

Eq. (4.59) correctly reproduces the background-quantum identity (4.33). Thus
we have (once again) proved the PT background Feynman gauge correspondence
at one loop.

The procedure just described goes through almost unaltered when choosing the
external legs of the embedding process to be gluons, rendering the (one-loop)
proof of the PT process’s independence effortless.
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5

The gauge technique

The gauge technique goes back a long way [1, 2], having been introduced to deal
with the Schwinger–Dyson equations of scalar electrodynamics. Its fundamental
idea is to find an approximate electron-photon proper vertex expressed in terms of
the electron propagator in such a way that the Ward identity is exactly satisfied.
These methods can be extended to NAGTs for constructing approximate three- and
four-point vertices that are gauge invariant and exactly obey the ghost-free Ward
identities of the pinch technique or background-field method. In particular, we
will give here several examples of the three-point proper PT vertex approximately
but gauge invariantly expressed in terms of the gauge-invariant PT proper self-
energy. We do not discuss the four-point vertex, which has been studied elsewhere
[3].

Implementing gauge-invariant studies of NAGTs absolutely requires the gauge
technique or something like it because, unless the Ward identities are satisfied,
gauge invariance is an impossible goal. Outside of perturbation theory, which is
not important for us, or exactly solving the Schwinger–Dyson equations, which is
not possible for us, there is no other method known for systematically and usefully
constructing Green’s functions obeying the right Ward identities.

The gauge technique has two related potential drawbacks. The first is that there
is no such thing as a unique gauge technique vertex. A gauge technique three-
point vertex �GT

μ is one that depends only on two-point functions  and identically
satisfies a Ward identity of the form kμ�GT

μ (k, p) = −1(p) −−1(p − k). To any
proposed gauge technique vertex, we can always add a term �̃μ obeying kμ�̃μ ≡ 0.
The second drawback is that the gauge technique vertex is quantitatively but not
qualitatively wrong for ultraviolet momenta because it is just the omitted, exactly
conserved terms that become as important as the gauge technique terms at large
momentum. How then can the gauge technique be justified? The answer is that in
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5.1 The original gauge technique for QED 105

a theory with a mass gap,1 these identically conserved vertex forms, such as �̃μ,
vanish more rapidly by at least one power of k near zero momentum compared
to the gauge technique vertex. Both these problems suggest that in gauge theories
with a mass gap, which include QED and all the NAGTs of interest to us, the
identically conserved terms are unimportant in the infrared and can be dropped. So
the gauge technique is meant to be used strictly for small momenta. Fortunately,
this is just the region of interest to us, where infrared slavery needs to be cured by
nonperturbative phenomena. In practice, we are forced to use it out to momenta that
are not small compared to a mass scale but comparable to it, so some quantitative
error is inevitable. But we are more interested in the qualitative behavior of QCD
with its infrared slavery, and in particular, we want to know qualitatively how it is
forced to generate a dynamical mass.

Usually, the failure in the ultraviolet can be described as a (partial) failure of
the gauge technique to satisfy the renormalization group; for example, the gauge
technique vertex may have a renormalization group of standard form, but the beta
function coefficients may be wrong. It is possible, in principle at least, to correct
these gauge technique errors systematically both in QED [4] and in asymptotically
free theories [5], but we will not go into such matters here. For a critique of the
gauge technique, see the review [6] by one of the early workers.

The simple QED gauge technique is given first, as a warmup to more complex
problems involving spontaneous symmetry breaking and to the ultimate challenge
of NAGTs. For both Abelian and non-Abelian gauge theories, there are two basic
approaches: via dispersion relations for the propagator, which express the vertex as
a spectral integral involving the spectral weight for the propagator, and via purely
algebraic methods, expressing the vertex directly in terms of the propagators.

5.1 The original gauge technique for QED

5.1.1 Scalar QED

Consider first the proper vertex �μ(p1, p2) coupling a photon of momentum q to a
charged scalar field. We take all momenta as coming into the vertex and normalize
so that the bare vertex is �μ(p1, p2) = i(p1 − p2)μ, with p1 + p2 + q = 0. This
vertex obeys the Ward identity

qμ�μ(p1, p2) = −1(p1) −−1(p2). (5.1)

1 By a mass gap, we mean that there are no massless particles carrying gauge-symmetry charge that appear in
the S-matrix. For NAGTs, as we already know, generation of a dynamical gluon mass requires longitudinally
coupled massless particles akin to Goldstone particles, and such particles are indeed present in the gauge
technique vertex. But these particles are absent from the S-matrix because they are eaten by the gauge bosons.
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106 The gauge technique

Although throughout this book, proper Green’s functions have been at the forefront
for the pinch technique, for the gauge technique, it is sometimes useful to emphasize
the improper vertex. Multiplying �μ by the two charged-scalar propagators gives
the improper vertex or form factor

Fμ(p1, p2) = (p1)�μ(p1, p2)(p2), (5.2)

with a corresponding change in the Ward identity:

qμFμ(p,−q − p) = (p2) −(p1). (5.3)

At tree level, this is satisfied with the usual expressions

iFμ(p,−p − q) = 1

p2
1 −m2

(p1 − p2)μ
1

p2
2 −m2

(p) = i

p2 −m2
. (5.4)

The Ward identity is true no matter what the charged-particle mass m is, provided
that it is the same for both charged lines in the form factor. This is the basis for one
useful form of the gauge technique.

The charged-field propagators have a Källen–Lehmann representation:

− i(p) =
∫

dσ
ρ(σ )

p2 − σ
. (5.5)

If, in Eq. (5.4), we replace m2 by σ and integrate with weight function ρ(σ ), the
Ward identity is still satisfied. So we define the gauge technique improper vertex
as

iF GT
μ (p1, p2) =

∫
dσ ρ(σ )

1

p2
1 − σ

(p1 − p2)μ
1

p2
2 − σ

. (5.6)

Clearly, this is not a unique solution because we can add any identically conserved
function [Gμ(p, q), qμGμ ≡ 0] to the gauge technique vertex and still solve the
Ward identity. Nevertheless, the gauge technique form factor FGT

μ is still useful
in the region of infrared photon momentum qμ ∼ 0, provided that there are no
massless charged particles in the S-matrix.2 The reason, for scalar charged particles,
is a simple kinematic one: an identically conserved function without massless poles
must vanish at least quadratically in qμ for small qμ. This is proved by exhaustion
of a finite number of cases, of which we give only one example:

Gμ = (q2pμ − qμp · q)H (p, q). (5.7)

2 The only massless charged particles that gauge theories can tolerate are Goldstone-like bosons that get eaten by
the gauge particles.
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5.1 The original gauge technique for QED 107

Without some special condition on the theory, there is no reason that H should
vanish at qμ = 0. So in the case at hand, corrections to the gauge technique form
factor are O(q2) at small q.

Equation (5.6) for the gauge technique vertex can easily be transcribed with simple
algebra into a form that does not use the Källen–Lehmann representation. We give
the result for the proper vertex:

�GT
μ (p,−p − q) = (2p + q)μ

2p · q + q2
[−1(p + q) −−1(p)]. (5.8)

Note that there are no singularities at qμ = 0.

The great virtue of the gauge technique, and the reason for its existence, is that one
can express an otherwise very complicated three-particle vertex entirely in terms
of a propagator, always maintaining exact local gauge invariance. In this way, the
Schwinger–Dyson equation for this propagator becomes self-contained.

5.1.2 Fermionic QED

The principles are exactly the same; most of the difference is in notation. In
particular, to conform to the usual conventions, we take one momentum to be in-
going and one to be outgoing. There is a proper and an improper vertex, related by
fermionic propagators:

Fμ(p, p + q) = S(p)�μ(p, p + q)S(p + q), (5.9)

and the fermion propagator obeys the Källen–Lehmann representation:

S(p) =
∫ ∞

−∞
dW

ρ(W )

/p −W
. (5.10)

The Ward identity

qμFμ(p, p + q) = S(p) − S(p + q) (5.11)

is solved with the gauge technique form

F GT
μ (p, p + q) =

∫ ∞

−∞
dW ρ(W )

1

/p −W
γμ

1

/p + /q −W
. (5.12)

Remarkably, using this gauge-technique vertex in the Schwinger–Dyson equation
linearizes it, as King [4] shows.

In this simple case, it is also straightforward to construct the algebraic version of
the gauge technique. Define the electron proper self-energy � by

S−1(p) = /p −M +�(p). (5.13)
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Then [4] the proper gauge technique vertex �̃GT
μ that follows from the spectral form

of Eq. (5.12) is

�̃GT
μ = γμ + 1

p2 − p′2
[
�(p)(/pγμ + γμ/p

′) − (/pγμ + γμ/p
′)�(p′)

]
. (5.14)

There is no singularity at p = p′. As before, one could add an identically conserved
term, such as iσμνqν/M , but it is one power of q higher, not two, as in the scalar
case, at small momentum compared to the mass.

5.2 Massless longitudinal poles

QED has an exact U (1) gauge symmetry, but it is certainly possible to find gauge
technique vertices for gauge theories with dynamically broken gauge symmetry, as
a simple O(2) × U (1) gauge model illustrates [7] (Jackiw and Johnson [8] give an
entirely equivalent illustration). There are no scalar fields of any sort in the model,
just the fermions and gauge potentials, so the conventional Higgs mechanism
cannot apply. Nonetheless, a gauge symmetry can be broken dynamically, with
Higgs and associated Goldstone bosons arising as elements of the solution of the
Schwinger–Dyson equations of the original model. Only the O(2) symmetry is
relevant for us (the U (1) gauge field furnishes a critical attractive force that permits
nontrivial symmetry-breaking solutions of the Schwinger–Dyson equations). The
fermions form a two-vector in the O(2) space of the form

ψ(x) =
(
ψ1

ψ2

)
, (5.15)

and they interact with a gauge potential Bμ through the interaction ψ̄γ μBμτ2ψ ,
where τi are the usual Pauli matrices. The idea is to look for symmetry-breaking
solutions of the Schwinger–Dyson equations where the fermion proper self-energy
has the form

�(p) = �s(p) + τ3�v(p). (5.16)

Thus, �s preserves the gauge symmetry, and �v violates it. In particular, the
symmetry-violating self-energy can split the fermion masses.

The Ward identity for the proper fermion Bμ vertex is

(p − p′)μ�μ(p, p′) = S−1(p)τ2 − τ2S
−1(p′). (5.17)

Without the τ3 term in the fermion self-energy, the vertex, just like the bare vertex,
would point solely in the τ2 direction, and the model would be like two copies of
QED. But with the τ3 term, there must be a term in the vertex behaving like τ1.
Moreover, this part must be singular at small q ≡ p − p′ because at qμ = 0, the
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right-hand side of the preceding equation does not vanish. This singularity turns
out to be a massless, longitudinally coupled scalar – in other words, a dynamical
Goldstone boson. This pole part of the proper vertex must have the following
singularity for q � 0:

�μ(p, p′) = 2iτ1�v(p)qμ
q2

+ · · · , (5.18)

as one can readily check; the omitted terms are regular at q = 0. It is this Goldstone
boson, now appearing in the completely dressed vertex and not classically, that gives
the B-field a mass because its pole in the vertex, behaving like 1/q2, cancels the
usual kinematical factor of q2 in theB-field proper self-energy that would otherwise
prevent mass generation in a gauge theory. This cancellation of the pole is what we
mean when we say that a Goldstone particle is eaten by a gauge boson.

We will not pursue this model further, except to say that it is essential that the
gauge-boson forces acting on the fermions be attractive (which is why there is
a second gauge potential). If they are, the Schwinger–Dyson equations indeed
have a symmetry-violating fermion self-energy that vanishes at large momentum,
fermionic mass splitting, a dynamical Higgs boson, and a nonzero B-boson mass,
all of whose properties are calculable in terms of the parameters of the original
model, whose Lagrangian had none of these effects. However, if the forces are not
attractive, the Schwinger–Dyson equations are inconsistent and nonrenormalizable
and can only be made consistent3 by introducing bare fermion andB-boson masses.

For us, the point of considering this model is that much the same properties
will turn up in non-Abelian gauge theories (with no matter fields of any sort):
gauge-boson mass generation necessarily accompanied by longitudinally coupled
massless scalars (really long-range, pure-gauge parts of the gauge potential). And
the gauge-boson mass will vanish roughly as 1/q2 at large momentum, making the
Schwinger–Dyson equations renormalizable and self-consistent.

5.3 The gauge technique for NAGTs

It took many years after the QED gauge technique to develop similar tools for non-
Abelian gauge theories. The first construction [9] used a spectral form analogous
to the original QED gauge technique, where the spectral integral is the Lehmann
representation of the electron propagator. Later, a very general nonspectral con-
struction was given [10] that expressed the gauge technique three-gluon vertex
algebraically in terms of the PT proper self-energy. This construction was general

3 In actuality, no Abelian gauge theory is really consistent at asymptotically high energies because of the Landau
singularity induced by a positive beta function, but this is not of interest to us.
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enough to use at finite temperature or for situations involving dynamical symmetry
breaking (which requires other fields in appropriate representations; QCD cannot
undergo dynamical symmetry breaking because the quarks are in the fundamental
representation [11]).

We repeat here the notation and structure used in Chapter 1 for the PT propagator,
both in a covariant Rξ gauge and in the light-cone gauge. In both cases, d̂(q) is the
gauge-invariant scalar part of the PT propagator; these two propagators differ only
in gauge terms that receive no corrections and play no essential role. The Ward
identity for the (inverse) propagator is simply that it is transverse, aside from the
irrelevant gauge-fixing terms:

� Covariant gauge

îαβ(q) = Pαβ(q)d̂(q) + ξ
qαqβ

q4
(5.19)

−î−1
αβ (q) = Pαβ(q)d̂(q)−1 + 1

ξ
qαqβ. (5.20)

� Light-cone gauge

îαβ(q) = Qαβd̂(q) + η
qαqβ

(n · q)2
(5.21)

−î−1
αβ (q) = Pαβ(q)d̂(q)−1 + 1

η
nαnβ, (5.22)

where the gauge-fixing parameter η (which has dimensions of (mass)2) is set
to zero at the end of calculations.

We repeat the definition of Pμν and Qμν given in Chapter 1:

Pμν(q) = gμν − qμqν

q2
(5.23)

Qαβ = gαβ − nαqβ + nβqα

n · q .

In both cases, the PT self-energy is defined by

d̂−1(q) = q2 + i�̂(q). (5.24)

The general Ward identity for the PT vertex relates the corrections to the free
vertex to the proper self-energy and has already been found at the one-loop level
in Chapter 1:

q
μ

1 �̂μνα(q1, q2, q3) = �̂να(q2) − �̂να(q3), (5.25)
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where the full PT proper vertex �̂μνα is the sum of the free vertex and �̂μνα. The
free vertex could be either the usual bare vertex or the �ξ vertex of Chapter 1.
Suppose that we use the usual free vertex; then another form of this Ward identity
is as follows:

q
μ

1 �̂μνα(q1, q2, q3) = d̂−1(q2)Pμν(q2) − d̂−1(q3)Pμν(q3). (5.26)

In the light-cone gauge, the right-hand side is really the difference between two
inverse propagators:

q
μ

1 �̂μνα(q1, q2, q3) = ̂−1
αβ (q2) − ̂−1

αβ (q3). (5.27)

This is not so in covariant gauges, unless the vertex used is the �ξ vertex.

5.3.1 The gauge technique in the light-cone gauge

Just as for scalar charged particles, there is one special case where Eq. (5.27) is an
identity, and that is the case of free massive gauge bosons. We generate the massive
propagator by keeping only the quadratic terms of the kinetic energy plus the
gauged nonlinear sigma (GNLS) model (Eq. (2.7)), and the vertex by keeping only
the free cubic vertex plus the cubic term of the GNLS model. For the propagator,
we need only replace �̂ by m2 in Eq. (5.24), and the cubic vertex is

�̂(m2)
μνα (q1, q2, q3) = (q1 − q2)αgμν + m2

2

q1μq2ν(q1 − q2)α
q2

1q
2
2

+ c.p., (5.28)

where c.p. stands for cyclic permutations (of momenta and indices). This vertex,
or the improper form factor F̂ defined in Eq. (5.30), identically satisfies its Ward
identities for any mass m.

If the PT propagator satisfied a Källen–Lehmann representation, we could then
proceed to write a spectral integral for the form factor, as in the Abelian gauge
theories. It is not surprising that infrared slavery, with its so-called wrong signs,
does not permit a positive spectral function, but there still is a dispersion relation
of the type of Eq. (5.5). The dispersion relation is just an integral over the massive
propagator (we omit writing the η term of Eq. (5.21) because, ultimately, η is set
to zero – although this must not be done until the end of any calculation):

îαβ(q) =
∫

dσ ρ(σ )Qαβ

1

q2 − σ
. (5.29)

Spectral form of the gauge technique The one-dressed-loop version of this self-
energy has a term involving (schematically) an integral over �0̂̂�̂ plus a seagull
term. Provided that the propagators are transverse and �̂ satisfies its Ward identity,
the output self-energy is transverse (and gauge invariant because the inputs to it will
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all be gauge invariant). The integrand of the one-dressed-loop self-energy integral
involves a partly improper form factor, which we define as

F̂μνα(q1, q2, q3) = ̂ρ
μ(q2)̂λ

ν(q3)�̂ρλα(q2, q3), (5.30)

with

q
μ

1 F̂μνα(q1, q2, q3) = ̂νσ (q3) − ̂μρ(q2). (5.31)

The expression [9]

F̂ GT
μνα(q1, q2, q3) =

∫
dσ ρ(σ )

Qρ
μ(q2)

q2
2 − σ

�̂
(σ )
ρλα(q1, q2, q3)

Qλ
ν(q3)

q2
3 − σ

(5.32)

satisfies the Ward identity of Eq. (5.27) for any spectral function ρ(σ ), that is, for
any PT propagator.

Algebraic form of the gauge technique The algebraic form [10] of the gauge
technique vertex for NAGTs is considerably more general than the spectral form
and can be used not only for QCD-like theories but also for theories with symmetry
breaking, at finite temperature, and, in fact, for any physically reasonable circum-
stances for NAGTs in three or four dimensions. (The three-dimensional version is
very useful for the functional Schrödinger equation, and we deal with it in Chap-
ter 6.) We give it here only for the simple circumstance that the gluon PT proper
self-energy is diagonal in group space (with group indices assigned in accordance
with the momentum argument) and only in d = 4; see [10] for generalizations and
references to other circumstances. The gauge technique radiative correction to the
free vertex (see Eq. (5.25)) is

�̂μνα(q1, q2, q3) = −q1μq2ν

2q2
1q

2
2

(q1 − q2)ρ�̂ρα(q3)

− [Pρ
μ (q1)�̂ρν(q2) − Pρ

ν (q2)�̂ρμ(q1)]
q3α

q2
3

+ c.p., (5.33)

and this satisfies the Ward identity of Eq. (5.25). (The replacement of �̂μν(q) by
m2Pμν gives – after some algebra – the previous result of Eq. (5.28).) Note the
presence of massless longitudinal excitations in this vertex; these decouple if the
self-energies vanish at zero momentum.

Both the spectral form and the algebraic form have been used in studies of dynamical
gluon mass generation in the light-cone Schwinger–Dyson equations of the pinch
technique [9, 10], and a simplified algebraic form has been used in the covariant
pinch technique Schwinger–Dyson equations [12]. These equations are detailed in
Chapter 6.
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6

Schwinger–Dyson equations in the pinch
technique framework

In this chapter, we provide a detailed demonstration of how the application of the
PT algorithm at the level of the conventional Schwinger–Dyson series leads to a
new, modified Schwinger–Dyson equation (SDE) for the gluon propagator endowed
with very special truncation properties. In particular, because of the QED-like Ward
identities from the fully dressed Green’s functions entering into the gluon SDE, the
transversality of the gluon self-energy is guaranteed at each level of the dressed-
loop expansion. This result constitutes one of the main objectives of the PT pro-
gram, namely, the device of a gauge-invariant truncation scheme for the equations
governing the nonperturbative dynamics of non-Abelian Green’s functions.

Of course, like any propagator SDE, this equation depends on the full three- and
four-point gluon vertices, and these in turn depend on infinitely many other Green’s
functions. We have suggested, in the last chapter, how to truncate the SDE for the PT
propagator by using the gauge technique to approximate the three- and four-point
PT Green’s functions as functionals only of the PT proper self-energy, while main-
taining the exact Ward identities demanded by the PT. This approximation can only
be useful in the infrared; the gauge technique PT Green’s functions clearly fail to
be exact at large momenta (although this failure is quantitative, not qualitative, so it
should not change the fundamental findings from PT SDEs, except in the numerics).

For the purposes of this book, it would be too much to study thoroughly all the
ramifications of combining the gauge technique, which, in its most general form, is
quite complicated, with the pinch technique in the all-order SDEs. In fact, this has
not yet been done. The emphasis in this chapter will be on the SDEs themselves,
not on how to make approximations to them. However, we will present some
applications in which a relatively simple version of the gauge technique provides
the necessary structure for maintaining gauge invariance and obtaining massive
(infrared finite) solutions.

As far as the fundamental underlying dynamics are concerned, there is no quali-
tative difference between the all-order SDEs presented here and the simple one-
loop equations of Chapters 1 and 2: infrared slavery demands the generation of a
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dynamical gluon mass of about half a GeV. Before going into detail, we really
should ask whether it is worth it – is there any solid evidence that the gluon does
have a mass? Of course, this cannot be a direct experimental finding because gluons
are screened out of physical existence as isolated particles. But for QCD theorists,
lattice simulations are the ideal laboratory, and so we begin with summarizing the
lattice evidence for the gluon mass. These simulations are done in Euclidean space,
which leads us to the following notational changes. We will derive the SDEs in
Minkowski space, as we have used so far. But beginning with Section 6.5 and
through the rest of the chapter, we will work in Euclidean space, with metric δμν ,
for ease of comparison with lattice data.

6.1 Lattice studies of gluon mass generation

The experimental laboratory for validation of PT results is the computer, and
the experiments are simulations. In this case, we ask what simulations of gluon
propagators say about the gluon mass. A large number of such simulations have
been done by a number of different groups [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21]. All these simulations, for technical reasons, are
gauge fixed to a Landau gauge1 rather than using the background-field Feynman
gauge, which would then yield the PT propagator. The Landau gauge propagator
is not gauge invariant, but it has one crucial feature: if the gluon has a mass, the
propagator will be finite and nonvanishing at zero momentum – because it would
have a zero-momentum singularity if the gluon were massless. This evidence for
a massive gluon is found in all lattice simulations of the Landau-gauge gluon
propagator cited earlier.

If it were possible to extend the Landau-gauge propagator to the region of timelike
momenta, the position of the pole found in the propagator would be gauge invariant
and yield the gluon mass. Such an extrapolation is risky, and neither we nor the
simulations’ workers have done this systematically and compared all the various
results. However, to our eyes, all the propagator results are quite similar and
presumably yield gluon masses in a fairly narrow range, and when the authors do
give approximate mass values, they all cluster around 500–700 MeV. One group
[1, 2] has attempted an extrapolation, making use of the functional form of the older
PT propagator found in the first attempt [23] at calculating the PT propagator, which
yields a very good fit for a gluon mass of around 600 MeV. It is not clear why a
PT propagator should fit the simulated Landau-gauge propagator so closely. This
issue needs lattice simulations in a background-field Feynman gauge, which do
not yet exist. Figure 6.1 shows recent, and typical, lattice results for the gluon

1 A Landau gauge has Gribov ambiguities [22]; various simulation groups take various approaches to resolving
this issue, as detailed in specific papers. The upshot is that all groups claim that their results are more or less
free of Gribov ambiguity problems.
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Figure 6.1. Lattice results for the gluon propagator from three different lattice
groups. (Upper left) Bare lattice SU (3) gluon propagator (data from Bogolubsky
et al. [15]). (Upper right) SU (3) gluon propagator renormalized at 3 GeV (data
from Oliveira and Silva [11]). (Lower left) Bare SU (2) propagator (data from
Cucchieri and Mendes [19]).
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Figure 6.2. (Left) Bare lattice SU (3) ghost dressing function. Reprinted with
permission from I. L. Bogolubsky, E. M. Ilgenfritz, M. Muller-Preussker, and
A. Sternbeck, Phys. Lett. B676 (2009) 69; c© 2009 by Elsevier. (Right) Bare
SU (2) ghost dressing function (data from Cucchieri and Mendes [19]).
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propagator (q2) obtained by three different lattice groups [15, 19, 11]; Figure 6.2
shows the ghost propagator dressing function F (q2) (defined as the product of q2

times the ghost propagator).

Note that in this figure, positive q2 means a Euclidean (spacelike) momentum. The
dressed gluon propagator is finite at zero momentum, indicating a gluon mass; if the
mass were zero, the zero-momentum value would be infinite. Similarly, the ghost
dressing function approaches a finite value at zero momentum. Both these properties
will be found in the solutions to the PT SDEs of this chapter. We now go on to the
meat of this chapter: the gauge-invariant PT SDEs and gluon mass generation.

6.2 The need for a gauge-invariant truncation scheme for the
Schwinger–Dyson equations of NAGTs

The SDEs provide a formal framework for tackling physics problems requiring
a nonperturbative treatment. Given that the SDEs constitute an infinite system of
coupled nonlinear integral equations for all Green’s functions of the theory, their
practical usefulness hinges crucially on one’s ability to devise a self-consistent
truncation scheme that would select a tractable subset of these equations without
compromising the physics one hopes to describe.

In Abelian gauge theories, the Green’s functions satisfy naive Ward identities: the
all-order generalization of a tree-level Ward identity is obtained simply by replacing
the Green’s functions appearing in it by their all-order expressions. In general, as we
have seen, this is not true in non-Abelian gauge theories, where the Ward identities
are modified nontrivially beyond tree level and are replaced by more complicated
expressions known as Slavnov–Taylor identities: in addition to the original Green’s
functions appearing at tree level, they involve various composite ghost operators.

To appreciate why the Ward identities are instrumental for the consistent trunca-
tion of the SDEs, whereas the Slavnov–Taylor identities complicate it, let us first
consider how nicely things work in an Abelian case, namely, scalar QED (photon),
and then turn to the complications encountered in QCD (gluon).

Local gauge invariance (BRST in the case of the gluon) forces �αν(q) (photon and
gluon alike) to satisfy the fundamental transversality relation

qα�αβ(q) = 0, (6.1)

both perturbatively (to all orders) and nonperturbatively. The SDE governing
�αβ(q) in scalar QED is shown in Figure 6.3. The main question we want to
address is the following: can one truncate the right-hand side (rhs) of Figure 6.3,
i.e., eliminate some of the graphs, without compromising the transversality of
�αβ(q)? The answer is shown already in Figure 6.3: the two blocks of graphs
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Figure 6.3. The SDE for the photon self-energy in scalar QED. The two boxes
enclose a gauge-invariant subset of diagrams.

[(a1) + (a2)] and [(a3) + (a4) + (a5)] are individually transverse, i.e.,

qα
2∑

i=1

(ai)αβ = 0 qα
5∑

i=3

(ai)αβ = 0. (6.2)

The reason for this special property is precisely the Ward identities satisfied by
the full vertices appearing on the rhs of the SDE; for example, the first block is
transverse simply because the full photon-scalar vertex �μ (black blob in (a1))
satisfies the Ward identity:

qα�α = e[D−1(k + q) − D−1(k)], (6.3)

where D(q) is the full propagator of the charged scalar. A similar Ward identity
relating the four-vertex with a linear combination of �α forces the transversality of
the second block in Figure 6.3. Thus, owing to the simple Ward identities satisfied
by the vertices appearing on the SDE for�αβ(q), one may omit the second block of
graphs and still maintain the transversality of the answer intact, i.e., the approximate
�αβ(q) obtained after this truncation satisfies Eq. (6.1).

Let us now turn to the conventional SDE for the gluon self-energy, in theRξ gauges,
given in Figure 6.4. Clearly, by virtue of Eq. (6.1), we must have

qα
5∑

i=1

(ai)αβ = 0. (6.4)

However, unlike the Abelian example, the diagrammatic verification of Eq. (6.4),
i.e., through contraction of the individual graphs by qα, is very difficult, essen-
tially because of the complicated Slavnov–Taylor identities satisfied by the ver-
tices involved. For example, the full three-gluon vertex �αμν(q, k1, k2) satisfies the
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Figure 6.4. Schwinger-Dyson equation satisfied by the gluon self-energy −�AA.
The symmetry factors of the diagrams are s(a1, a2, a5) = 1/2, s(a3, a6) = −1,
and s(a4) = 1/6.

Slavnov–Taylor identity of Eq. (1.89). In addition, some of the pertinent Slavnov–
Taylor identities are either too complicated, such as that of the conventional four-
gluon vertex, or cannot be cast in a particularly convenient form, such as that of
the conventional gluon-ghost vertex. The main practical consequence of this is that
one cannot truncate the rhs of Figure 6.4 in any obvious way without violating
the transversality of the resulting �αβ(q). For example, keeping only graphs (a1)
and (a2) is not correct even perturbatively because the ghost loop is crucial for the
transversality of �αβ already at one loop; adding (a3) is still not sufficient for an
SDE analysis because (beyond one loop) qα[(a1) + (a2) + (a3)]αβ = 0.

As we will see in what follows, the application of the pinch technique to the
conventional SDEs of the NAGTs gives rise to new equations endowed with special
properties. The building blocks of the new SDEs are modified Green’s functions
obeying Abelian all-order Ward identities instead of the Slavnov–Taylor identities
satisfied by their conventional counterparts. As a result, and contrary to the standard
case explained earlier, the new equation for the gluon self-energy can be truncated
gauge invariantly at any order in the dressed-loop expansion.

6.3 The pinch technique algorithm for Schwinger–Dyson equations

At the end of Chapter 4, we saw, in a one-loop context, how the PT algorithm can be
translated in Batalin–Vilkovisky language. More generally, the one-loop procedure
described there carries over practically unaltered to the corresponding SDEs. This
is so because of the following observations:

1. The pinching momenta will be always determined from the tree-level decom-
position of Eqs. (1.41), (1.42), and (1.43).

2. Their action is completely fixed by the structure of the Slavnov–Taylor iden-
tities they trigger (Eq. (4.27) for the vertex at hand).
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3. The kernels appearing in these Slavnov–Taylor identities are the same as
those appearing in the corresponding background-quantum identities, making
it always possible to write the result of the action of pinching momenta in
terms of auxiliary Green’s functions appearing in the latter identities.

The only operational difference is that, in the case of the Schwinger–Dyson equa-
tions for the three-gluon vertex (and the quark-gluon vertex, in the case in which
quarks are included), all three external legs will be off shell. This is, of course,
unavoidable, given that these (fully dressed) vertices are nested in the SDE of the
off-shell gluon self-energy (see, e.g., diagram (a1) of Figure 6.4), and their legs
inside the diagrams are irrigated by the virtual off-shell momenta. As a result,
the equations of motion usually employed to kill some of the resulting pinching
terms should not be used in this case; therefore, the corresponding terms, propor-
tional to inverse self-energies, do not drop out but rather, form part of the resulting
background-quantum identity.

The PT rules for the construction of SDEs may be summarized as follows [24]:

1. For the SDEs of vertices, with all three external legs off shell, the pinching
momenta, coming from the (only) external three-gluon vertex undergoing the
decomposition (1.41), generate at most four types of terms: one is a genuine
vertexlike contribution that must be included in the final PT answer for
the vertex under construction; the remaining three terms will form part of
the emerging background-quantum identities (and thus would be discarded
from the PT vertex). These latter terms have a very characteristic structure
that facilitates their identification in the calculation. Specifically, one of them
is always proportional to the auxiliary function ��A∗ , whereas the other two
are proportional to the inverse propagators of the fields entering into the two
legs that did not undergo the PT decomposition.

2. In the case of the new SDE for the gluon propagator, the pinching momenta
will only generate pieces proportional to ��A∗ , which should be discarded
from the PT answer for the gluon two-point function (because they are
exactly what cancels against the contribution coming from the corresponding
vertices).

6.4 Pinch technique Green’s functions from Schwinger–Dyson equations

We are now ready to describe in detail the application of the PT program to the
(nonperturbative) case of SDEs. We will concentrate on the SDE of the gluon
self-energy,2 which requires carrying out the PT decomposition of Eq. (1.41)

2 The construction of the (fully off-shell) quark-gluon and three-gluon vertices can be found in [24].
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on both sides of the self-energy diagram because both external gluons must be
converted into background gluons. This will be achieved through the following
three steps [24, 25].

6.4.1 First step: �AA → �ÂA

The first step of the construction is the standard PT step: starting from diagram
(a1) of Figure 6.4, we decompose the tree-level three-gluon vertex according to the
usual PT splitting of Eq. (1.41) and concentrate on the �P part. We then get

(a1)P = igf amn

∫
k1

1

k2
1

ν
α(k2)kμ1 �Am

μA
n
νA

b
β
(k2,−q). (6.5)

At this point, the application of the Slavnov–Taylor identity (4.24) together with
Eq. (4.25) and the Faddeev–Popov equation (4.26) results in the following terms:

(a1)P = igf amn

∫
k1

D(k1)ν
α(k2)�cmAn

νA
∗γ
b

(k2,−q)�AγAβ
(q)

+ gf amn

∫
k1

D(k1)

[
�cmAb

βA
∗n
α

(−q, k2) − i
k2α

k2
2

�cmAb
β c̄

n(−q, k2)

]
= (r1)P + (r2)P. (6.6)

Clearly, using the SDE of the auxiliary function ��A∗ , shown in Eq. (4.44), one
has immediately that

(r1)P = −i��a
αA

∗γ
d

(q)�Ad
γA

b
β
(q). (6.7)

This would be half of the pinching contribution coming from the vertex in the
S-matrix pinch technique.

As far as the term (r2)P is concerned, its general structure suggests that the first term
in the square brackets should give rise to the ghost quadrilinear vertex, whereas the
second term in that same bracket, when added to diagram (a3), should symmetrize
the trilinear ghost-gluon coupling. It turns out that this expectation is essentially
correct, but its realization is not immediate because we see, for example, that (r2)P

contains a tree-level [(k2
2)−1] instead of a full [D(k2)] ghost propagator and that

it is unclear how one would generate, e.g., diagrams (b7) or (b9) of Figure 6.6.
The solution to this apparent mismatch is rather subtle: one must employ the SDE
satisfied by the ghost propagator, as shown in Figure 6.5. This SDE is common to
both the Rξ -gauge and the BFM, given that there are no background ghosts, and
reads

iDdn′
(k2) = i

δdn
′

k2
2

+ i
δdg

k2
2

[−�′
cgc̄g

′ (k2)
]

iDg′n′
(k2), (6.8)
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iDmn (iDmn)(0) (iDmm )(0) (iDn n)(−Γ
cm c̄n

) ××

= +

Figure 6.5. The Schwinger–Dyson equation (6.8) satisfied by the ghost
propagator.

with �′
cc̄ being given by �cc̄ minus its tree-level part; notice that multiplying the

preceding equation by k2
2, using the Faddeev–Popov equation (4.21), and dropping

the color factor δdn
′
, we can rewrite the ghost SDE as

k2αD(k2) = k2α

k2
2

− �′
cA∗

α
(k2)D(k2). (6.9)

Taking advantage of this last equation, we can rewrite (r2)P as the sum of the
following two terms:

(s1)P = −igf amn

∫
k1

k2αD(k1)D(k2)�cmAb
β c̄

n(−q, k2) (6.10)

(s2)P = −gf amn

∫
k1

iD(k1)
[
i�cmAb

βA
∗n
α

(−q, k2)

+ �′
cA∗

α
(k2)D(k2)�cmAb

β c̄
n(−q, k2)

]
. (6.11)

The term (s1)P symmetrizes the trilinear ghost-gluon coupling, and one has

(s1)P + (a3) = (b3) (6.12)

(with (b3) shown in Figure 6.6). The term (s2)P will instead be responsible for
generating all the missing diagrams needed to convert �AA into �ÂA. To see how
this happens, we denote by (s2a)P and (s2b)P the two terms appearing in the square
brackets of (s2)P and concentrate on the first one. Making use of the SDE (4.43)
satisfied by the auxiliary function �cAA∗ , we get

(s2a)P = g2CAδ
abgαβ

∫
k1

D(k1)

+ g2f amdf dnr

∫
k1

∫
k3

D(k1)ρ
α(k3)D(k4)KcmAb

βA
r
ρ c̄

n(−q, k3, k4)

= (b4) + (b7) + (b8) + (b10). (6.13)
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Figure 6.6. Schwinger–Dyson equation satisfied by the gluon self-energy −�ÂA. The
symmetry factors of the diagrams are s(b1, b2, b6) = 1/2 and s(b5) = 1/6, and all the
remaining diagrams have s = −1.

Using the SDE (4.42) satisfied by �cA∗ , we then obtain

(s2b)
P = ig2f amdf drs

∫
k1

∫
k3

D(k1)�cnAr
ρ c̄

s (k3, k4)ρ
α(k3)D(k4)D(k2)

×�cmAb
β c̄

n(−q, k2)

= (b9). (6.14)

In addition, because diagrams (a2), (a4), (a5), and (a6) carry over to the correspond-
ing BFM diagrams (b2), (b5), (b6), and (b11), and (a1)F = (b1), we finally find the
identity

(r2)P +
[

(a1)F +
6∑

i=2

(ai)

]
=

11∑
i=1

(bi), (6.15)

and therefore

−�Aa
αA

b
β
(q) = −i��a

αA
∗γ
d

(q)�Ad
γA

b
β
(q) − �Âa

αA
b
β
(q), (6.16)

which coincides with the background-quantum identity (4.31).

6.4.2 Second step: �ÂA → �AÂ

The second step in the propagator construction is to employ the obvious relation

�Âa
αA

b
β
(q) = �Aa

αÂ
b
β
(q), (6.17)

that is, to interchange the background and quantum legs (the SDE for the self-
energy −�AÂ is shown in Figure 6.7). This apparently trivial operation introduces
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Aa
α Ab

β

q

++

(c1)

=

(c2 () c3)

Aν
n

Aμ
m

Aν
n

Aμ
m

k2

k1

(c4)

+

(c5) (c6)

++

Figure 6.7. Schwinger–Dyson equation satisfied by the gluon self-energy −�AÂ.
The symmetry factors of the diagrams are s(c1, c2, c6) = 1/2, s(c3, c4, c7) = −1,
s(c5) = 1/6.

Aa
α Ab

β

q

(d1 () d2)

(d5 () d6)

(d7) (d8) (d9) (d10)

+=

+ +

+ +++

+

(d4)(d3)

+

Figure 6.8. Schwinger–Dyson equation satisfied by the gluon self-energy −�ÂÂ.
The symmetry factors are the same as the one described in Figure 6.5. The different
boxes show gauge-invariant subgroups: one-loop dressed gluon (solid line) and
ghost (dashed line) contributions and two-loop dressed gluon (dotted line) and
ghost (double line) contributions (see the discussion in Section 6.4.4).

a considerable simplification. First, it allows for the identification of the pinching
momenta from the usual PT decomposition of the (tree level) � appearing in
diagram (c1) of Figure 6.7 (something not directly possible from diagram (b1));
thus, from the operational point of view, we remain on familiar ground. In addition,
it avoids the need to employ the (formidably complicated) BQI for the four-gluon
vertex; indeed, the equality between diagrams (c5), (c6), and (c7) of Figure 6.7 and
diagrams (d5), (d6), and (d11) of Figure 6.8 is now immediate (as it was before,
between diagrams (a4), (a5), and (a6) and (b5), (b6), and (b11) of Figures 6.6 and
6.7, respectively).
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6.4.3 Third step: �AÂ → �ÂÂ

We now turn to diagram (c1) and concentrate on its pinching part given by

(c1)P = igf amn

∫
k1

1

k2
1

ν
α(k2)kμ1 �Am

μA
n
νÂ

b
β
(k2,−q). (6.18)

Notice the appearance of the full BFM vertex �AAÂ instead of the standard �AAA

(in the Rξ ). The Slavnov–Taylor identity satisfied by this vertex can be derived by
means of the methods introduced in the previous chapter; the result is3

k
μ

1 �Âa
αA

m
μA

n
ν
(k1, k2) = [k2

1D
mm′

(k1)]
{
�cm

′
An
νA

∗ε
e

(k2, q)�Âa
αA

e
ε
(q)

+ �cm
′
Âa
αA

∗ε
e

(q, k2)�Ae
εA

n
ν
(k2)

}
− igf amn(k2

1gαν − k1αk2ν), (6.19)

where the tree-level term accounts for working with the reduced Slavnov–Taylor
functional. This identity can be further manipulated by using Eq. (4.25) and the
Faddeev–Popov equation satisfied by �cÂA∗ to get

k
μ

1 �Âa
αA

m
μA

s
ν
(k1, k2) = [k2

1D
mm′

(k1)]
{
�cm

′
An
νA

∗ε
e

(k2, q)�Âa
αA

e
ε
(q)

+ �cm
′
Âa
αA

∗ε
e

(q, k2)(−1)enεν(k2) + k2ν�cm
′
Âa
α c̄

n(q, k2)
}

− igf amnk2
1gαν. (6.20)

Consider first the terms that appear in braces. When inserted back into Eq. (6.18)
(we indicate the resulting expression as (r1)P), we see that one gets precisely the
same contributions found in Eq. (6.6), the only difference being that the Ab

β gluon
field appearing there is now the background field Âb

β . Therefore, following step
by step the same procedure used in that case, we find that (see Figure 6.8 for the
diagrams corresponding to each (di))

(r1)P + (c3) = −i��a
αA

∗e
ε

(q)�Ae
εÂ

b
β
(q)

+ (d3) + (d4) + (d7) + (d8) + (d9) + (d10). (6.21)

Finally, adding diagram (c2) to the remaining tree-level term of Eq. (6.20), one gets

(r2)P + (c2) = g2CAδ
ab

∫
k1

αβ(k1) + (c2) = (d2). (6.22)

3 Given a Green’s function involving background as well as quantum fields, it is clear that if we contract it with
the momentum corresponding to a background leg, we will obtain a linear Ward identity (see, e.g., Eqs. (6.28)–
(6.31)), whereas if we contract it with the momentum corresponding to a quantum leg, we will obtain a nonlinear
Slavnov–Taylor identity.
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Putting everything together, and using the standard PT identity (c1)F = (d1), we
get

(r1)P + (r2)P +
[

(c1)F +
7∑

i=2

(ci)

]
= −i��a

αA
∗e
ε

(q)�Ae
εÂ

b
β
(q) +

11∑
i=1

(di), (6.23)

and therefore

− �Aa
αÂ

b
β
(q) = −i��a

αA
∗e
ε

(q)�Ae
εÂ

b
β
(q) − �Âa

αÂ
b
β
(q), (6.24)

which is the background-quantum identity (4.32).

6.4.4 The final rearrangement and the new Schwinger–Dyson equation

Pulling together all the intermediate results, we see that the PT procedure has given
rise to a new Schwinger–Dyson series:

i�AαAβ
+ 2��αA∗γ �AγAβ

− i��αA∗γ �AγAε
��βA∗ε = i

11∑
1=1

(di)αβ. (6.25)

By Lorentz-decomposing the auxiliary function ��A∗(q) according to
Eq. (4.34) and trading the gluon two-point function for the gluon propagator,
we arrive at the equation (viz. Eq. (4.35))

−1(q2)[1 +G(q2)]2Pαβ(q) = q2Pαβ(q) + i
11∑

1=1

(di)αβ. (6.26)

Equivalently, the new SDE (6.26) can be cast into a more conventional form by
isolating on the left-hand side (lhs) the inverse of the unknown quantity, thus writing

−1(q2)Pαβ(q) = q2Pαβ(q) + i
∑11

1=1(di)αβ
[1 +G(q2)]2

. (6.27)

As a consequence of the all-order Ward identities satisfied by the full vertices
appearing in the diagrams defining the PT-background Feynman gauge self-energy
(Figure 6.8), the new SDE (6.27) has a special transversality property: in fact,
gluonic and ghost contributions are separately transverse, and, in addition, no
mixing between the one- and two-loop dressed diagrams will take place.

To prove this, one needs to know the Ward identity corresponding to the four
fully dressed vertices appearing in �̂: �ÂAA, �cÂc̄, �ÂAAA, and, finally, �cÂc̄A.
One way to derive them is to differentiate the Ward identity functional (4.14) with
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respect to the corresponding field combination in which the background field has
been replaced by the corresponding gauge parameter ϑ . On the other hand, one
can also write the corresponding tree-level Ward identities and then use linearity
to generalize them to all orders. In either case, the following results are obtained:

qα�Âa
αA

m
μA

n
ν
(k1, k2) = gf amn

[
−1

μν (k1) −−1
μν (k2)

]
(6.28)

qα�cnÂa
α c̄

m(q,−k1) = igf amn
[
D−1(k2) −D−1(k1)

]
(6.29)

qα�Âa
αA

b
βA

m
μA

n
ν
(k1, k2, k3) = gf adb�Ad

βA
m
μA

n
ν
(k2, k3)

+ gf adm�Ad
μA

b
βA

n
ν
(k1, k3)

+ gf adn�Ad
νA

b
βA

m
μ
(k1, k2) (6.30)

qα�cnÂa
αA

b
β c̄

m(q, k3,−k1) = gf adb�cnAd
β c̄

m(q + k3,−k1)

+ gf adm�cnAb
β c̄

d (k3, q − k1)

+ gf adn�cdAb
β c̄

m(k3,−k1). (6.31)

We shall consider then the one-loop dressed gluonic contributions given by the
combination (d1) + (d2) of Figure 6.8. Using the Ward identity (6.28), we get

qβ(d1)abαβ = −g2CAδ
abqα

∫
k

μ
μ(k), (6.32)

whereas by simply computing the divergence of the tree-level vertex �ÂÂAA, we
get

qβ(d2)abαβ = g2CAδ
abqα

∫
k

μ
μ(k). (6.33)

Thus, clearly,

qβ [(d1) + (d2)]abαβ = 0. (6.34)

Exactly the same procedure shows that for the one-loop-dressed ghost contribution,

qβ(d3)abαβ = −2g2CAδ
abqα

∫
k

D(k) = −qβ(d4)abαβ, (6.35)

and therefore that

qβ [(d3) + (d4)]abαβ = 0. (6.36)

For the two-loop dressed contributions, the proof is to a certain extent more
involved. Begin with the gluonic contributions. Using the Ward identity (6.30),
we see that diagram (d5) would give rise, in principle, to three different terms.
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However, it is straightforward to prove that these terms are all equal modulo rela-
beling of momenta and Lorentz or color indices. Thus, recalling that this diagram
carries a symmetry factor of 1/6, we get

qβ(d5)abαβ = i

2
gf bmn�

(0)
Âa
αA

m
μ′A

g

γ ′Ae
ε′

∫
k

∫
�

ε′ε(k)γ ′γ (�+ k)�A
g
γAe

εA
n
μ
(k, �)

×μ′μ(�+ q), (6.37)

while the remaining graph gives (after making use of the full Bose symmetry of
the three-gluon vertex)

qβ(d6)abαβ = i

2
gf bmn�

(0)
Âa
αA

m
μ′A

g

γ ′Ae
ε′

∫
k

∫
�

ε′ε(k)γ ′γ (�+ k)�A
g
γAe

εA
n′
ν′

(k, �)

×
[
ν ′ν(�)gμ

′
ν −μ′μ(�+ q)gν

′
μ

]
. (6.38)

Now, on the one hand, the first term in the square brackets must integrate to zero
because the integral is independent of q, and therefore the free Lorentz index α

cannot be saturated. On the other hand, the second term is exactly equal but opposite
in sign to the one appearing in Eq. (6.37) so that we obtain

qβ [(d5) + (d6)]abαβ = 0. (6.39)

Finally, we turn to the two-loop dressed ghost contributions. Using the Ward
identity (6.31), we see that the divergence of diagram (d7) gives us three terms,
namely,

qβ(d7)abαβ = −i�(0)

cm
′
Âa
αA

r′
ρ′ c̄n

′

∫
k

∫
�

Dm′m(�+ k)Dn′n(�+ q)ρ ′ρ
r ′r (k)

×
[
gf ber�cnAe

ρ c̄
e (k − q,−�− k) + gf ben�ceAr

ρ c̄
m(k,−�− k)

+ gf ben�cnAr
ρ c̄

n(k,−q − �− k)
]
. (6.40)

Each one of these three terms can be easily shown to cancel exactly against the
individual divergences of the remaining three graphs. To see this in detail, let us
consider, for example, diagram (d10) and use the Ward identity (6.29) to obtain

qβ(d10)abαβ = −igf bmn�
(0)
cmÂa

αA
r
ρ c̄

d

∫
k

∫
�

ρ ′ρ(k)�cdAr
ρ c̄

n(k,−q − �− k)

×D(�+ q) [D(�+ k) −D(�+ k + q)] . (6.41)

We see that the second term in the square brackets will integrate to zero, whereas
the first term will cancel exactly the third term appearing in the square brackets of
Eq. (6.40). It is not difficult to realize that the same pattern will be encountered
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when calculating the divergence of diagrams (d8) and (d9) so that one has the
identity

qβ [(d7) + (d8) + (d9) + (d10)]abαβ = 0, (6.42)

which then concludes our proof of the special transversality properties of the new
Schwinger–Dyson series.

This special property has far-reaching practical consequences for the treatment
of the Schwinger–Dyson series [24, 25]. Specifically, it furnishes a systematic
truncation scheme that preserves the transversality of the answer. For example,
keeping only the diagrams in the first group, we obtain the truncated SDE

−1(q2)Pαβ(q) = q2Pαβ(q) + i[(d1) + (d2)]αβ
[1 +G(q2)]2

, (6.43)

and from Eq. (6.34), we know that [(d1) + (d2)]αβ is transverse, i.e.,

[(d1) + (d2)]αβ = (d − 1)−1[(d1) + (d2)]μμPαβ(q). (6.44)

Thus, the transverse projector Pαβ(q) appears exactly on both sides of Eq. (6.43);
one may susbsequently isolate the scalar cofactors on both sides, obtaining a scalar
equation of the form

−1(q2) = q2 + i[(d1) + (d2)]μμ
[1 +G(q2)]2

. (6.45)

A truncated equation similar to Eq. (6.43) may be written for any other of the four
groups previously isolated, or for sums of these groups, without compromising the
transversality of the answer. The price one has to pay for this advantageous situation
is rather modest and consists in considering the additional equation determining
the scalar function G(q2); notice, however, that one can approximate this function
via a dressed-loop expansion without jeopardizing the transversality of �αβ(q),
given that [1 +G(q2)]2 affects only the size of the scalar prefactor.

Let us conclude by noticing that in going from Eq. (6.26) to Eq. (6.27), one
essentially chooses to retain the original propagator (q) as the unknown quantity
to be dynamically determined from the Schwinger–Dyson equation. There is, of
course, an alternative strategy: one may define a new variable from the quantity
appearing on the lhs of Eq. (6.26), namely,

̂(q) ≡ [
1 +G(q2)

]−2
(q), (6.46)
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which leads to a new form for Eq. (6.26):

̂−1(q2)Pαβ(q) = q2Pαβ(q) + i
11∑
i=1

(di)αβ. (6.47)

Obviously, the special transversality properties established earlier hold as well for
Eq. (6.47); for example, one may truncate it gauge invariantly as

̂−1(q2)Pαβ(q) = q2Pαβ(q) + i[(d1) + (d2)]αβ. (6.48)

Should one opt for treating ̂(q) as the new unknown quantity, then an addi-
tional step must be carried out: one must use Eq. (6.46) to rewrite the entire
rhs of Eq. (6.47) in terms of ̂ instead of , i.e., carry out the replacement
 → [1 +G]2 ̂ inside every diagram on the rhs of Eq. (6.47) that contains s.

Therefore, whereas Eq. (6.43) furnishes a gauge-invariant approximation for the
conventional gluon self-energy (q), Eq. (6.47) is the gauge-invariant approxima-
tion for the effective PT self-energy ̂(q). The crucial point is that one may switch
from one to the other by means of Eq. (6.46). For practical purposes, this means,
for example, that one may get a gauge-invariant approximation not just for the PT
quantity (background Feynman gauge) but also for the conventional self-energy
computed in the Feynman gauge. Equation (6.46) plays an instrumental role in
this entire construction, allowing one to convert the Schwinger–Dyson series into
a dynamical equation for either ̂(q) or (q).

6.4.5 Truncation of the pinch technique Schwinger–Dyson equation

The new Schwinger–Dyson series projected by the pinch technique has both theo-
retical and practical advantages. On the one hand, the main theoretical advantage
is that the various fully dressed graphs organize themselves into gauge-invariant
subsets, thus allowing for a systematic gauge-invariant truncation. On the other
hand, at the practical level, this property reduces the number of coupled SDEs
that one has to consider to maintain the gauge (BRST) symmetry of the theory to
only two: the one for the gluon self-energy, given by, e.g., the first gauge-invariant
subset only (i.e., [(d1) + (d2)]αβ in Figure 6.8), and the Schwinger–Dyson equation
satisfied by the full three-gluon vertex. This is to be contrasted to what happens
within the conventional formulation where the equations for all vertices must be
considered, or else the transversality of the gluon propagator is violated (which is
what usually happens).

However, even the PT analysis does not furnish a simple diagrammatic truncation,
analogous to that of the gluon self-energy, for the Schwinger–Dyson equation
satisfied by the three-gluon vertex �ÂαAμAν

(k1, k2). Thus, if one were to truncate
the equation for the three-gluon vertex by discarding some of the graphs appearing
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in it, the validity of the all-order Ward identity (6.28) would be violated; this, in
turn, would lead immediately to the violation of the transversality property of the
subset kept, thus making the entire truncation scheme collapse.

One should adopt the following strategy instead: given that the proposed truncation
scheme hinges crucially on the validity of Eq. (6.28), one should start with an
approximation that manifestly preserves it. The way to enforce this, therefore, is
through the gauge technique, as described in Chapter 5.

6.5 Solutions of the pinch technique Schwinger–Dyson equations and
comparison with lattice data

We will next focus on a particular application of the powerful machinery offered
by the truncation scheme introduced in the previous section. In particular, we will
study gauge invariantly the coupled SDEs of the gluon and ghost propagators and
compare the results obtained to recent lattice data. To this end, we will do the
following:

1. We will truncate (gauge invariantly) the gluon propagator SDE by keeping
only the one-loop dressed contributions; that is, we only consider the first two
blocks appearing in Figure 6.8. Recall that when evaluating these diagrams,
one must employ the BFM Feynman rules. Note also the following crucial
point: the (background) three-gluon vertex �ÂAA and the ghost vertex �cÂc̄

appearing in the corresponding diagrams must be fully dressed and satisfy
the correct Ward identities, namely, Eqs. (6.28) and (6.29), respectively, to
enforce the transversality of the resulting gluon self-energy.

2. For the ghost SDE, we use the equation shown in Figure 6.5. Notice that the
ghost vertex appearing in the SDE is the conventional one, �cAc̄; therefore,
one may employ a different approximation than the one used for the back-
ground ghost vertex. In particular, according to lattice studies [26, 27], the
vertex �cAc̄ may be accurately approximated simply by its tree-level expres-
sion. The ability to employ a different treatment for the two ghost vertices,
without compromising gauge invariance, is indicative of the versatility of the
new truncation scheme introduced earlier.4

3. For the SDE (4.44) governing the dynamics of the auxiliary function ��A∗ ,
the vertex �AcA∗ will be approximated by its tree-level value.5

4 Notice also that, whereas the background ghost vertex satisfies a linear Ward identity, which can be solved
through a gauge technique ansatz, the conventional vertex satisfies a Slavnov–Taylor identity of rather limited
usefulness.

5 This vertex has not been studied on the lattice; the only constraints are the ones imposed by the Faddeev–Popov
equation (4.26), relating it with the conventional ghost vertex, that are indeed satisfied by our tree-level choice
for both vertices.
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We then have the following equations:

−1(q2)Pαβ(q) = q2Pαβ(q) + i
∑4

1=1(di)αβ
[1 +G(q2)]2

,

F−1(q2) = 1 + g2CA

∫
k

[
1 − (k · q)2

k2q2

]
(k)D(k + q),

G(q2) = g2CA

d − 1

∫
k

[
(d − 2) + (k · q)2

k2q2

]
(k)D(k + q),

L(q2) = g2CA

d − 1

∫
k

[
1 − d

(k · q)2

k2q2

]
(k)D(k + q). (6.49)

The concrete dynamics that will give rise to an infrared finite gluon propagator,
signaling the dynamical generation of a gluon mass, are inserted into the first of the
preceding equations through an appropriate gauge technique ansatz for the fully
dressed vertices �ÂαAμAν

(k1, k2) and �cÂαc̄
(q, k1), appearing in the diagrams (d1)

and (d3) of Figure 6.8. Specifically, one expresses �ÂαAμAν
(k1, k2) and �cÂαc̄

(q, k1)
as a function of the gluon and ghost self-energy, respectively, such that they auto-
matically satisfy the two Ward identities (6.28) and (6.29). In addition, as already
explained in the previous chapter, the vertices must contain longitudinally coupled
massless (bound state) poles, as is required for triggering the Schwinger mecha-
nism. We will use the following simplified gauge technique ansatze:

�ÂαAμAν
(k1, k2) = �

(0)
ÂαAμAν

(k1, k2) + i
qα

q2

[
�μν(k2) −�μν(k1)

]
�Âαcc̄

(k1, k2) = �
(0)
Âαcc̄

(k1, k2) − i
qα

q2

[
L(k2

2) − L(k2
1)
]
, (6.50)

where L denotes the ghost self-energy, D−1(p2) = p2 − iL(p2). It is elementary
to verify that the preceding two vertices indeed satisfy the correct Ward identities
(6.28) and (6.29), respectively.

The resulting expression in the Landau gauge6 for the gluon SDE is too long
to be reported here [28]; rather, we show in Figure 6.9 the solution of the full
system (6.49) when G(q2) is approximated by its one-loop expression (L(q2) is
not needed in this case), comparing it with the corresponding lattice data.

Note that, whereas there is good qualitative agreement with the lattice, there is a
significant discrepancy (a factor of 2) in the intermediate region of momenta. This,

6 The projection to the Landau gauge is a subtle exercise because one cannot directly set ξ = 0 in the integrals
given the presence of terms proportional to 1/ξ in the background three-gluon vertex. Instead, one has to use
the expressions for general ξ , carry out explicitly the set of cancellations produced when the terms proportional
to ξ generated by the identity kμμν (k) = −iξkν/k2 are used to cancel 1/ξ terms, and set ξ = 0 only at the
very end.
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Figure 6.9. (Left) The numerical solution for the gluon propagator from the PT
modified SDE (solid line) compared to the lattice data of [12]. (Right) The ghost-
dressing function p2D(p2) obtained from the SDE. In the inset are the lattice data
for the same quantity; notice the absence of any enhancement in both cases.

of course, may not come as a surprise, given that (1) the two-loop dressed part of the
SDE for the gluon propagator has been omitted (the last two blocks in Figure 6.8)
and (2) the auxiliary function G(q2) has been evaluated at the one-loop level only.
Even though this omission has not introduced artifacts (because it was done gauge
invariantly), the terms left out are expected to modify precisely the intermediate
region, given that both the infrared and ultraviolet limits of the solutions are already
captured by the one-loop dressing terms considered.

The finiteness of the ghost-dressing function F in the infrared has an important
theoretical consequence related with the so-called Kugo–Ojima confinement crite-
rion, which is already mentioned at the beginning of Chapter 4. In the Kugo–Ojima
confinement picture (in covariant gauges), the absence of colored asymptotic states
from the physical spectrum of the theory is due to the so-called quartet mecha-
nism [29]. A sufficient condition for the realization of this mechanism (and the
meaningful definition of a conserved BRST charge) is that the correlation function
u(q2) defined in Eq. (4.51) satisfies the condition u(0) = −1. In addition, as first
noted by Kugo [30], in Landau gauge, u(0) is related to the infrared behavior of the
ghost-dressing functionF (q2) through the identityF−1(0) = 1 + u(0). This is none
other than the second identity of Eq. (4.50), under the additional assumption that
L(0) = 0. In fact, from the last of Eqs. (6.49), it is straightforward to establish that if
bothF and are infrared finite, this condition is indeed fulfilled [31, 32]. Therefore,
the Kugo–Ojima confinement scenario predicts a divergent ghost-dressing function
and vice versa. Interestingly, the same prediction about F−1(0) is obtained when
implementing the Gribov–Zwanziger horizon condition [22, 33]: in the infrared
region, the ghost propagator diverges more rapidly than at tree level. Evidently,
these affirmations are at odds not only with the recent lattice results of the ghost
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propagator and the Schwinger–Dyson analysis based on the PT truncation scheme
presented here but also with a series of direct lattice simulations of the Kugo–Ojima
function itself [34].

6.6 The QCD effective charge

One of the most important successes of the pinch technique is that it allows for the
unambiguous extension of the concept of the effective charge [35] from QED to
QCD. Such a quantity is of considerable theoretical and phenomenological interest
because once correctly defined, it provides a continuous interpolation between two
physically distinct QCD regimes: the deep ultraviolet (UV), where perturbation
theory works well, and the deep infrared (IR), where nonperturbative techniques
must be employed. In fact, the effective charge is intimately connected with two
phenomena that are of central importance to QCD: asymptotic freedom in the UV
and dynamical gluon mass generation in the IR.

6.6.1 The prototype: The QED effective charge

The quantity that serves as the field-theoretic prototype for guiding our analysis is
the effective charge of QED. Consider the bare dressed photon propagator between
conserved external currents:


μν

0 (q2) = gμν

q2[1 + �0(q2)]
, (6.51)

where the dimensionless quantity �(q2) is the vacuum polarization, which is
independent of the gauge-fixing parameter to all orders. The expression μν

0 (q2) is
renormalized multiplicatively according toμν

0 (q2) = ZA
μν(q2), whereZA is the

wave function renormalization of the photon (A0 = Z
1/2
A A). Imposing the on-shell

renormalization condition for the photon, we obtain �(q2) = ZA[1 + �0(q2)],
where ZA = 1 − �0(0) and �(q2) = �0(q2) − �0(0); clearly �(0) = 0.

The renormalization procedure introduces, in addition, the standard rela-
tions between renormalized and unrenormalized electric charge, e = Z−1

e e0 =
ZfZ

1/2
A Z−1

1 e0, where Ze is the charge renormalization constant, Zf the wave
function renormalization constant of the fermion, and Z1 the vertex renormal-
ization. From the famous QED relation Z1 = Zf , a direct consequence of the
Ward identity qμ�0

μ(p, p + q) = S−1
0 (p + q) − S−1

0 (p), it follows immediately

that Ze = Z
−1/2
A .

Given these relations between the renormalization constants, we can now form the
following combination:

e2
0

μν

0 (q2) = e2μν(q2), (6.52)
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which is invariant under the renormalization group (RG); that is, it maintains the
same form before and after renormalization. After pulling out the kinematic factor
(1/q2), one may define the QED effective charge αeff(q2), namely,

αeff(q
2) = α

[1 + �(q2)]
, (6.53)

where α is the fine-structure constant.

The QED effective charge of Eq. (6.53) is independent of the gauge-fixing param-
eter and invariant under the renormalization group to all orders in perturbation
theory. Furthermore, given that �(0) = 0, at low energies, the effective charge
matches on to the fine-structure constant: αeff(0) = α = 1/137.036 · · ·.
In addition, for asymptotically large values of q2, i.e., for q2 � m2

f , where mf

denotes the masses of the fermions contributing to the vacuum polarization loop
(f = e, μ, τ, . . .), α(q2) matches on to the running coupling ᾱ(q2) defined from
the RG. At the one-loop level,

αeff(q
2)

q2�m2
f−→ ᾱ(q2) = α

1 − (αβ1/2π ) log(q2/m2
f )
, (6.54)

where β1 = 2/3nf is the coefficient of the QED beta function for nf fermion types.

6.6.2 The QCD effective charge

The main difficulty in the generalization of the QED effective charge to QCD (or any
other NAGT) is that, unlike the QED vacuum polarization, the conventional QCD
gluon self-energy depends explicitly on the gauge-fixing parameter. In addition,
with the exception of some special gauges, Z1 = Zf , and therefore the gluon self-
energy does not capture, in general, the leading renormalization group logarithms.

The pinch technique solves the preceding difficulties at once: the new gluon self-
energy is independent of the gauge-fixing parameter, whereas the Abelian ward
identities satisfied by the PT Green’s functions (e.g., quark-gluon vertex) restore
the crucial equalities Ẑ1 = Ẑf and Zg = Ẑ

−1/2
A . In addition, the PT self-energy

is process independent [36] (see also Chapter 1) and can be Dyson resummed
to all orders [37, 38, 39, 40, 41] (see Chapter 11). Therefore, the construction
of the universal and RG-invariant combination analogous to that of Eq. (6.52) is
immediate because the quantity

d̂0(q2) = g2
0̂0(q2) = g2(μ2)̂(q2, μ2) = d̂(q2), (6.55)
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is manifestly RG invariant (viz., μ independent). Then, by virtue of the iden-
tity (4.35), we can write equivalently

d̂(q2) = g2(μ2)
(q2, μ2)[

1 +G(q2, μ2)
]2 . (6.56)

It is important to obtain a quantitative confirmation of the μ independence of
d̂(q2) using as ingredients the individually μ-dependent solutions for (q2, μ2)
and G(q2, μ2) obtained from the system of SDEs given in Eq. (6.49). At this point,
one notices a shift in our philosophy, which is, however, dictated only by prac-
tical considerations. Specifically, as repeatedly stated, the genuine PT propagator
̂(q2, μ2) is the one obtained in the Feynman gauge of the BFM, whereas the
system of Eq. (6.49) that we consider is formulated in the Landau gauge mainly
because the relevant lattice simulations are almost exclusively carried out in this
latter gauge. Therefore, we study for the rest of this section the generalized PT
effective charge in the BFM Landau gauge (see Section 2.3.4). As is well known,
and contrary to what happens in the conventional Rξ gauges, at one loop in per-
turbation theory, the coefficient multiplying the renormalization group logarithms
does not depend on the specific value of ξQ (see Eq. (2.71)). As a result, the asymp-
totic (ultraviolet) behavior of the two charges (Feynman vs. Landau gauges) will be
identical. Note, however, that this is not necessarily so in the infrared; in fact, the
freezing value obtained for the Landau gauge effective charge is significantly ele-
vated compared to the value of about 0.5 that one finds for the genuine PT effective
charge.

Returning to Eq. (6.56), one may clearly see in Figure 6.10 that all quantities
obtained from the aforementioned SDEs, and in particular(q2, μ2) andG(q2, μ2),
display a sizable dependence on the choice of the renormalization point μ. How-
ever, when(q2, μ2) andG(q2, μ2) are used as inputs to form the special combina-
tion (6.56), their netμ dependence cancels almost completely against that of g2(μ);
the latter dependence is obtained from the four-loop beta function corresponding to
the minimal-subtraction scheme that we employ for renormalizing the SDEs [42]
(see Figure 6.11). Thus one ends up with a nearly μ-independent quantity, as is
clearly shown in Figure 6.12.

The next step is to extract out of the dimensionful d̂(q2) a dimensionless quantity
that would correspond to the QCD effective charge. In the perturbative regime,
when momenta are asymptotically large, it is clear that the mass scale is saturated
simply by q2, the bare gluon propagator, and the effective charge is defined by
pulling a factor 1/q2 out of the corresponding RG-invariant quantity exactly as
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Figure 6.10. The μ dependence of the quantities (top left) (q2), (top right)
F (q2), (bottom left) G(q2), and (bottom right) L(q2) as obtained from solving the
system of SDEs (6.49).
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Figure 6.11. The perturbative running coupling in the MOM scheme up to four
loops, αMOM(q2), for different values of �QCD. Black squares represent the values
used for α(μ2).
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Figure 6.12. The (dimensionful) RG-invariant combination d̂(q2) defined in
Eq. (6.56).

happens in the QED case. We define

d̂(q2) = g2(q2)

q2
, (6.57)

with g2(q2) being the RG-invariant effective charge of QCD; then, at one loop,

g2(q2) = g2

1 + bg2 ln
(
q2/μ2

) = 1

b ln
(
q2/�2

QCD

) , (6.58)

where �QCD denotes an RG-invariant mass scale of a few hundred MeV.

On the other hand, given that the gluon propagator becomes effectively massive
in the IR, particular care is needed in deciding exactly what combination of mass
scales ought to be pulled out. For example, if one insists on defining the effective
charge by trivially factoring out 1/q2, the result obtained will be a completely
unphysical coupling, vanishing in the deep IR, where QCD is supposed to be
strongly coupled. Instead, the correct procedure in such a case is to factor out a
massive propagator of the form [q2 +m2(q2)]−1, where m2(q2) is the dynamical
momentum-dependent mass; that is, one must set [23, 31]

d̂(q2) = g2(q2)

q2 +m2(q2)
. (6.59)

Clearly, for q2 � m2(q2), the expression on the rhs of Eq. (6.59) goes over to that
of Eq. (6.57).
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Even though the aforementioned procedure of factoring out a massive propagator
was spelled out long ago in the original work on dynamical gluon mass gener-
ation [23], owing to a variety of recent developments, this issue deserves some
further clarification. To that end, it is instructive to compare the situation with the
more familiar, and conceptually more straightforward, case of the electroweak sec-
tor of the SM, where the corresponding gauge bosons (W and Z) are also massive,
albeit through an entirely different mass-generation mechanism; indeed, despite
the difference in their origins, the masses act in a very similar fashion at the level
of the RG-invariant quantity associated with the corresponding gauge boson.

In the case of the W -boson, the quantity corresponding to that of Eq. (6.59) would
read (Euclidean momenta)

d̂W (q2) = g2
W

(q2)

q2 +M2
W

, (6.60)

with

g2
W

(q2) = g2
W

(μ)

[
1 + bWg

2
W

(μ)
∫ 1

0
dx ln

(
q2x(1 − x) +M2

W

μ2

)
− · · ·

]−1

, (6.61)

where bW = 11/24π2 and the ellipses denote the contributions of the fermion
families. Clearly, d̂W (0) = g2

W
(0)/M2

W
, with

g2
W

(0) = g2
W

(μ)

[
1 + bWg

2
W

(μ) ln

(
M2

W

μ2

)]−1

. (6.62)

Evidently, in the deep IR, the coupling freezes at a constant value; Fermi’s constant
is in fact determined as7 4

√
2GF = g2

W
(0)/M2

W
.

This property of the freezing of the coupling can be reformulated in terms of what
in the language of the effective field theories is referred to as decoupling [43]. At
energies that are small compared to their masses, the particles appearing in the loops
(in this case, the gauge bosons) cease to contribute to the running of the coupling.
Possibly large logarithmic constants, e.g., ln(M2

W
/μ2), may be reabsorbed in the

renormalized value of the coupling. Of course, the decoupling, as described earlier
should not be misinterpreted to mean that the running coupling vanishes; instead,
as already mentioned, it freezes at a constant, nonzero value. In other words, the
decoupling does not imply that the theory becomes free (noninteracting) in the IR.

It would certainly be incorrect in such cases to insist on the perturbative prescription
and simply factor out a 1/q2. Even though one is merely redistributing a given

7 Note that in the case of QCD, the corresponding combination, g2(0)/m2(0), would be similar to a Nambu–
Jona–Lasinio type of coupling [1]: at energies below the gluon mass m, the tree-level amplitude of four quarks
starts looking a lot like that of a four-Fermi interaction.
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Figure 6.13. A sketch plot that shows how the same RG-invariant quantity in the
presence of the mass scale M2

W
can be decomposed in two different ways: one

giving a divergent propagator and a vanishing coupling and the other, giving a
finite propagator and a finite coupling.

function, namely, d̂W (q2), into two pieces, factoring out 1/q2 deprives both of
any physical meaning. Indeed, the effective coupling so defined would be given
by the expression g̃2

W
(q2) = q2d̂W (q2), and so g̃2

W
(0) = 0; evidently, one would be

attempting to describe weak interactions in terms of a massless, IR-divergent,
gauge-boson propagator and a vanishing effective coupling (see the dotted lines
in Figure 6.13). Correspondingly, given that the gluon propagator is finite in the
IR, if this latter (wrong) procedure were to be applied to QCD, it would furnish
a completely unphysical coupling, namely, one that vanishes in the deep infrared,
where QCD is expected to be (and is) strongly coupled.

After this long detour, let us return again to the basic equation (6.59). To actually
determine the effective charge from d̂(q2), some additional information about the
concrete running ofm2(q2) must be provided. The actual running of the mass may be
determined dynamically through elaborate considerations that we will not present
here. Instead, we will assume that m2(q2) displays a power-law running, as shown
by the early work of Lavelle [44] (see Chapter 2) and as has been independently
confirmed within an entirely different formalism [45]. In Figure 6.14, we show the
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q2 [GeV2]

α
(q

2
)

Figure 6.14. The effective charge α(q2) obtained from the RG-invariant d̂(q2)
using Eqs. (6.59) and (6.63) for a value of the effective gluon mass m0 =
600 MeV.

effective charge, α = g2(q2)/4π , obtained from the d̂(q2) shown in Figure 6.14
(left) after using Eq. (6.59) with a running gluon mass of the form

m2(q2) = m4
0

q2 +m2
0

. (6.63)

One observes the freezing of the coupling at a finite nonvanishing value,8 which is
a direct consequence of the appearance of the dynamical mass in the RG logarithm.

References

[1] C. Alexandrou, P. de Forcrand, and E. Follana, The gluon propagator without lattice
Gribov copies, Phys. Rev. D63 (2001) 094504.

[2] C. Alexandrou, P. de Forcrand, and E. Follana, The gluon propagator without lattice
Gribov copies on a finer lattice, Phys. Rev. D65 (2002) 114508.

[3] P. Boucaud et al., The infrared behaviour of the pure Yang-Mills Green functions,
arXiv hep-ph/0507104.

[4] P. Boucaud et al., Short comment about the lattice gluon propagator at vanishing
momentum, arXiv hep-lat/0602006.

[5] P. Boucaud, J. P. Leroy, A. Le Yaouanc, J. Micheli, O. Pene, and J. Rodriguez-
Quintero, On the IR behaviour of the Landau-gauge ghost propagator, JHEP 0806
(2008) 099.

[6] P. O. Bowman, U. M. Heller, D. B. Leinweber, M. B. Parappilly, and A. G. Williams,
Unquenched gluon propagator in Landau gauge, Phys. Rev. D70 (2004) 034509.

8 This means, in particular, that when quark masses are ignored, QCD becomes conformally invariant in the deep
IR. The existence of such a conformal window has been advocated for certain applications of the AdS/CFT
correspondence in QCD [46].

https://doi.org/10.1017/9781009402415 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415


142 Schwinger–Dyson equations in the pinch technique framework

[7] W. Kamleh, P. O. Bowman, D. B. Leinweber, A. G. Williams, and J. Zhang,
Unquenching effects in the quark and gluon propagator, Phys. Rev. D76 (2007)
094501.

[8] A. Cucchieri, T. Mendes, O. Oliveira, and P. J. Silva, Just how different are SU(2)
and SU(3) Landau-gauge propagators in the IR regime?, Phys. Rev. D76 (2007)
114507.

[9] O. Oliveira and P. J. Silva, Infrared gluon and ghost propagators from lattice QCD:
Results from large asymmetric lattices, Eur. Phys. J. A31 (2007) 790.

[10] O. Oliveira, P. J. Silva, E. M. Ilgenfritz, and A. Sternbeck, The gluon propagator
from large asymmetric lattices, PoS LAT2007 (2007) 323.

[11] O. Oliveira and P. J. Silva, The lattice infrared Landau gauge gluon propagator: The
infinite volume limit, arXiv 0910.2897 [hep-lat].

[12] I. L. Bogolubsky, E. M. Ilgenfritz, M. Muller-Preussker, and A. Sternbeck, The
Landau gauge gluon and ghost propagators in 4D SU(3) gluodynamics in large
lattice volumes, PoS LAT2007 (2007) 290.

[13] E. M. Ilgenfritz, M. Muller-Preussker, A. Sternbeck, A. Schiller, and I. L.
Bogolubsky, Landau gauge gluon and ghost propagators from lattice QCD, Braz. J.
Phys. 37 (2007) 193.

[14] I. L. Bogolubsky, V. G. Bornyakov, G. Burgio, E. M. Ilgenfritz, M. Müller-
Preussker, P. Schemel, and V. K. Mitrjushkin, The Landau gauge gluon propagator:
Gribov problem and finite-size effects, PoS LAT2007 (2007) 318.

[15] I. L. Bogolubsky, E. M. Ilgenfritz, M. Müller-Preussker, and A. Sternbeck, Lattice
gluodynamics computation of Landau gauge Green’s functions in the deep infrared,
Phys. Lett. B676 (2009) 69.

[16] A. Cucchieri and T. Mendes, What’s up with IR gluon and ghost propagators in
Landau gauge? A puzzling answer from huge lattices, PoS LAT2007 (2007) 297.

[17] A. Cucchieri and T. Mendes, Constraints on the IR behavior of the gluon propagator
in Yang-Mills theories, Phys. Rev. Lett. 100 (2008) 241601.

[18] A. Cucchieri and T. Mendes, Landau-gauge propagators in Yang-Mills theories at
beta = 0: Massive solution versus conformal scaling, Phys. Rev. D81 (2010) 016005.

[19] A. Cucchieri and T. Mendes, Numerical test of the Gribov-Zwanziger scenario in
Landau gauge, PoS QCD-TNT09 (2010) 026.

[20] A. Sternbeck, L. von Smekal, D. B. Leinweber, and A. G. Williams, Comparing
SU(2) to SU(3) gluodynamics on large lattices, PoS LAT2007 (2007) 340.

[21] Y. B. Zhang, J. L. Ping, X. F. Lu, and H. S. Zong, Unquenched effects and quark
mass dependence of lattice gluon propagator in infrared region, Commun. Theor.
Phys. 50 (2008) 125.

[22] V. N. Gribov, Quantization of non-Abelian gauge theories, Nucl. Phys. B139 (1978)
1.

[23] J. M. Cornwall, Dynamical mass generation in continuum QCD, Phys. Rev. D26
(1982) 1453.

[24] D. Binosi and J. Papavassiliou, New Schwinger-Dyson equations for non-Abelian
gauge theories, JHEP 0811 (2008) 063.

[25] D. Binosi and J. Papavassiliou, Gauge-invariant truncation scheme for the
Schwinger-Dyson equations of QCD, Phys. Rev. D77(R) (2008) 061702.

[26] A. Cucchieri, T. Mendes, and A. Mihara, Numerical study of the ghost-gluon vertex
in Landau gauge, JHEP 0412 (2004) 012.

[27] E. M. Ilgenfritz, M. Müller-Preussker, A. Sternbeck, and A. Schiller, Gauge-variant
propagators and the running coupling from lattice QCD, arXiv hep-lat/0601027.

https://doi.org/10.1017/9781009402415 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415


References 143

[28] A. C. Aguilar, D. Binosi, and J. Papavassiliou, Gluon and ghost propagators in the
Landau gauge: Deriving lattice results from Schwinger-Dyson equations, Phys. Rev.
D78 (2008) 025010.

[29] T. Kugo and I. Ojima, Local covariant operator formalism of non-Abelian gauge
theories and quark confinement problem, Prog. Theor. Phys. Suppl. 66 (1979) 1.

[30] T. Kugo, The universal renormalization factors Z(1)/Z(3) and color confinement
condition in non-Abelian gauge theory, talk given at the International Symposium
on BRS Symmetry on the Occasion of Its 20th Anniversary, Kyoto, Japan (1995).

[31] A. C. Aguilar, D. Binosi, J. Papavassiliou, and J. Rodriguez-Quintero, Non-
perturbative comparison of QCD effective charges, Phys. Rev. D80 (2009) 085018.

[32] A. C. Aguilar, D. Binosi, and J. Papavassiliou, Indirect determination of the
Kugo-Ojima function from lattice data, JHEP 0911 (2009) 066.

[33] D. Zwanziger, Fundamental modular region, Boltzmann factor and area law in
lattice gauge theory, Nucl. Phys. B412 (1994) 657.

[34] A. Sternbeck, The infrared behavior of lattice QCD Green’s functions, arXiv
hep-lat/0609016, and references therein.

[35] M. Gell-Mann and F. E. Low, Quantum electrodynamics at small distances,
Phys. Rev. 95 (1954) 1300.

[36] N. J. Watson, Universality of the pinch technique gauge boson self-energies, Phys.
Lett. B349 (1995) 155.

[37] J. Papavassiliou and A. Pilaftsis, Gauge invariance and unstable particles, Phys. Rev.
Lett. 75 (1995) 3060.

[38] J. Papavassiliou and A. Pilaftsis, A gauge independent approach to resonant
transition amplitudes, Phys. Rev. D53 (1996) 2128.

[39] J. Papavassiliou and A. Pilaftsis, Gauge-invariant resummation formalism for two
point correlation functions, Phys. Rev. D54 (1996) 5315.

[40] N. J. Watson, The gauge-independent QCD effective charge, Nucl. Phys. B494
(1997) 388.

[41] D. Binosi and J. Papavassiliou, The QCD effective charge to all orders, Nucl. Phys.
Proc. Suppl. 121 (2003) 281.

[42] P. Boucaud et al., Artifacts and <A2> power corrections: Re-examining Z2
ψ and Zν

in the momentum-subtraction scheme, Phys. Rev. D 74 (2006) 034505.
[43] T. Appelquist and J. Carazzone, Infrared singularities and massive fields, Phys.

Rev. D11 (1975) 2856.
[44] M. Lavelle, Gauge invariant effective gluon mass from the operator product

expansion, Phys. Rev. D44 (1991) 26.
[45] D. Dudal, J. A. Gracey, S. P. Sorella, N. Vandersickel, and H. Verschelde, A

refinement of the Gribov-Zwanziger approach in the Landau gauge: Infrared
propagators in harmony with the lattice results, Phys. Rev. D78 (2008) 065047.

[46] S. J. Brodsky and G. F. de Teramond, Light-front hadron dynamics and AdS/CFT
correspondence, Phys. Lett. B582 (2004) 211.

https://doi.org/10.1017/9781009402415 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415


7

Nonperturbative gluon mass and quantum solitons

7.1 Notation

In this chapter and Chapters 8 and 9, we work in Euclidean space with metric δμν
so that a (real) Euclidean four-vector has q2 > 0; timelike vectors in Minkowski
space have negative squared length in this metric. To avoid a profusion of is and
coupling constants g, we introduce the notation

Aμ = g

i
Aμ = g

i
Aa
μt

a, (7.1)

where (see Chapter 1) the ta are the elements of the Lie algebra in the fundamental
representation. Other changes include the following:

1

q2 −m2 + iε
→ 1

q2 +m2
, (7.2)

−gμν + qμqν

q2
→ δμν − qμqν

q2
,

Dμ → ∂μ + Aμ,

where the left-hand sides refer to Minkowski space and the right-hand sides to
Euclidean space. The field strength tensor is

Gμν = [Dμ,Dν] (7.3)

so that the action is

S = − 1

2g2

∫
d4x TrG2

μν. (7.4)

7.2 Introduction

We have seen in previous chapters that infrared instability of NAGTs leads to
generation of a dynamical gluon mass that removes the infrared singularities of
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perturbation theory. But mere removal of these singularities, important as it is, is
far from the major role of gluon mass generation. In this and the next chapter, we
survey the important implications of gluon mass generation for QCD-like theories.
The most direct connection is that an infrared-effective action with dynamical
gluon mass predicts a number of quantum solitons not present in the massless
classical gauge theory. Condensates (i.e., a finite vacuum density) of these solitons
have successfully explained1 (if only qualitatively) many nonperturbative effects,
as seen on the lattice, including confinement; generation of nonintegral topological
charge; and chiral symmetry breaking (although we will only briefly consider this
last topic).

A quantum soliton is a localized finite-energy configuration of gauge potentials
arising from an effective action that summarizes quantum effects not present in
the classical action; in our case, the effect is a gauge-invariant dynamical gluon
mass. Like all effective actions, the one we use is not intended to substitute for
the standard NAGT action, nor can it necessarily be quantized itself; it is treated
classically. An effective action is merely a summary statement of a particular set of
quantum effects; the underlying action of our NAGTs is always the conventional
one as used, for example, in the Schwinger–Dyson equations to find the gluon
mass. Perhaps the premier example in other fields of a quantum effective action is
the Ginzburg–Landau scalar field action for superconductivity – which, in fact, has
gluon mass generation (the Meissner effect) and solitons (the Abrikosov vortex)
closely related to some of the ones we use. But the Ginzburg–Landau effective
action is far removed from the original action, involving electrons and ions, that
describes a superconductor.

7.2.1 Condensates and solitons

There is only one kind of soliton in classical QCD: the instanton (and its relatives,
calorons and sphalerons). It is certainly possible, in principle, that there could
be a finite density of instantons in the QCD vacuum. In that case, we speak of a
condensate of instantons. Some of the properties of the instanton condensate would
be captured in VEVs such as −〈TrG2

μν〉 or other combinations of gauge-invariant
field strengths that could possess a VEV, that are also referred to as condensates.2 At
a simple and incomplete level of understanding, one could find a formula relating
the instanton density to the value of this VEV. But even if this VEV were to vanish,

1 Instantons and the like in NAGTs have not proven suitable for explaining nonperturbative phenomena because
it is far from clear how to tame the infrared instabilities of these solitons, which are allowed in arbitrarily large
sizes classically.

2 The phenomenological existence of such condensates was proposed long ago; see Novikov et al. [1], for
example, who make reference to earlier works.
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it would not in any essential way affect the possibility of the existence of one or a
few instantons in the QCD vacuum.

Things are very different with the quantum solitons we discuss in this and the next
chapter. Unless there is a condensate, as measured by a finite VEV, the solitons
themselves will not exist. And once these solitons can exist, it is natural to think
that these solitons themselves supply the condensate VEV. So the solitons and the
condensates must exist together in a self-consistent way: it is impossible to have,
for example, just one center vortex as the only soliton in the vacuum; there must be
a condensate of solitons to have a condensate VEV. Although we study quantum
solitons, such as center vortices, as if they were isolated, they exist only by virtue of
a finite gluon mass, which summarizes the effects of a condensate whose properties
we do not investigate further here. In any case, to be an important contributor to
nonperturbative effects, any soliton must have a finite density in the vacuum (i.e.,
be part of a condensate).

One side of the self-consistent relation between quantum solitons and condensates
is already clear from Lavelle’s equation for the large-momentum behavior of the
running gluon mass, given in Chapter 2 for the Euclidean PT propagator:

d̂−1(q) → q2 + cd
〈−TrG2

μν〉
q2

, (7.5)

where both the constant cd and the VEV are positive in d = 3, 4. If there is no
condensate, there is no quantum soliton because gluon mass is essential for the
soliton, and the condensate is essential for the gluon mass. The other side of the
quantum soliton-condensate relation amounts to the statement that the entropy of a
soliton of given action must exceed the action so that solitons can condense. There
is a good thermodynamic analog. The canonical partition function Z of, say, a
crystalline solid is

Z = exp[−β(U − T S)], (7.6)

where β is the inverse temperature 1/T , U the free energy, and S the entropy (so
U − T S is the Helmholtz free energy, minimized in equilibrium for an isolated
system at constant temperature). In the QCD analog, S is still the entropy (of
gauge configurations of given action), βU is the action, and g2 is analogous to
T . A strongly coupled gauge theory is like a condensed-matter system at high
temperature. Clearly, a crystalline solid will melt at high-enough temperature,
essentially because the entropy becomes so great as new configurations open up for
the melted material thatT S exceedsU . This melted phase does support a condensate
of solitons (dislocations). Similarly, in QCD, we assume that the coupling is so
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large that the entropy of, say, a center vortex (per unit length in d = 3 or area in
d = 4) exceeds the action per unit length or area. In this case, the free energy can
decrease further by formation of more center vortices, and a condensate forms (its
formation arrested only by interactions among the center vortices).

Various estimates, not given here, suggest that this dominance of entropy over
action does take place for QCD in d = 4, and we can actually prove the existence
of a condensate in d = 3, as shown in the next chapter. So d = 3 QCD-like theories
confine just as do d = 4 theories.

We now take up the connection between a condensate of center vortices and
confinement. Then, in the next chapter, we discuss the role of nexuses, monopole-
like objects whose world lines lie on center vortex surfaces (and disorient them),
in generation of nonintegral topological charge as well as the QCD sphaleron, a
saddlepoint soliton associated with tunneling just as the usual sphaleron describes
a tunneling barrier in electroweak theory.

7.2.2 What does confinement really mean?

Any proposed mechanism of confinement must be tested in detail; it is not enough
to say vaguely that the mechanism keeps quarks and gluons from actually mate-
rializing. We are fortunate that computers allow us to look (at least in principle)
at detailed tests not readily available in the real world, where Wilson loops are
not much larger than the QCD scale length, quark loops can be broken by pair
production, and the area law forces (linearly rising potential) may in certain cases
be far from the most important part of the QCD binding forces.

To conduct these tests, we imagine an idealized world of NAGT gauge potentials
but no matter fields at all. Confinement will be probed with large Wilson loops
whose relevant length scales are large compared to the NAGT length scale in
various group representations. Following is a list of some of the important tests of
confinement. To keep this book to a manageable length, we will discuss just the first
four criteria in this chapter (and finite-temperature issues in Chapters 9 and 10).
For the other four, it is not always the case that both a detailed center-vortex picture
and lattice simulations exist; for example, although there are lattice simulations of
k-string tensions, there is yet no good theoretical understanding of the details of
such string tensions in any confinement picture, and there are no lattice simulations
on multiple Wilson loops, as called for in item 7. Where a center-vortex picture
and lattice simulations both exist for a given criterion, there is good agreement. It
would take us far too much space to detail this agreement. For a comprehensive
review of this and other results up to 2003, see Greensite[2].
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1. The leading term in the VEV of a fundamental-representation Wilson loop,
all of whose scale lengths are large compared to the QCD length scale, is of
the form exp[−KFA], where A is the area of a minimal surface spanning the
loop and KF is the usual string tension.

2. For SU (3) baryons made of static quarks, the baryonic area law is a Y -law,
with the three-quark Wilson loop of the form exp{−KF [

∑
Ai]}, whereKF is

the fundamental mesonic string tension and the Ai , i = 1, 2, 3, are minimal
areas of three Wilson loops having a common line. This is a nontrivial state-
ment because the string tensions could have been a sum of pairwise forces.
(The analogs for SU (N), N > 3, depend on certain as yet uncalculated prop-
erties of k-string tensions; see criterion 5.)

3. The Wilson loop for the adjoint representation (or other representations with
N -ality3 zero) shows no area law extending to arbitrarily large distance;
instead it shows screening. This means that the leading term is a perimeter
term of the form exp[−ML] for some mass M ∼ m and loop perimeter L.
However, there is an area law and a so-called breakable string for intermediate
distances. At a distance roughly corresponding to storing enough energy in
the string to allow formation of a gluon pair, the string breaks as this pair is
formed by tunneling. Because it takes an energy of about 2m for gluon-pair
formation, this breaking occurs at some finite distance, and the breakable
string plays a role up to this distance.

4. It should explain the general characteristics of hybrids, which differ from qqq

or q̄q states by having one or more extra valence gluons. The center-vortex
picture is in good agreement with lattice simulations.

5. There should be plausible explanations for finite-temperature phenomena,
including deconfinement, the mechanism for the thermal phase transi-
tion, chiral symmetry restoration, and generation of a magnetic mass in
d = 3.

6. For SU (N) with N > 3, there are k-string tensions Kk, subject to Kk =
KN−k, depending only on the N -ality k. The real test is to calculate the Kk,
which has not yet been done accurately for any picture of confinement. (For
center vortices, there are different areal densities ρk = ρN−k that have yet to
be calculated; their knowledge is tantamount to knowing the Kk.)

7. The exceptional Lie groups G2, F4, and E8, whose centers are trivial, have
no confined representations, only screened ones. In the center vortex picture,

3 The N -ality is an integer equal to the number n− n̄ mod N , where n is the number of fundamental repre-
sentations and n̄ is the number of antifundamental representations of SU (N ) whose product forms the given
representation.
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these groups each have a vortex solution that corresponds to the trivial element
(the identity) of the gauge group; these behave just as explained in item 3 for
N -ality = 0 representations in the gauge group SU (N).4

8. A confinement mechanism should explain certain special cases such as for
two disjoint, parallel, fundamental-representation Wilson loops as a function
of separation between them: does the compound Wilson loop behave as if it
were rings with soap films stretched on them?

There is not space here to detail all these criteria, and we concentrate on the first
four. As for the rest; some but not all finite-temperature effects will be discussed
in Chapters 9 and 10. It is worth pointing out here the basic reason for a finite-
temperature transition to a deconfined phase in the center vortex picture [3]. As the
length β of the Euclidean time direction shrinks with increasing temperature, the
vortices of size m−1 are squeezed in this direction. When (up to a factor we will not
estimate) m ∼ T , vortices tend to point in the time direction because the action of
spacelike vortices increases, and their entropy decreases because of the squeezing.
Vortices pointing in the time direction cannot link to a Polyakov loop, so there is a
transition to deconfinement. These vortices are not entropically constrained in the
three spacelike directions and can condense, providing for mass generation in this
d = 3 space.5 Essentially, the same explanation was given later and confirmed by
lattice simulations: confining vortices fail to condense (percolate) above a critical
temperature [4, 5]. For interesting but not definitive work on k-string tensions, see
Greensite and Olejnik [6] and [7], who show that center vortices are consistent
but not yet predictive with what is known (from the lattice) about such tensions.
The exceptional gauge group G2 is discussed by Holland et al. [8, 9] and Pepe
[10]. The last criterion – essentially about the tension in surfaces spanning Wilson
loops – is particularly challenging for center vortices because the basic topological
confinement mechanism of linkages of loops and center vortices is independent of
any surface spanning a Wilson loop. Some progress has been made, using center
vortices, on this problem (see also [11] and [12]), but there are no lattice results for
comparison.

4 Aside from the triviality of the center, there is a physical explanation why there is screening but not confinement
in such theories. Consider G2; all of its representations can be decomposed into sums of SU (3) representations.
The gluons lie in 8 ⊕ 3 ⊕ 3̄, and so a string in any G2 representation can break by production of 3, 3̄ gluons. It
takes three gluons to shield a G2 “quark.”

5 For bosons, dynamical mass generation as discussed here is not damped by finite-temperature effects, whereas
for fermions mass generation is damped, so the superconducting mass gap for superconductors vanishes above
a certain temperature.
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7.3 The quantum solitons

Three fundamental types of solitons are extrema of the NAGT effective action. The
first is the center vortex of the present chapter.6 In the next chapter, we present
its close relative, the nexus [15, 16, 17, 18, 19, 20, 21], and modified versions of
the instanton [14] and sphaleron [22]. Of these, the most important are the center
vortex and the nexus, a monopole-like object whose world line is in fact embedded
in a center vortex and therefore does not exist independently of center vortices.

All the solitons have idealized three-dimensional (static) realizations displayed by
dropping the time integration in the d = 4 effective action Seff and extremalizing
the resulting d = 3 massive effective Hamiltonian7:

Heff = − 1

2g2

∫
d3x TrG2

ij − m2

g2

∫
d3x Tr

[
U−1DiU

]2
. (7.7)

The coupling g2 is evaluated at some low mass scale such as m2 itself. Rescale the
potential as done in Derrick’s theorem: Ai(�x) → (1/ρ)Ai(ρ �x). Then the first term
of Heff scales like 1/ρ and the mass term scales like m2ρ. Using ρ as a variational
parameter shows that Seff must have solitons of size ρ ∼ m−1 and that Heff itself
scales like m/g2. Note that the value of Heff scales with the length of the z-axis, or
more generally with the length of the closed string defining the vortex. Similarly, in
d = 4, the vortex effective action scales with the area of the closed vortex surface
(because of the reinstated integral over the time direction). All the solitons have
d = 4 counterparts, whose form we will discuss as needed. However, it is in their
d = 3 realization that we see most clearly their topological structure.

The gauge potential and the U -matrix are coupled at large distances. So that the
energy of a soliton can be infrared finite, the integrand of both the G2 term and
the mass term in Seff must vanish at infinity. These requirements imply that Ai

approaches a pure gauge at infinite distance, and this gauge is precisely U itself:

xi → ∞ : Ai → U∂iU
−1, (7.8)

as one sees from Eq. (7.11). Generally, the subleading terms vanish exponentially
rapidly near infinity. The topological properties of a soliton are characterized by the
behavior of U at large distance. These topological properties are most succinctly

6 The center vortex was introduced as a mathematical construct by ’t Hooft [13]. The first dynamical model based
on gluon mass is given in [14]. For a review of the lattice properties of center vortices, see Greensite [2].

7 This has the same form as the effective action Seff(3) of d = 3 gauge theory, except that the coupling g2
3 has

dimensions of mass; thus, Seff(3) is dimensionless.
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expressed as certain homotopies, whose mathematical truth we take for granted
in this book.8 For us, the interesting question is the physical realization of these
homotopies. So for each soliton, we begin by postulating a form for U that not only
carries the homotopy but also provides instructions for the kinematic structure of
the soliton in spatial and group coordinates.

All we need to know about homotopies at this point is that the homotopy group
�1, which applies to the center vortex, describes the ways in which a closed one-
dimensional string can be mapped on to a topological space. In physical terms, this
is the homotopy that tells us the consequences of the topological linkage of the
closed string of a center vortex (at a given time) with a Wilson loop. We find these
consequences by studying the usual Wilson loop for a closed curve � but without
taking its trace:

W� = P exp

[∮
�

dxμAμ(x)

]
. (7.9)

To preserve the single-valuedness of the gauge potential Aμ(x) in the presence of
vortices, we must – as shown later in this chapter – quantize the magnetic flux
carried by center vortices, which causes the group matrix W� to lie in the center
of the group (the necessarily Abelian subgroup that commutes with all group
elements). If W� is in the fundamental representation, its elements are of the form
of powers of exp[2π i/N] times the N ×N identity matrix for SU (N). But in
representations with N -ality zero, such as the adjoint representation, the elements
of W� are only the identity matrix itself.

Because the center group is Abelian, center vortices themselves appear at first
glance to be simply Abelian objects and so are described by group matrices in
the Cartan subalgebra of SU (N). To the extent that center vortices are Abelian,
they very much resemble earlier vortex constructions in physics, notably the
Abrikosov vortex of type II superconductors and its relativistic generalization,
the Nielsen–Olesen vortex of the Abelian Higgs model. In fact, as one might
expect for a non-Abelian group, center vortices are much more complicated than
these earlier vortices and actually must be thought of as participating fully in non-
Abelian processes. But we need not study this now; it is the subject of the next
chapter.

8 Roughly speaking, homotopy groups �n(X) classify the different ways an n-sphere can be mapped to a
topological space X. The group �1 – the fundamental group – tells about the ways of mapping closed d = 1
loops into the space. For us, such a closed loop is a Wilson loop. As we will see in Chapter 8, �2 is relevant for
nexus-vortex intersections (a source of topological charge) and �3 for various carriers of topological charge.
For a review of homotopies and other topological subjects aimed at physicists, see Mermin [23].
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7.4 The center vortex soliton

The field equations for Seff are

[Dj ,Gj i] −m2Ãi = 0 (7.10)

[Di , Ãi] = 0,

where the first equation comes from varying Ai , the second equation from varying
U , and Ãi is defined by

Ãi = Ai + (∂iU )U−1. (7.11)

It is important to note that the U equation of motion is not really independent; it is
required by the identity

[Di , [Dj ,Gij ] ≡ 0. (7.12)

The equation for U has an interesting interpretation. After some algebra, one finds
that it can be written

∂i(UAiU
−1 + U∂iU

−1) = 0. (7.13)

(The analogous equation also holds in d = 4.) This says that if the original gauge
potential is in the Landau gauge (as, e.g., happens for center vortices), there is
a gauge transformation U that preserves this gauge – in other words, a Gribov
ambiguity. So if there is a condensate of center vortices, there is automatically a
condensate of Gribov ambiguities.

There are solutions to the U equation of motion in perturbation theory, but they
are of no interest for the solitons. They do, however, exhibit the long-range
longitudinally coupled scalar excitations that are essential if a gauge-invariant
gluon mass is to be generated. Because the gauge potential incorporates a power
of the coupling g, this is an expansion in powers of Ai itself. Write U = expω,
where ω is an anti-Hermitean function on the Lie algebra, and find [24]:

ω = − 1

∇2
∂ · A + 1

∇2

{[
Ai , ∂i

1

∇2
∂ · A

]
+ 1

2

[
∂ · A, 1

∇2
∂ · A

]
+ · · ·

}
. (7.14)

Clearly, this is a very complicated object because of the non-Abelian nature of
the group. But for the standard Abelian center vortex that we now take up, U is a
diagonal matrix that commutes with all its derivatives.

7.4.1 The standard Abelian center vortex

The simplest case [14] for the center vortex is an Abelian thick string extending
along the entire z-axis. (We consider that the z-axis is a closed string, identifying the
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points at ±∞.) In this case, the center vortex is (with some important limitations)
the Nielsen–Olesen vortex of the Abelian Higgs model in the limit of infinite
Higgs-field mass. Only the massless Goldstone fields survive, to be eaten by the
gauge field. The appropriate ansatz for U (equivalent to the angular, or Goldstone,
part of the Higgs–Goldstone field) is

U = exp[iQφ] U∂iU
−1 = Q

iρ
φ̂i, (7.15)

where φ, ρ are cylindrical coordinates and φ̂i is a unit vector in the φ direction; Q
is diagonal and one of a set of matrices in the Cartan subalgebra whose detailed
properties we will soon give. Because Q is the only group matrix appearing in the
standard center vortex, this vortex has no obvious non-Abelian properties; Q itself
is equivalent to an Abelian charge and U to a simple phase factor.

To make the connection to the Abelian Higgs model, note that in that model, the
Higgs–Goldstone field ψ is of the form ψ = χ exp[iφ]. The real (Hermitean) field
χ (ρ) is the Higgs field; it has a vacuum expectation value v. The Goldstone field
is φ and is massless. The coupling to the canonical Abelian gauge potential Aj is

1

2
|∂jψ − iGAjψ |2, (7.16)

with G standing for the Abelian charge of the Higgs field; G is replaced by the
diagonal matrix Q in the NAGT version. Suppose we freeze the field χ by taking
the limit of infinite Higgs self-coupling λ at fixed v (or equivalently, at infinite
Higgs mass). In the scalar coupling term λ(|ψ |2 − v2)2, the limit tells us that
χ = v everywhere. This is a singular limit because for finite λ, the equations of
motion say that the field χ vanishes at the center of the vortex (along the z-axis, in
our case). But in this limit, the Higgs-gauge potential coupling simply reduces to
the Abelian version of the mass term in Eq. (7.7), with gauge particle mass9 Gv.
In the case of NAGTs with no Higgs fields, the effective vanishing of the Higgs
field along the vortex axis is replaced by the requirement, coming from solving
the Schwinger–Dyson equations, that the dynamical gluon mass vanish at large
momentum or short distance. For the sake of brevity, we will not actually impose
this condition on the solitons of this book; failure to do so leaves some logarithmic
divergences in the gauged nonlinear sigma model part of the action that will be
resolved when the short-distance vanishing of the mass is accounted for.

As is the case with all gauge solitons, the form of the gauge potential Ai follows
from the form of the pure-gauge part. Equation (7.15) suggests the following simple

9 In the non-Abelian case, it is also possible to interpret the gauged nonlinear sigma model mass term as coming
from N frozen Higgs fields in the fundamental representation of SU (N ) [14].
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kinematics for Ai :

Ai = Q

i
φ̂iF (ρ). (7.17)

With this ansatz, ∂iAi = 0, so the potential is in the Landau gauge; of course, any
other gauge can be reached by a regular gauge transformation.

The corresponding pure-gauge potential U∂iU−1 has no gauge fields almost every-
where, but there is a Dirac string (in this case, the z-axis) where there is a singular
field strength.10 We will see that the short-range parts of Ai , the only parts depend-
ing on the mass, precisely cancel this string so that there is no such string in the
full gauge potential Ai . But the would-be Dirac string is essential for describing
the topology and homotopy.

The U equation is

∇2φ = 0 (7.18)

and is satisfied by the usual polar angle, except for the z-axis.11 However, because
φ is discontinuous along the z-axis, there is a singular magnetic field along this
axis, or in other words, a Dirac string:

Bi = εijk

[
∇j × Q

iρ
φ̂k

]
=
(
Q

i

)
2πẑiδ(x)δ(y). (7.19)

There must be such a singularity to this solution of Laplace’s equation somewhere
in three-space. We now show that the equations of motion automatically cancel
this singularity with an equal and opposite contribution from the short-range parts
of Ai . These equations are as follows:

∇2Ai = m2 (Ai − ∂iφ), (7.20)

and they have the solution

Ai = Q

i
φ̂i

[
−mK1(mρ) + 1

ρ

]
, (7.21)

where K1 is the Hankel function of the first kind with an imaginary argument.
As advertised, near the Dirac string (ρ � 0), the singularity of the Hankel func-
tion exactly cancels the 1/ρ term; moreover, at large ρ, the K1 term vanishes
exponentially, and Ai approaches the required pure gauge.

10 In other dimensions d, there is a Dirac hypersurface of dimension d − 2, that is, of codimension 2.
11 There are no perturbative contributions from the series in Eq. (7.14).
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7.4.2 The general center vortex

To describe a center vortex generally, specify a closed line (surface) in d = 3(4)12

and a matrix in the Cartan subalgebra that gives rise to a center element on parallel
transport of the vortex’s gauge function around a closed loop. We will only describe
k = 1 vortices explicitly here because higher-k vortices are in some sense composed
of k = 1 vortices.

In d = 3, the generalized center vortex is

Ai(x; j ) = 2πQj

i
εiab

∮
�

dza ∂b [m(x − z) −0(x − z)] , (7.22)

where m(0) is the free d = 3 propagator for mass m(0) and � is a closed curve; the
coordinate z traces out the curve. It may not be obvious, but the massless propagator
term is the generalization of the pure gauge U of Eq. (7.18) but with a Dirac string
along the closed curve �.13 With the identification of the 0 term with the U term,
it is easy to check that the field equations are satisfied by the vortex of Eq. (7.22).
A simple calculation gives the field strength:

Gab = 2πQj

i
εabc

∮
�

dzc m
2m(x − z). (7.23)

This has an integrable logarithmic singularity on the Dirac string, which would be
removed if we were to account for the short-distance vanishing of the mass. There
is no singularity in the classical G2 action term, but the mass term has a logarithmic
short-distance divergence that would be cured by the short-distance vanishing of
the mass.

The generalization to d = 4 is equally simple:

Aμ(x; j ) = 2πQj

i

1

2
εμναβ∂ν

∮
�

dσαβ(z) [m(x − z) −0(x − z)] , (7.24)

where now the integral is over a closed two-surface � of surface element dσαβ(z)
and the propagators are four-dimensional. The field strengths are

Gμν(x; j ) = 2πQj

i

∮
�

d σ̃μν(z)m2m(x − z), (7.25)

where dσ̃μν is the dual surface element.

The massive propagators, in either dimension, approach the massless ones in the
limit m|x − z| � 1, so the propagator singularities cancel on the would-be Dirac
string or surface. (This shows, by the way, that for finiteness, one must choose

12 For general dimensions, the Dirac singularity of the pure-gauge part of a center vortex has codimension 2 or
ordinary dimension d − 2. So in d = 2, vortices are point particles.

13 A function Fi can be both a gradient and a curl, provided it satisfies Laplace’s equation.

https://doi.org/10.1017/9781009402415 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415


156 Nonperturbative gluon mass and quantum solitons

the same string or surface for the massive and massless terms in the vortex.) This
cancellation gets rid of the Dirac string-surface in the full soliton. However, it will
prove very useful for us later to have expressions for these Dirac string-surface
field strengths because they give the cleanest view of the topology of these vortices
and their interactions. From the field strengths in Eqs. (7.23) and (7.25) and from
the propagators expressed as Fourier integrals, the Dirac would-be singularities
emerge in the limitm → ∞ – or otherwise said, the limit of zero vortex thickness –
and give

d = 3 : Gab = 2πQj

i
εabc

∮
�

dzc δ3(x − z) (7.26)

d = 4 : Gμν(x; j ) = 2πQj

i

∮
�

dσ̃μν(z) δ4(x − z),

so they are just integrals of delta functions over the string-surface.

So far we have not explained why the string-surface must be closed. Suppose
otherwise and consider the integral in d = 3:

Ai(x) = εij3 ∂j

∫ 0

−∞
dz0(x − z), (7.27)

which represents part of the center vortex but with an open string. Do the integral
to find precisely the gauge potential of a Dirac monopole with a magnetic field
∼ 1/r2 and a Dirac string along the negative z-axis. We know there are no such
long-range monopoles in QCD, so to exclude them, we use a closed string. (The
same argument works for d = 4, using a surface with boundary rather than a
closed surface. The boundary is a closed loop, the world line of the monopole.)
This argument is certainly correct for Abelian vortices but not for non-Abelian
vortices, as we describe in the next chapter for vortex junctions.

7.4.3 The Q-matrices and the center-vortex homotopy

Relation of confinement to homotopy Now we can see how to associate a homo-
topy with the group carried by Wilson loops themselves. A Wilson loop depends
on a closed curve and a map of this curve to group elements:

WR
� = P exp

[∮
�

dxi Ai

]
, (7.28)

where � is a closed curve and R labels the group representation for the loop. The
argument in the exponent, Ai[x(t)], is a map of the closed curve described by
xj (t), as t runs from 0 to 1, say, to an element of the Lie algebra of the gauge
group. Exponentiation turns this into a map of the loop to the gauge group, and so
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the homotopy is the group of (Wilson) loops to the gauge group G, or �1(G). Of
course,�1 tells us to look for a wrapping of closed strings around this gauge group.
One must be careful to appreciate that the gauge group G for gluons is not SU (N)
but SU (N)/ZN , where ZN , the group of integers, is the center of the gauge group.
As far as gluons go, any group element of SU (N) transforming it has exactly the
same effect as if any element of the center group in this element were discarded.
Equivalently, for the adjoint representation, every element of the center group is
represented by the identity. So the homotopy associated with the center vortex is

�1(SU (N)/ZN ) � ZN, (7.29)

which is not at all the same as �1(SU (N)) � I. These equations are not entirely
trivial, but we will not pause to prove them here by the usual mathematical tech-
niques. Instead, we give a physical demonstration.

Let the curve � be any closed path in the presence of a center vortex with Dirac
string along the z-axis, as in the standard form of Eq. (7.21), and let all parts of the
loop be far from the z-axis. At the Wilson loop, the only surviving part of the gauge
potential is its pure-gauge part, as in Eq. (7.8), in which case, WR

� is the product
U (i)U−1(f ), where i, f are the (identical) initial and final points of the contour �,
respectively. These are the same points, but different curves between them gives
different results. If the curve does not enclose the z-axis, then WR

� = I, where I is
the identity matrix. But if the curve does enclose it (is linked to it), the result is

WR
� = exp[2π iQ], (7.30)

where Q is the representative of the group generator in representation R.

Here is the physics of the homotopy group. One of the most basic requirements
we can place on the gauge potentials of an NAGT is that they be single valued.
Imagine transporting a localized gluon wave function once around a curve � linked
to the z-axis (and thus to the center vortex of Eq. (7.21)) and back to the starting
position. This has to yield the same wave function. When � is far from the z-axis,
the only contribution comes from the pure-gauge function U . As the gluon wave
function is transported around the closed loop, it suffers a gauge transformation:

Ai → VAiV
−1 + V ∂iV

−1, (7.31)

where V is the group element

V = P exp

[∮
dxiU∂iU

−1

]
. (7.32)

With U = exp[iQφ], this phase factor is just V = U (φ = 2π )U−1(0) =
exp[2π iQ]. The only elements of SU (N ) that commute with all other elements
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are elements of the center, and we conclude that exp(2π iQ) is in the center of the
group.

The Q-matrices What matrices Q realize the center of the group in the fun-
damental representation? For SU (N), the center is generated by the matrix14

Z = exp(2π i/N) and contains the elements Z(k) ≡ Zk, k = 1, 2, . . . N . There are
center vortices for every value of k, which we call k-vortices. The magnetic flux
carried by a k-vortex is just k (in units of 2π/N ); because multiples of 2π are
irrelevant, we need only define flux mod N . There are many traceless diagonal
matrices Q for any value of k, and we need indices to distinguish them. For k = 1,
the generator Z is the exponential of any of the matrices Qj, j = 1 . . . N :

Qj = diag

(
1

N
,

1

N
, . . .

1

N
, −1 + 1

N
,

1

N
, . . .

)
j = 1, 2, . . . N, (7.33)

with the –1 in the j th position.15 Each of these matrices obeys

exp[2π iQj ] = exp[2π i/N] (7.34)

and so has unit flux. Because each Qj can be transformed into any other by an
element of the permutation group, one may think of the index j as a label for group
collective coordinates of the vortex. These matrices are linearly dependent; the sum
of all N of them vanishes. They obey the trace formula

Tr (QiQj ) = δij − 1

N
. (7.35)

It might be thought that for a k-vortex, one replaces Qj by kQj ; however, the
corresponding vortex has higher energy than one with the same space-time config-
uration but using the matrix Qj (k) defined as the sum of any k distinct Qj . The
energy of a k = 1 vortex (or action, in d = 4) scales with the factor

1

g2
TrQ2

j = N − 1

Ng2
. (7.36)

A k-vortex described by Qj (k) has flux k and energy proportional to

1

g2
TrQj (k)2 = k(N − k)

Ng2
. (7.37)

Note that this is symmetric under the exchange k ↔ N − k, which is equivalent
to replacing a k-vortex by its antivortex, or conjugate vortex with flux −k mod N .

14 The identity matrix I is understood.
15 Various useful properties of these matrices are given in [7].
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This antivortex is just theN − k-vortex. Note also that this action factor is less than
the action factor of k widely separated unit vortices, so in some sense, k-vortices
are bound composites of unit vortices.

In SU (N) for odd N , there are (N − 1)/2 vortices plus their antivortices or conju-
gate vortices identical in all dynamical properties (except for their fluxes, which are
opposite in sign) to those of their vortex partners. For even N , there is in addition a
self-conjugate vortex. This property has special implications for SU (2) and SU (3),
which are the only unitary groups with exactly one dynamically distinct vortex. For
N > 3, there is always more than one type with generically different space-time
density and other dynamical properties. Little is known about center vortices for
N > 3.

One might think that center vortices are irrelevant at large N because their action
SC increases with N in the ’t Hooft limit of Ng2 fixed, and so exp(−SC) vanishes
strongly. However, for the leading N behavior, the collective-coordinate integral
over the gauge group grows withN at exactly the rate needed to compensate for the
action [25] (this also happens for other solitons with action growing like a power
of N such as instantons [26]). What happens at nonleading orders remains to be
settled, but there can well be the necessary cancellations that cause center vortices
to persist at large N . We will, for other reasons, only discuss N = 2, 3 explicitly,
and so the large-N behavior is a secondary issue.

7.4.4 Confinement

Confinement is a topological property of center vortices, with the homotopy of
Eq. (7.29) directly realized as a linking of closed center-vortex Dirac strings with
a Wilson loop.

If center vortices are to be responsible for confinement, there must be a condensate
of them – that is, a finite density of vortices.16 Such a condensate forms when
the configurational (and other) entropy of vortices per unit length (in d = 3)17

exceeds their action per unit length, in which case, a finite fraction of the vortices
will have infinite length. A little thought shows that the vortex density is an areal
density with the same codimension as the vortices. So in d = 2, k-vortices, which
are point particles there, have a density ρk per unit area. By imagining that d = 2
is projected from higher dimensions, one sees that, in all dimensions, the vortex

16 Recall that as long as the entropy exceeds the action, the vortices grow bigger and bigger; at some point,
they fill enough of the space so that the entropy of an additional vortex segment diminishes because of the
unavailability of unoccupied space. If this new segment were to try to occupy space that already had a vortex,
the action would increase. The result is that growth terminates at a finite vortex density where the increase in
action just balances the decrease in entropy.

17 In other dimensions, substitute a closed hypersurface of codimension 2.
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density is an area density. Although it is true that the density ρk of vortices and the
density ρ−k ≡ ρN−k of conjugate vortices are always equal, there is no reason for
the density to be independent of k; however, there are in fact good reasons for ρk to
depend nontrivially on k. In SU (2) and SU (3), there is only one density, so these
two groups give the easiest description of confinement (and fortunately, both are
relevant to the real world).

The simplest semirealistic picture of center-vortex confinement begins with a flat
Wilson loop, whose boundary is the flat curve �, in the fundamental representation
of SU (N); we drop the superscript R indicating this representation. Take this loop
to be a sum of touching squares, each of side λ, and � is similarly approximated
by a polygon of sides λ. The length λ is the correlation length of vortices such that
there is only one vortex per λ-square. Any such square is pierced by a single vortex
with probability p, and clearly

p = ρλ2. (7.38)

Now assume that piercings in different λ-squares are statistically independent,
which is not really true. However, correcting for this effect gives a quantitative
but not a qualitative change in the picture of confinement. We wish to calculate
the VEV 〈W�〉 of this flat Wilson loop, bounded by the (also flat) curve �. Our
interest is only in the area law part of this VEV, which comes solely from the long-
range pure-gauge parts of the vortex (the massless propagator terms in Eqs. (7.22)
and (7.24)). The massive propagator terms at best contribute perimeter terms to the
VEV.

Begin by calculating the fundamental-representation Wilson loop (not yet its VEV)
in the presence of a single k-vortex, described by the matrix Qj (k) and closed
contour C. We need the trace of the path-ordered exponential:

W� = 1

N
TrF W� = 1

N
TrFP exp

[∮
�

dxi Ai

]
, (7.39)

and with the help of Eq. (7.22), we find

W� = e2π iQj (k)Lk, (7.40)

where

Lk =
∮
�

dxi εijk

∮
C

dyj ∂k0(x − y). (7.41)
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The expression forLk happens to be the canonical expression for the Gauss linking
number of two closed curves in d = 3 (which is why we call itLk).18 It is an integer
counting the signed number of times that the curve C is linked to the curve � (see
Kaufmann [27]).

The linking number has another interesting interpretation as an Abelian Chern–
Simons term (see Chapter 9). The result, then, for the Wilson loop is

W� = Z(k)Lk. (7.42)

Only the link number modN has any significance for the Wilson loop, which, for
a specific vortex, is a certain element of the center group. This is the dynamical
realization of the homotopy in Eq. (7.29) that we sought.

For an ensemble of vortices, under the assumption of vortex independence, the
Wilson loop VEV is an average of center-group elements, each of which is a
product over the vortices in a particular member of the ensemble of the form∏

i Z
Lki
i , where Zi is an element of the center of the gauge group, as specified by

the properties of the ith vortex (and the group representation of the loop itself ).

The rest of this section, deals explicitly only with SU (2, 3) for reasons given earlier.
For the fundamental Wilson loop in SU (2), the only nontrivial element of the center
has Zi = −1. In the preceding product, Lki is the Gauss linking number of this
vortex with the Wilson loop. The Gauss linking number, a topological invariant, can
be written through an integration by parts as an intersection number of the vortex
and any surface spanning the Wilson loop; its (integral) value is independent of the
choice of surface.19 In the SU (2) case, the necessary average is〈

exp

[
iπ

∑
i

Lki

]〉
. (7.43)

We now make explicit the assumption that p is the probability that a vortex is
actually linked once to a flat Wilson loop. When an odd number of vortices is
linked once, the Wilson loop has value –1, and when an even number is linked, the
value is +1. If the assumption is true, the area law follows from multiplying the
probabilities p̄ − p for all the λ-squares of the spanning surface so that

〈W�〉 = (p̄ − p)A�/λ
2 = exp

[
−| ln(1 − 2p)|A�

λ2

]
, (7.44)

whereA�/λ
2 is the numberN� of λ-squares in the Wilson loop. Another useful way

of expressing this area law is to write out the combinatorics for vortex occupancy

18 In other dimensions, the Wilson loop for a center vortex yields the Gauss linking number for linking of a closed
1-curve with a d − 2-dimensional closed hypersurface.

19 Which raises the interesting question of why a specific surface occurs in the VEV; for a flat Wilson loop, the
obvious and correct choice is the flat surface spanning the loop.
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1 3

2

Figure 7.1. A baryonic Wilson loop in SU (3) is composed of three simple Wilson
loops sharing a common central line (expanded in the figure). The central line is
invisible to SU (3) center vortices.

of N� sites of a surface spanning a Wilson loop �,

〈W�〉 = p̄N� −N�p̄
N�−1p + N�(N� − 1)

2
p̄N�−2p2 + · · ·

= (p̄ − p)N� = (1 − 2p)A�/λ
2
, (7.45)

as before. Here each term represents the number of ways of arranging empty and
once-filled λ-squares.

The result for SU (3) is also an area law but with a different string tension because of
different center-group phase factors. It is easy to see that p̄ − p should be replaced
by p̄ + cos(2π/3)p = 1 − (3/2)p, where cos(2π/3) is the average of the vortex
and conjugate vortex center elements.

We have assumed no correlations other than mutual repulsion between vortices,
but in fact, other correlations do exist. In particular, a vortex has a finite chance
of reentering a Wilson-loop spanning surface a few steps after piercing it the first
time; this dilutes the effective density of actually linked vortices below the density
ρ of vortices piercing the flat spanning surface, as shown in [11]. This dilution has
been observed in lattice simulations with center vortices [28].

Another issue for SU (3) is the form of the area law for baryons formed from
infinitely heavy static quarks; the corresponding Wilson loop is shown in Figure 7.1.

There are a priori two interesting possibilities: a sum of areas between each of
the three quark pairs (e.g., surface 4, spanning quark lines 1 and 3, with folds at
the two dotted lines) or a three-bladed minimal area joining each quark line to a
central Steiner line, often termed the Y -area law. In Figure 7.1, the Steiner line
is shown as three coincident lines from each of three elementary Wilson loops. A
straightforward extension of the linking arguments already given for the elementary
Wilson loop shows that the second possibility is correct [29]. Note that in SU (3),
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Figure 7.2. Adjoint potential U (mR) in a d = 2 center-vortex model.

these three coincident lines always give the identity element of the center group.
The Y -area law has been confirmed on the lattice [30, 31, 32, 33].

7.4.5 Screening

Physically, screening means that gluons or other N -ality zero fields have a string
between them, as do quarks, but the string breaks when enough energy has been
stored in it to materialize another gluon pair. Of course, this is the same thing that
happens for quarks when they are included as dynamical fields. A model of this
adjoint string breaking has been worked out in [25], with results for the potential
V (R) = (KF/m)U (mR) shown in Figure 7.2. The model is in d = 2, but the NAGT
action used is not the conventional d = 2 action; instead, it has a mass term added
(and so is the same as Eq. (7.7), except for the integration, which is over two-space,
and the coupling, which has dimensions of mass). The center vortex is a point
particle described by the wave function

Ai(x) =
(

2πQ

ig

)
εik∂k[M (x − x0) −0(x − x0)], (7.46)

where x0 is the center of the vortex. A condensate of these is simply a condensate
of point particles in the plane. A simple closed Wilson loop is linked to a vortex if
the vortex is inside the loop and is unlinked otherwise. However, if the Wilson loop
is in the adjoint representation, linkages contribute trivially to the loop VEV, and
we can drop the massless pure-gauge part of Eq. (7.46). The short-range massive
parts contribute only if they are within a distance ∼1/m of the loop, whether inside
it or outside. Consider now the contribution of these vortices to an adjoint Wilson
rectangle with spatial width R. After integrating over all vortex positions x0 and
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1

2

3

G

1

2

G

3

Figure 7.3. (Left) Wilson loop for a qqqG configuration (quarks labeled 1, 2, and
3; gluon labeled G). (Right) The same loop with the gluon line decomposed into
another quark and antiquark line, with quark line 3 singled out, as discussed in the
text.

other collective coordinates [34, 25], the adjoint potential of Figure 7.2 emerges.
It is the same for SU (2) and SU (3). Note that the center-vortex potential is always
positive, is roughly linear in R up to distances ∼1/m, and then breaks (becomes
constant) at a distance of about 1 fm. The breaking height of about 2.4KF/m should
be of order 2m to materialize a gluon pair at breaking, suggesting that m � K

1/2
F –

a value that is hardly quantitative but in the right ballpark.

Studying the adjoint potential on the lattice has been difficult, apparently because
of a poor overlap between the physical gluonic state and the corresponding adjoint
Wilson loop and because of the large distance to string breaking. But it is claimed
that breaking has been observed, at least in d = 3 SU (2) gauge theory (see, e.g.,
Kratochvila and de Forcrand [35]).

7.4.6 Hybrids

Finally, the role of a dynamical gluon mass (along with center vortices) is apparent
in lattice simulations [36] of a heavy-quark baryonic hybrid, a bound state of three
infinitely heavy quarks and a single valence gluon. The corresponding Wilson loop
is shown in Figure 7.3.

In Figure 7.3 (left), the gluon occupies what would be the Steiner line for an
ordinary baryon, but of course, the gluon world line, not being infinitely massive,
fluctuates. This gluon line can be decomposed into a qq̄ pair, as shown on the
right, indicating mixing between the hybrid and a baryon plus meson. In the lattice
simulations [36], the authors claim a clear signal of a mass of some 600 MeV for
the valence gluon; estimates [37] based on a modified form of the Y -law for normal
baryons, plus shorter-distance corrections, are in good agreement with the lattice
data over a range of separations of the three quarks.
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8

Nexuses, sphalerons, and fractional
topological charge

8.1 Introduction to nexuses and junctions

So far, it may appear that center vortices are embedded Abelian objects. But center
vortices can be extended to non-Abelian objects in several ways. We describe
two: the first we call junctions, representing the merging and branching of vortex
lines (or sheets, in d = 4) without the necessity of monopole-like objects called
nexuses; the second are nexuses themselves [1, 2, 3, 4], which are modifications of
’t Hooft–Polyakov monopoles but with their magnetic flux bundled into tubes that
are parts of center vortices. The most interesting property of nexuses is that, along
with center vortices, they admit the formation of quantum lumps of nonintegral
topological charge [5, 6, 7, 8, 9, 10].1 Nexuses do not change the picture of
confinement given in this book in any material way, although this is not completely
obvious. But they enter in a crucial way into a reinterpretation of Polyakov’s [12]
discussion of confinement in the d = 3 Georgi–Glashow model, as we indicate at
the end of this section [2, 13].

Note that we continue to use the notation of Chapter 7. All sections are in Euclidean
space, except for Section 8.3.2, which is in Minkowski space.

8.1.1 Junctions

Junctions are thick points (d = 3) or lines (d = 4) where a vortex can branch into
other vortices [14, 15]. It is easy to draw them in d = 3, where they look like
vacuum Feynman graphs. Figure 8.1 shows a simple example with four junctions
in SU (3), where three lines meet at each junction (up to N lines can meet at an
SU (N) junction, each associated with a distinct flux matrix Qj ).

1 In SU (2), sphalerons (see Section 8.3) can carry half-integral topological charge [11] as lines that form when
an ordinary instanton is split in half and the halves are pulled apart.
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168 Nexuses, sphalerons, and fractional topological charge

2 23 3

1

1

Figure 8.1. A junction and an antijunction in SU (3). The numbers labeling the
lines are the values of the index i in the flux matrix Qi of each vortex line.

Suppose that one of the loops with lines labeled 2 and 3 meets the line labeled 1
at the origin 0. In the neighborhood of the origin, the junction term of the gauge
potential is

Ai(x) = 2π

i
εijk∂j

3∑
a=1

∫
0
dz(a)k Qa {M [z(a) − x] −0[z(a) − x]}, (8.1)

where the Qa are the three k = 1 matrices of SU (3) discussed earlier.2 Because∑3
Qj = 0, the objection to open vortex lines, raised in Section 7.4.2, no longer

applies; the would-be monopole charge, which is the sum of the Qi , vanishes.
For N > 3, there are configurations where some of the lines have higher flux: a
k-vortex arises from associating a sum Q1 +Q2 + · · · with a single line integral.3

Because of this feature, junction lines are not topologically stable, but they can
be entropically stable because the total configurational entropy of two or more
junction lines is greater than the entropy of a fewer number. Whether they actually
are entropically stable depends on a comparison of action and entropy, which we
do not attempt here.

Every junction has an action above and beyond the action per length of the vortices
to which it is attached. Generally, this action depends on the geometry of the
junction (e.g., it vanishes if lines 2 and 3 of Figure 8.1 are collapsed into one).
The case in which the three junction lines meet at right angles has the d = 3 value
2πm/g2 [1].

8.1.2 Nexuses, magnetic charge, and topological charge

In NAGTs where all gluons have mass (not necessarily equal, so we contem-
plate Higgs–Kibble effects here, as in the Georgi–Glashow model), the radially

2 Note that the lines are oriented, and they either all go in or all go out of the junction at the origin. We need not
specify the upper limits of integration, which are irrelevant to the present discussion.

3 For SU (3), there is no nontrivial junction with k > 1.
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8.1 Introduction to nexuses and junctions 169

Figure 8.2. An SU (2) nexus, showing two tubes of field lines.

symmetric long-range magnetic field of the ’t Hooft–Polyakov monopole is
squeezed into two or more flux tubes, as shown in Figure 8.2. These flux tubes,
which must close either at infinity or on an antinexus, have magnetic flux quantized
in the center of the gauge group, just as for center vortices, and for exactly the same
reason: gluon wave functions must be single valued on transport around one of the
tubes. In fact, these tubes are nothing but pieces of center vortices, divided up by
closed nexus and antinexus world lines. So in the simplest case of two flux tubes,
each tube has the same �1 homotopy exemplified in Eq. (7.40), except that each
tube has a different representative of the set of matrices Qj (k). It will turn out that
the total flux of the two tubes together is just that of a ’t Hooft–Polyakov monopole
for every SU (N ).

The field lines from the nexus shown in Figure 8.2 must close, which requires the
presence of an antinexus. So a simple d = 4 case of a center vortex with nexuses
is a torus, with a nexus world line and an antinexus world line (nonintersecting)
wrapped around it. These world lines effectively divide the center vortex into
regions of different orientation; the center vortex as a whole is nonorientable. This,
it turns out, is crucial to the formation of topological charge.

Let us reduce the topological charge to its topological essentials by saving only the
long-range pure-gauge parts of vortices and nexuses, which have singular fields on
their Dirac surfaces and lines. There are several ways to think of this topological
charge:

1. It is formed when a nexus world line links to a center-vortex surface
[7, 8, 9, 10, 16].

2. It is measured by the usual
∫
GG̃ topological charge integral, which can be

interpreted both as the signed intersection number of nonorientable surfaces
and as the vortex-nexus linking number [7, 8, 9, 10, 16]. A special case of
this occurs when vortices carry twist or writhe [5, 6, 7, 8, 9, 10, 16].

3. It can be interpreted in terms of a monopole magnetic charge, as defined
by a standard integral of the type

∫ �B · d�S over a closed two-sphere [17].

In all cases, the topological charge is divided into nonintegral parts. Generically, two
closed surfaces intersect in an even number of points4; in this case, the topological

4 The points actually have an extension of size ∼1/m if we save short-range parts of the gauge fields.
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170 Nexuses, sphalerons, and fractional topological charge

charge associated with each such point is quantized in units of 1/N , but the total
charge is integral if the surfaces are compact. Later we will see that self-intersection
effects from twist and writhe [18] can lead to topological charge that is nonintegral
but otherwise of any size.

Standard textbooks say that topological charge is manifested through instantons,
which are compact lumps of integrally quantized topological charge. Actually, there
is no reason for any given compact lump of topological charge to have any particular
value, integral or otherwise. It may (and does) happen that the compact lumps carry
nonintegral charge, but in such a way that the global topological charge, integrated
over all Euclidean four-space, is an integer. This integrality result, however, is not
automatic but depends on the assumption of compactification of the three-space
bounding d = 4 space at infinity to a three-sphere S3. The gauge potentials carrying
topological charge now involve a map from the three-sphere to these potentials.
The gauge group SU (N) is either SU (2) or has SU (2) as a proper subgroup, and
SU (2) is topologically equivalent to S3. So these maps are just maps of S3 to S3.
Another way of speaking of these maps is through the homotopy

�3(SU (2)) ∼ Z. (8.2)

This one is easy; it just says that all maps of S3 onto itself consist of an integral
number of wrappings of one sphere onto another.5 So in a d = 4 space whose
boundary can be compactified, the total topological charge has to be an integer.
However, this does not require that compact lumps of topological charge have
integral charge, as instantons do, and we have already seen that nonintegral lumps
do exist in the forms of nexus-vortex intersections and related objects. Global com-
pactification simply requires that the sum of all the charges, integral or nonintegral,
be an integer.

8.2 Nexuses in SU (N)

8.2.1 The SU(2) nexus

The first step [1, 16] is to find the gauge representative of an SU (2) nexus in d = 3.
There are infinitely many choices; a simple one is

U = exp
[ i

2
φ�τ · r̂

]
, (8.3)

where the �τ are Pauli matrices and other symbols have their usual meaning. Later
we will see that the generalization to SU (N) is quite straightforward. From this

5 Because any SU (N ) has SU (2) as a subgroup, it turns out that �3(SU (N )) � Z for all N , so our arguments
about integrality of topological charge apply for all gauge groups.
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8.2 Nexuses in SU (N ) 171

gauge representative, we can find the Dirac-string fields; they are

1

2
εijkGij = −

(τ3

2i

)
ẑiε(z)2πδ(x)δ(y). (8.4)

These differ crucially from the corresponding Abelian expression by the factor
ε(z), showing that the field lines reverse direction at the origin, which is where this
Dirac nexus sits.

This Dirac nexus is beginning to show features like those of the nexus in Figure 8.2.
To find the appropriate kinematics, form the gauge representative Ai → U∂iU

−1,
and by inspection, choose for the full potential

Aj = εjak

2i
τar̂k[F − 1 +G cosφ] + 1

2i
(τi − r̂iτ · r̂)G sinφ + φ̂j

τ · r̂
2i

B1, (8.5)

with

F = F (ρ, z); G = G(ρ, z); B1 = B1(ρ). (8.6)

The function B1 carries the thick flux tube of the center vortex (but with oppositely
directed flux on the two halves of the z-axis), and so this kinematics describes a
compound of a thick center-vortex flux tube and the nearly pointlike core of the
nexus, just as in Eq. (7.21):

B1 = 1

ρ
−mK1(mρ). (8.7)

Choose boundary conditions to make the gauge potential approach the pure gauge
based on the gauge representative of Eq. (8.3):

ρ, z → ∞ : F → 0, G → −1 (8.8)

ρ, z → 0: F → +1, G → 0.

There is no analytic solution to these coupled, nonlinear, partial differential equa-
tions, and no one has yet solved them numerically. However, there is a simple and
useful variational approximation [1] using trial functions with a single variational
parameter λ:

F = λ2

λ2 + r2
; G = − ρr

λ2 + ρr
. (8.9)

These obey the correct boundary conditions. To find the nexus energy, calculate
the entire Hamiltonian with these functions and subtract from it the energy of the
pure vortex. One finds, after carrying out the usual variational steps, a nexus energy
3.22(4πm)/g2.

https://doi.org/10.1017/9781009402415 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415


172 Nexuses, sphalerons, and fractional topological charge

8.2.2 The SU(N) nexus

All this generalizes to SU (N), although (just as with junctions) there are many
new geometries. Note that a nexus, as the boundary between two regions of a
vortex with differing field strengths, cannot have its tubes of chromomagnetic field
separated into two bundles arbitrarily. It is essential that a center vortex decorated
with a nexus give rise to precisely the same element of the center group, as found
by transporting the gauge representative around a closed curve linking with the
vortex for each flux tube. So for any nexus that has exactly two flux tubes, as in
Figure 8.2, if one of the tubes carries flux matrix Q1, e.g., then the other must carry
another Qj (and similarly for higher-flux matrices).

An elementary calculation shows that for any two choices of Qk, their difference
Qi −Qj is a Pauli matrix τ3 for an embedded SU (2). This means that all entries
are zero, except for one +1 (in the j th position along the diagonal) and one −1 (in
the ith position). So we can write, e.g.,

Q1 = −1

2
τ3 + R(12), Q2 = 1

2
τ3 + R(12),

R(12) = diag

(
−1

2
+ 1

N
,−1

2
+ 1

N
,

1

N
, . . .

)
. (8.10)

The matrix R12 commutes with the generators of the embedded SU (2). Now it is
elementary to find a gauge representative of a two-tube nexus:

U = e(iφτ ·̂r/2)eiφR(12), (8.11)

where, of course, the Pauli matrices are in the embedded SU (2). The magnetic
charge of the nexus can be identified with the eigenvalues of the embedded τ3,
which are ±1, as would be required for a ’t Hooft–Polyakov monopole.

8.2.3 Nexus magnetic charge

How do we detect the nexus magnetic charge and relate it to topological charge?
Because there is a strong connection between the nexus and the ’t Hooft–Polyakov
monopole, the procedure [17] somewhat resembles that for the ’t Hooft–Polyakov
monopole. The main difference is that there is no Higgs–Kibble field for the
nexus in a QCD-like theory. In the ’t Hooft–Polyakov monopole, the presence
of this Higgs–Kibble field in the adjoint of SU (2) breaks the gauge symmetry to
SU (2)/U (1), a space homotopic to the two-sphere S2, and the surviving long-range
magnetic field can be identified with, say, the 3 direction in group space. After a
suitable projection onto this unbroken U (1) subspace, the magnetic charge of the
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21

2

Figure 8.3. The inner black dot represents a nexus that we label A, and the lines
represent its associated flux tubes with fluxes described by Q1,2. The outer circle
represents the plain vortex surface B with flux described by Q2.

’t Hooft–Polyakov monopole is measured through the integral∫
�

d�S · �B = Qmag, (8.12)

where� is an arbitrary closed surface surrounding the monopole; the integral yields
an integral magnetic charge Qmag. This corresponds to the homotopy that maps
this broken gauge group onto the two-sphere:

�2(SU (2)/U (1)) = �2(S2) = Z, (8.13)

where Z is the group of integers.

There is a sense in which nexuses also display this homotopy, although this is
suspicious because there is no symmetry breaking for the nexus for QCD-like
theories, and the homotopy �2(G) is trivial for every non-Abelian gauge group
G. What in fact happens is that nexuses really display topological charge and the
homotopy above [17] is simply a disguised form of the usual topological charge
integral:

Qtopo = − 1

16π2

∫
d4x TrGμνG̃μν. (8.14)

We evaluate this integral for the generic intersection of the static nexus already
displayed with Dirac fields G(A)

μν (see Eq. (8.4)) and a plain center vortex that we
call (B), as in Figure 8.3. The static nexus is the horizontal line with incoming flux
matrix Q1 on the left and −Q2 on the right. The center vortex surface (B) is a
closed surface with the topology of S2 characterized by the matrix Q2. The vortex
and the nexus intersect at two points, and these are where the topological charge
density is located. The topological charge of the overlap between (A) and (B) is

Qtopo = − 1

8π2

∫
d4x Tr G̃(B)

μν G(A)
μν = 1

4π i

∫
dσμν TrQ2G(A)

μν , (8.15)
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where in the second equality, we replaced G̃(B)
μν by its Dirac-surface form. For

SU (2), there are only two Q-matrices: Q1 = −Q2 = τ3/2. Clearly, this second
equality is precisely the magnetic charge integral Qmag, which we now see is equal
to Qtopo; both are equal to unity.

For general SU (N), give nexus (A) the Q-matrices Qa,Qc, and give the vortex
(B) the Q-matrix Qb. Now the trace factor is

TrQb (Qa −Qc) = δab − δcb. (8.16)

This, of course, has only the integral values 0,±1, vanishing if b is not equal to
either a or c. The topological charge depends very much on the surface surrounding
the nexus, unlike the purely artificial surface used to define the magnetic charge
of a ’t Hooft–Polyakov monopole. As advertised, the total topological charge is
integral, with a fractional charge of TrQbQa = δab − (1/N ) at the crossing of flux
line a with the vortex surface. All this can be generalized to more complicated
vortices and nexuses, but we will not do that here.

8.2.4 Topological charge as an intersection number
for nonorientable vortex surfaces

Here we display the intersection number form of Qtopo [7, 8, 9, 10, 16]. Start with
the vortex field strength in the Dirac-surface limit:

GA
μν(x) = 2πQA

i

∫
dσ̃ A

μν(z) δ(x − z(A)), (8.17)

where QA is one of the flux matrices Q and dσ̃ A
μν(z) is the dual surface element

for the surface A characteristic of the vortex. The standard topological charge of
Eq. (8.14) is, in terms of the sum of vortex field strengths,

Qtopo =
∑
A,B

Tr(QAQB)I (A,B), (8.18)

where I (A,B) is an intersection number:

I (A,B) = εμναβ

∫
1

2
dσA

μν

1

2
dσB

αβ δ(z(A) − x(B)). (8.19)

The intersection number is ±1 for every transverse intersection of a point on surface
A with a point on surface B (transverse means that the normals to the surfaces at
the point of intersection span Euclidean four-space).

We are on the road to getting lumps of fractional topological charge localized at the
intersection points because the trace factor Tr(QAQB) always has a denominator
of N for SU (N). Unfortunately, at this stage of the game, we always get zero
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Figure 8.4. Two closed oriented lines in d = 2 have a total intersection number
of zero because the two intersections have opposite orientation and cancel.

Figure 8.5. Two closed lines in d = 2, one with an SU (2) nexus-antinexus pair.
They have a total intersection number of 1 because the two intersections have the
same orientation.

from Eq. (8.18) [7, 8, 9, 10, 16, 17]. The reason is that when two closed oriented
surfaces intersect, the total intersection number is zero. One can see this from the
corresponding geometry in two dimensions, as shown in Figure 8.4. We will give
a formal proof that the total intersection number is zero in d = 4 very shortly.

For any pair of ordinary vortices, we can factor out the trace factor in Eq. (8.18),
and then the resulting charge is zero. So intersections do not seem very promising
for generating topological charge. We can fix the problem by remembering nexuses
that in effect change the Q matrices, while preserving the group-center element
associated with a vortex as one moves around a given vortex surface. The simplest
case to illustrate is SU (2), where a nexus simply changes the orientation of the
chromomagnetic flux. Figure 8.5 shows two intersecting, two-dimensional closed
curves, but this time, the one on the left has a nexus and an antinexus, reversing the
orientation at each. The plain curve, on the right, encloses (is linked to) the nexus,
and because the orientation reverses on passing the nexus, the intersection numbers
are +1 at both intersections. The Q-trace is 1/2, and now the topological charge is

https://doi.org/10.1017/9781009402415 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415


176 Nexuses, sphalerons, and fractional topological charge

1/2 + 1/2 = 1. The topological charge is still localized at the intersection points
and is fractional at these points, but the total topological charge is unity.

The same thing – appearance of lumps of topological charge quantized in units of
1/N , with integral total charge – happens in d = 4 and for any SU (N) [5, 6, 7,
8, 9, 10, 16, 17]. Look at the simplest case, where a single nexus world line on
one vortex is linked to a closed vortex with no nexuses. Nexus world lines that
are unlinked contribute nothing and are omitted. With this understanding, write the
dual field strength of vortex A with nexuses as a sum:

G̃A
μν(x) = 2πQa

i

∫
Sa

dσμν δ(x − z(σ )) + 2πQb

i

∫
Sb

dσμν δ(x − z(σ )), (8.20)

where Sa is a surface bounded by the closed nexus world line � on one side, and
Sb is a surface bounded by the same world line on the other side. These boundaries
have opposite orientation, in the sense that

∂Sa = � ∂Sb = −�. (8.21)

Equation (8.20) is not literally correct because terms that exhibit the corresponding
antinexus world line, and possibly other nexuses and antinexuses, are omitted.
However, they are irrelevant to the topological charge if they are not linked to
the surface of the second vortex. This equation has another flaw: taken literally, it
violates the Bianchi identities. This is because there really is no mathematically
accurate way of modeling a nexus as an Abelian object; it is essentially non-
Abelian. One overcomes this Bianchi identity problem by smoothing the transition
from Qa to Qb over a region of size ∼1/m, as in the nexus; this smoothing has no
effect on topological properties coming from long-range effects.

Let AC
μ(x) be the Dirac-singular part of the gauge potential of a second vortex with

no nexuses. Its Dirac gauge potential is an integral over a closed surface Sc:

AC
μ(x) = −2πQc

i
εμναβ

∮
Sc

1

2
dσ ′

αβ 0(x − y(σ ′)). (8.22)

The topological charge is expressible as a linking between the vortex and the nexus
world line, completely analogous to the linking of a vortex and a Wilson loop
responsible for confinement. The Gauss formula for linking vortex surface Sc and
the closed nexus world line � is familiar from confinement:

Lk =
∮
�

dzμεμναβ

∮
Sc

1

2
dσ ′

αβ ∂ν0(z − y(σ ′)). (8.23)

https://doi.org/10.1017/9781009402415 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415


8.2 Nexuses in SU (N ) 177

1 3

N 5

1 4

2

Figure 8.6. An SU (N ) nexus split intoN lines. The circle labeled 2 schematically
represents the plain vortex (B) of the text, and the vortex flux lines emerge from
the nexus (A). The intersections of the lines and the circle are points of topological
charge density.

Next, we show that the topological charge is essentially this link number by applying
Stokes’s theorem. Consider the expression

Qtopo = 1

2π i

∮
�

dxμ Tr
[
(Qa −Qb)A

C
μ(x)

]
(8.24)

for the topological charge. Using Stokes’s theorem on Eq. (8.24) yields an expres-
sion that is easily converted into the fundamental topological charge integral of
Eq. (8.14), evaluated with the field strengths from Eq. (8.20) and the curl of
Eq. (8.22). The minus sign in the trace factor comes from the opposite orientations,
as given in Eq. (8.21).

We can also conclude from Eq. (8.24) that the total intersection number of closed
oriented surfaces is zero by replacing the individual trace factors TrQaQc and
TrQbQc by unity.

We have earlier seen how to divide topological charge into parts 1 − (1/N ) and
1/N . Is it possible to divide this topological charge further intoN constituents, each
of charge 1/N? The answer is yes. In the center vortex of Figure 8.3, decompose
the flux matrix Q2 on the right-hand side (rhs) of the nexus as

Q2 = −Q1 −Q3 · · · −QN, (8.25)

and associate a flux tube with each of the terms in this equation, as shown in
Figure 8.6.

Each intersection of a line coming from the nexus (A) with the circle (B) is a point
of topological charge 1/N , with the sum being unity, as before. Is it probable that
an elementary nexus would split into N lines, as shown? Not if action alone were
the only consideration because the N lines each have an action per unit area the
same as that of the two lines of an elementary nexus. But as we have learned,
entropy is equally important, so this N -line splitting should not be less probable
than a 2-line nexus.

https://doi.org/10.1017/9781009402415 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415


178 Nexuses, sphalerons, and fractional topological charge

Figure 8.7. A curve turned into a ribbon by adding the curve of the dotted line.

How might one see the effect of fractional topological charge, especially because
topological charge is integrally quantized globally? Perhaps the most important
way is to study the topological susceptibility χ , which is quadratic in Qtopo. This
is defined as χ = 〈Q2

topo〉/V4, where V4 is the volume of space-time. Witten [19]
and Veneziano [20] have given a large-N formula relating the η′ mass to χ , which
suggests that the vacuum energy as a function of the θ -angle depends not on θ but
on θ/N , as topological charge fractionation would give. This is discussed further
in [16].

But topological charge fractionation into units of 1/N is, unfortunately, not the
whole story. Center vortices need not intersect at points to generate nonintegral
topological charge; they can do so by twist and writhe [5, 6, 7, 8, 9, 10, 16, 17].

Twist and writhe An ordinary two-dimensional ribbon can link to itself (in d = 3)
by twist and writhe, which means by deformations such that the two edges of the
ribbon would be linked (knotted) if the rest of the ribbon were missing.6 Twist and
writhe contribute to the Chern–Simons number in somewhat the same way that
intersections contribute to the topological charge [5, 6, 7, 8, 9, 10]; that is, for a
vortex with twist, writhe, or both, the integral for NCS in Eq. (8.31) is nonvanishing,
and this integral need not be integral or a multiple of 1/N .

Intuitively, twist comes from forming this ribbon from a long, open paper strip then
twisting one end a certain number of times before closing the strip by joining one
end to the other. (A half twist leads to a nonorientable Möbius strip not considered
here.) For a mathematical curve, twist and writhe need further definition, which
can be done by supplying the curve with an infinitesimally close partner, as shown
in Figure 8.7. The combination forms a ribbon whose twist and writhe are well
defined but not unique (they depend on the partner curve).

6 See Kaufmann [18] for general properties of knots and related subjects.
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Figure 8.8. A d = 3 projection of a center vortex with writhe.

Writhe seems intuitively to be different from twist, but it is not. Figure 8.8 shows
a closed curve with writhe. Playing with actual paper ribbons will show that twist
and writhe are interconvertible without tearing the paper.

Topological charge can be generated from twist and writhe only if there is a
difference in the Chern–Simons number at two boundaries that we can identify
as referring to (Euclidean) times of ±∞ so that if the vortex is to change its
Chern–Simons number, it must reconnect by crossing itself. This crossing may be
essentially Abelian and easily envisaged by imagining a motion picture of a closed
loop crossing itself, or it can be essentially non-Abelian and call for a deeper level
of visualization.

Consider, then, the closed Dirac string of a d = 3 vortex. There is a famous theorem
of such d = 3 knotted curves,

Lk = Tw +Wr, (8.26)

where Lk, a topological number and an integer, is the self-linking number, and
the terms on the right, neither of which is an integer or of topological character,
are the twist Tw and writhe Wr , respectively. The integral that defines Lk is just
the one used earlier (see Eq. (7.41)) for the linkage of two distinct curves but with
only one curve in it:

Lk =
∮
�

dxi

∮
�

dx ′
j εijk∂k0(x − x ′). (8.27)

With just one curve �, it is inevitable that the points where x = x ′ are possibly
singular. Some form of regulator is needed. The standard one is ribbon framing, as
in Figure 8.7. The original curve is turned into a ribbon by adding a second curve
�′ infinitesimally separated from � and not intersecting it; the self-link number is
defined as the Gauss link integral for these two nonintersecting curves. So �′ is the
first curve displaced by an infinitesimal amount:

�′ : x ′
i(s) = xi(s) + εni(s), (8.28)
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where ε is infinitesimal and ni(s) is a unit-vector field. The self-link number is
defined as the mutual link number of � and �′. This is, to be sure, an integer and a
topological invariant, but it depends on this new unit-vector field.

This ribbon framing would not make sense for real-world center vortices because
we have no good way of defining the framing, and even the topologically invariant
self-link is only defined modulo integers that depend on the framing. But real-
world center vortices have a finite thickness, as we know. This thickness removes
all ambiguity from the limiting process of defining self-linkage. The idea [5] is to
write the Chern–Simons number, which is the same as the linking number, for a
vortex using both the massive and the massless propagators that occur in the vortex
wave function. It then turns out that the Chern–Simons number for a plain unit-flux
vortex becomes

NCS = TrQ2
i

∮
�

dxi

∮
�

dx ′
j εijk∂k0(x − x ′)F (M|xi − x ′

i |), (8.29)

where

F (u) = 1

2

∫ u

0
dv v2e−v. (8.30)

For small u, F (u) ∼ u3, and this is more than enough to cancel the singularities at
xi = x ′

i in the rest of the integrand in Eq. (8.29). Since F (∞) = 1, vortex segments
that are far apart contribute as usual to the Chern–Simons number, and nothing is
changed.

The topological charge contained between two time slices is the difference between
two Chern–Simons numbers. For a gauge potential on a fixed-time slice, this
number is

NCS = − 1

8π2

∫
d3x εijkTr

(
Ai∂jAk + 2

3
AiAjAk

)
. (8.31)

This number is not gauge invariant; under the gauge transformation

Ai → UAiU
−1 + U∂iU

−1, (8.32)

we find

NCS → NCS + 1

8π2

∫
d3x εijkTr

[
1

3
U−1∂iUU

−1∂jUU
−1∂kU − ∂i(AjU

−1∂kU )

]
.

(8.33)

If the original gauge potential is zero, so that we are calculating the Chern–Simons
number of a pure gauge transformation, the integral in Eq. (8.33) is supposed to
be an integer, as prescribed by the homotopy of Eq. (8.2). However, this requires
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an extra assumption: that the three-space over which one integrates the Chern–
Simons density is compact, which means that the gaugeU (�x) approaches a constant
independent of direction as r → ∞. There seems to be no elementary physical
reason for assuming compactness, and in Section 8.3, devoted to the sphaleron, we
examine this assumption further (the sphaleron naturally hasNCS = 1/2, seemingly
violating compactness).

Nexuses in the Georgi–Glashow model In a famous paper, Polyakov [12]
explained confinement in the d = 3 Georgi–Glashow model as due to ’t Hooft–
Polyakov monopoles, with a long-range spherically symmetric magnetic field,
thereby exemplifying dual superconductivity as a confining mechanism. (The
Georgi–Glashow model is an SO(3) NAGT coupled to a Higgs–Kibble field in
the adjoint representation, which gives masses to two charged gauge bosons, leav-
ing the third one, which we call the photon, massless.) In fact [2, 13], confinement
in the Georgi–Glashow model is actually an example of center-vortex confinement
with asymmetric nexuses, whose world lines lie in center-vortex sheets, as we have
already shown for QCD-like gauge theories with no symmetry breaking. Polyakov
works in the limit v � g3, where v is the Higgs–Kibble VEV and g3 is the gauge
coupling. In this, the semiclassical limit, the ’t Hooft–Polyakov monopole has a
very large action. Because there must be a monopole condensate, Polyakov points
out that a Meissner mass is induced for the photon, just as in ordinary super-
conductivity. This mass, however, is exponentially small in v/g3 and is ignored
by Polyakov, who then can claim that the semiclassical excitations of the gauge
field are indeed ’t Hooft–Polyakov monopoles. But as long as v is finite, the ’t
Hooft–Polyakov monopole becomes a nexus because its magnetic field can no
longer be long range. The size of the nexus is exponentially large and, at distances
scaled by other parameters of the theory, looks very much like a ’t Hooft–Polyakov
monopole. Nonetheless, as a matter of principle, for (fundamental representation)
Wilson loops that are large compared to the nexus thickness, confinement is by
the center vortices in which the nexus is embedded. This becomes clear [13] as
the VEV v is reduced; at some point, when v ≤ g3, the Higgs–Kibble mass of the
charged gauge bosons, proportional to vg3, is too small to avoid infrared instabil-
ity, a dynamical gauge-boson mass of O(g2

3) is induced, and the nexus (and center
vortices) begin to look like the symmetrical ones of a QCD-like theory.

8.3 The QCD sphaleron

There are three gauge-field configurations known as sphalerons. Usually the word
sphaleron7 refers to a massive spherically symmetric d = 3 electroweak soliton

7 Coined by Klinkhamer and Manton [21].
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with a gauge-boson mass driven by a Higgs field [22]. The sphaleron’s topological
properties were first noted for electroweak theory by Manton [22], where it
occurred as a classical saddlepoint on a noncontractible loop in the d = 3 + 1
configuration space of gauge potentials, describing the top of the tunneling barrier
of minimum energy between vacua with topological charges differing by unity.
There is another sphaleron in classical NAGTs corresponding to the saddlepoint at
the top of the potential barrier tunneled through by instantons. This classical object
is massless but has an arbitrary length scale set by the collective size coordinate of
its associated instanton.

There is also a quantum sphaleron in QCD-like NAGTs [23] that differs from
both of the preceding sphalerons while retaining the saddlepoint character; we call
it the QCD sphaleron. The gauge-boson mass is dynamical, there is no Higgs–
Kibble field, and there is no symmetry breaking. The QCD sphaleron has a fixed
size determined by the gluon mass, and this size actually corresponds to an upper
limit for the size of instantons and sphalerons. This sort of upper size limit is
routinely seen in computer simulations in which instantons are identified and built
into models [24] of the instanton liquid, where the size scale corresponds to a
mass of 600 MeV. The QCD sphaleron may exist transiently as some sort of glue
ball, and it also is a mediator between charge-changing events but not of the usual
topological charge. Instead, the charge associated with the QCD sphaleron is that
of the color-singlet axial current, giving the change in the flavor sum of chiralities.

Both the classical sphaleron and the QCD sphaleron can be embedded in Euclidean
four-space (d = 4) or in Minkowski space (d = 3 + 1), and these embeddings will
be the emphasis in the present chapter. (Chapter 9 discusses the sphaleron as a d = 3
object more fully.) In d = 4, the classical sphaleron is a cross section of an instanton
that solves the classical field equations. In d = 3 + 1, there is no known embedding
in a solution of the field equations, but one can find embeddings that have all the
desired properties of an evolution of topological charge in Minkowski time t

[25, 26] and define a corresponding Chern–Simons number NCS(t). By symmetry
of the tunneling process from topological charge zero to charge unity, we should
assign a Chern–Simons number or topological charge of 1/2 to the sphaleron
and describe the tunneling, in Minkowski time, as a smooth evolution of NCS(t)
from 0 to 1, passing through 1/2 at the top of the barrier. In the course of this
smooth evolution, NCS is clearly nonintegral because it gets contributions from
gauge potentials that are not pure gauge with nonvanishing field strengths. Like
the other solitons we discuss, the QCD sphaleron is fundamentally a d = 3 object
but is unstable in isolation. After discussing this basic QCD sphaleron, we defer to
Chapter 9 for further discussion of the QCD sphaleron as a pure d = 3 object and
will show [27] that, considered purely as a d = 3 object, the NCS = 1/2 sphaleron
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is closely connected to the properties of knots or closed d = 1 strings, embedded
in three dimensions, that are linked.

There are many potential physical applications of sphalerons, both in electroweak
theory and in QCD. Some arise through the connection, via the anomaly, of topo-
logical charge and the divergence of a current. In electroweak theory, this current
is the sum of the baryonic (B) and leptonic (L) current and leads to B + L vio-
lation. In QCD, the current with an anomalous divergence is the UA(1) current,
and helicity conservation is violated. In both cases, the violations have a tunnel-
ing interpretation. Sphaleronic configurations are also important in estimating the
(lack of) overlap at high energy between few-particle states and many-particle
states; see the references in Chapter 9. It would take almost another book to detail
such applications.

8.3.1 The QCD sphaleron as a d = 3 object

The ansatz for the gauge function U of the sphaleron is the well-known one for
spherically symmetric solitons,

U = exp
[ i

2
β(r)�τ · r̂

]
, (8.34)

differing from Eq. (8.3) of the nexus only in the choice of a rotation angle, which for
the sphaleron is radially symmetric. Forming the pure-gauge representative Ai →
U∂iU

−1, we infer the standard kinematics for spherically symmetric solitons:

Aj = εjak

2i
τar̂k

[
φ1(r) − 1

r

]
− 1

2i
(τj − r̂j τ · r̂)

[
φ2(r)

r

]
+ r̂j

τ · r̂
2i

H1(r). (8.35)

The boundary conditions are as follows:

φ1(∞) = cosβ(∞); φ2(∞) = − sinβ(∞); H1 → dβ

dr

∣∣∣∣
r=∞

. (8.36)

For future reference (see Chapter 9), we note that the Chern-Simons number of
U is

NCS{U} = 1

2π
[β(∞) − β(0)]. (8.37)

The equations of motion have a finite-energy solution [23] for the special choice
β(r) = π . There is no analytic solution, but there is an analytic approximation
[11, 23] based on a variational approach that gives excellent agreement with numer-
ical calculations. Use the trial functions

φ1(r) = a2 − r2

a2 + r2
; β = π ; φ2 = H1 = 0, (8.38)
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where the length a is a variational parameter. Of course, the true φ1 + 1 vanishes
exponentially as r → ∞, but our trial wave function vanishes only like 1/r2. The
variational mass turns out to be 5.44(4πm/g2), which is within half a percent of
the numerical answer, in which 5.44 is replaced by 5.41.8

One might think that if β is a half-integral multiple of π, the CS number is also a
half-integral. But Eq. (8.37) shows that NCS vanishes. Only when we embed this
sphaleron in a d = 3 + 1 context will we find a Chern–Simons number of 1/2.
In any event, we can change the Chern–Simons number arbitrarily by making a
spherical gauge transformation, although at the price of foregoing compactness.

As a solution of the spherical field equations, this β = π sphaleron is an extremum,
but it is a saddlepoint and therefore has a maximum for some parameters in a space
orthogonal to a space in which the minimum lies (in our case, this space is just
the space of the trial parameter a). For example, Ref. [11] exhibits trial functions
yielding finite energy and having β = β0 for any fixed angle β0. Let φ1c be the
exact solution for the β = π sphaleron, and define

φ ≡ φ1 + iφ2 = 1

2
(1 + φ1c) + 1

2
eiβ0 (1 − φ1c). (8.39)

Also, take H1 = 0. The new φ obeys the boundary conditions of Eq. (8.36) with
β = β0, and the associated gauge potential, constructed from φ − 1, smoothly
changes toward zero as β0 → 0 mod 2π . The trial mass function is

Ms(β0) = 1

2
(1 − cosβ0)Ms(β0 = π ), (8.40)

where Ms(β0 = π ) is the sphaleron mass. So there is a maximum at β0 = π , and
smoothly reducing β0 to zero reduces the soliton to nothing.

8.3.2 Sphalerons in four-dimensional Minkowski space

There is a very simple but apparently accurate description [25, 26] of this minimum-
height barrier that has only one dynamical degree of freedom, a simple scalar
function of time called λ(t). It nicely extends the trial function of Eq. (8.38) to
time-dependent configurations. Bitar and Chang [25] suggested that the standard
expressions for a classical instanton could be used in Minkowski space with the
simple replacement of t by λ(t) and the insertion of λ̇(t) at a particular place. These
expressions, in terms of the spherically symmetric space components of Eq. (8.35),
are

φ1 = λ2 + a2 − r2

λ2 + a2 + r2
; φ2 = −2λr

λ2 + a2 + r2
; H1 = 2λ

λ2 + a2 + r2
. (8.41)

8 Warning: in Cornwall [26], an incorrect value was used in place of 5.44. This paper also has several typos.

https://doi.org/10.1017/9781009402415 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415


8.3 The QCD sphaleron 185

To this list, we add a time component of the gauge potential,

A0 ≡ 1

2i
�τ · x̂ H2; H2 = −2λ̇

λ2 + a2 + r2
, (8.42)

and take β = 2 arctan(r/λ). This choice for β is equivalent to making a spherical
gauge transformation of the d = 3 spherical decomposition by an angle α = −π +
2 arctan(r/λ) that carries λ as a parameter with no particular dynamical significance
in d = 3.

If λ is replaced by t , these expressions are exactly those for an instanton in d = 4
of size a, which is arbitrary for the classical instanton. However, for the QCD
sphaleron and its embedding, a has a different interpretation and is determined
by the gluon mass m. As in Bitar and Chang, these embedding functions for the
QCD sphaleron are used in Minkowski space, not Euclidean space. Of course, in
Minkowski space, they are neither solutions of the equations of motion nor self-
dual, but they are still useful because they represent the tunneling barrier itself
quite accurately. Because λ in some sense is a replacement for time t , we require
that λ be an odd function of t and monotone increasing in t , and we impose the
conditions

λ(−∞) = −∞; λ(0) = 0; λ(+∞) = ∞. (8.43)

We have, consistent with the oddness in t of λ, λ̇(0) = 0 at the time t = 0, repre-
senting the top of the barrier, where A0 vanishes according to our ansatz. Then, at
t = 0 (i.e., λ = 0), the Bitar–Chang potentials reduce to the d = 3 trial function
already used in Eq. (8.38) for the QCD sphaleron plus the specification β = π .
The minimum QCD sphaleron barrier height at t = 0 is the sphaleron energy, and
the saddlepoint nature of the sphaleron becomes evident because (see Eq. (8.44)
below) as time increases, the energy decreases.

For the QCD sphaleron, we treat a as a variational parameter to be determined
from the massive effective Hamiltonian. This Hamiltonian comes from inserting
the full ansatz into the d = 3 + 1 action analogous to the d = 4 massive effective
action Seff and stripping off a time integral. It is not quite the same as the static
HamiltonianHeff of Eq. (7.7) because there are contributions from the λ̇ terms. The
result [26] has the form

Hs = Heff + λ̇2

2g2
μ(λ, a,m) − λ2

2g2
κ(λ, a,m). (8.44)

The first term on the right is the static (potential) energy Heff at λ = λ̇ = 0, and
μ, κ are positive integrals [26] over the Bitar–Chang potentials and fields. The
sphaleron mass Ms is simply the extremal value of Heff . At t = 0, extremalization
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of Heff leads to

a =
√

3

2m
; Ms = 4

√
3πm

g2
. (8.45)

The saddlepoint instability of the sphaleron is evident in the negative sign for the
potential coefficient κ .

The Chern–Simons number varies smoothly with t from 0 at t = −∞ to 1 at
t = +∞. The total topological charge has the expression

Qtopo = − 1

4π2

∫
d4x Tr �E · �B

= 24a4

π

∫ ∞

0
dr r2

∫ ∞

−∞
dλ

1

(λ2 + r2 + a2)4
= 1. (8.46)

The integral to the top of the barrier (λ = 0) gives topological charge 1/2, as
expected, consistent with Eq. (8.37).

Now change variables from λ to a new variable angular q(t) = f (λ(t)), chosen
so that the kinetic energy in the Hamiltonian has the simple form q̇2/(2I ), with a
q-independent moment of inertia and with the angular properties q(t = −∞) =
0, q(t = +∞) = 2π . This has been done numerically [26], and the resulting poten-
tial looks very much like the pendulum potential ∼1 − cos q. The sphaleron is the
static but unstable point q = π with the pendulum standing on end.

The parameter β0 introduced in Eq. (8.39) for the trial wave function, considered a
function of time, is both (approximately) the phase variable q for the upside-down
pendulum and the angle to be used in NCS (see Eq. (8.37)).

8.4 Chiral symmetry breakdown, nexuses,
and fractional topological charge

Chiral symmetry breaking (CSB) for quarks in QCD is closely related to con-
finement and (via the Atiyah–Singer theorem) a condensate of topological charge.
Arguments were given long ago [28, 29, 30] that confinement was sufficient for
CSB. These works were based on a variety of phenomenological models of confine-
ment, not center vortices. Later, lattice simulations showed [31] that center vortices
(and nexuses) were not only sufficient but also necessary for quark CSB: there
was both confinement and CSB in the presence of center vortices, but when center
vortices were removed from the simulation, not only did confinement disappear,
but CSB disappeared also, as shown in Figure 8.9.

Moreover, simulations show that the CSB transition temperature, at which chiral
symmetry is restored, is very close to the deconfinement transition temperature,
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Figure 8.9. Graph of the quark condensate 〈ψ̄ψ〉 versus quark mass mq , showing
CSB at mq = 0 if center vortices are present (curve marked “Original”) but not
if they are removed (curve marked “Modified”). Reprinted with permission from
P. de Forcrand and M. D’Elia, Phys. Rev. Lett. 82 (1999) 4582, c© 1999 by the
American Physical Society.

above which center vortices are unable to confine (e.g., see Chapter 9 and Cheng
et al. [32]). This, too, suggests that confinement is necessary for CSB for quarks
because if there were another significant mechanism, it might show up once con-
finement was out of the picture.

In the picture of center vortices and nexuses supported by gluon-mass generation, it
is easy to see how this happens. Center vortices give confinement, as we know, and
nexuses, plus vortex twist and writhe, give topological charge and CSB. Removing
center vortices takes away all these effects because nexus world lines are required
to live on center vortices.

The Atiyah–Singer theorem and the Banks–Casher relation [33] (showing that CSB
requires a condensate of fermionic zero modes associated by the Atiyah–Singer
theorem with topological charge) say that there should be fermionic zero modes
(solutions of the massless Dirac equation) localized near the topological charge
produced by vortex-nexus linking. Some appropriate zero modes have been found
for just such linkings [34]. Clearly, when vortices are removed in lattice simulations,
such zero modes, and apparently the whole fermionic condensate, should vanish.

On the other hand, confinement is not always necessary for CSB. Dirac fermions9

in the adjoint representation show CSB [35, 36, 37] on the lattice, and of course,
the adjoint representation is not confined. Some other mechanism must be at work,

9 Not Majorana fermions, so supersymmetry is not an issue. In fact, Majorana fermions are impossible in
Euclidean space.
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which may be well approximated by a conventional gap equation based on one-
gluon Feynman graphs. The gluon is coupled to the adjoint with a strength 9/4
times its coupling to quarks, so it can happen that the gap equation breaks CSB
for the adjoint but not for quarks, depending on the size of αs(0) [38]. The PT
estimates for αs(0) are in a range where just this happens [39, 40].

It is only recently that powerful lattice algorithms for chiral quarks have come
into widespread use, and so there still remains much to be done in confirming
the dominant role of center vortices and nexuses in CSB for quarks. However, all
present indications are favorable.
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A brief summary of d = 3 NAGTs

9.1 Introduction

NAGTs in three dimensions have valuable applications in their own right because
they are the high-temperature limit of d = 4 NAGTs with infrared slavery (see
Chapter 11 for more details). They also lead to important insights into d = 4
NAGTs at zero T , and in many ways, d = 3 QCD is more interesting to study to
gain this insight than the far more often-invoked two-dimensional theories. It is not a
free-field theory (as is a d = 2 pure-gauge NAGT), and it has many features strongly
analogous to those of d = 4 NAGTs that are best understood by applying the pinch
technique. In particular, although a d = 3 NAGT cannot be asymptotically free
(because it is superrenormalizable, not possessing the usual renormalization group),
it is still very much infrared unstable, with even worse singularities than those in
d = 4. Although this d = 3 infrared slavery had been strongly suspected before
the pinch technique on the basis of conventional Feynman graph calculations, it
took the pinch techniqe to settle the issue and demonstrate the existence of infrared
slavery in d = 3 NAGTs.

Because a d = 3 NAGT is the critical nonperturbative part of the high-temperature
behavior of its d = 4 counterpart, infrared slavery prevents the use of perturbation
theory (beyond O(g4

3)) in understanding all the phenomena of high temperature,
including generation of a so-called magnetic mass, which vanishes identically to
all orders of perturbation theory. Just as we have already seen at zero temperature,
the magnetic mass, found from the PT Schwinger–Dyson equations, cures the oth-
erwise intractable infrared singularities of high-temperature d = 4 gauge theories.
We study here only the d = 3 NAGT part of finite-temperature d = 4 NAGTs,

In this chapter, we continue to use the notation introduced in Chapter 7. Also in the present chapter, g3 is the
d = 3 NAGT coupling, and g continues to be the d = 4 coupling.
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9.1 Introduction 191

saving the PT results for other components of finite-temperature field theories for
Chapter 11.

In some respects, d = 3 NAGTs are somewhat easier technically than their d = 4
counterparts. For example, effective field theories of center vortices are fairly
simple scalar field theories in d = 3 [1] and so are easier than in d = 4, where
they are string theories. Unfortunately, we cannot cover these effective theories in
a book of this length.

We list here a few of the many reasons for being interested in d = 3 QCD, most of
which are really only understood with the help of the pinch technique, the gauge
technique, or both:

1. It is a superrenormalizable theory, very well behaved in the ultraviolet,
with corrections to the bare coupling vanishing as inverse powers of large
momenta. But the pinch technique reveals infrared slavery, just as in d = 4,
meaning that the PT propagator has unphysical singularities at finite momen-
tum. Furthermore, a d = 3 gauge theory with zero bare mass (no Higgs
effect or Chern–Simons (CS) term) is always strongly coupled at low
momenta q, where the dimensionless expansion parameter is Ng2

3/q for
SU (N). As one might by now expect, infrared slavery is resolved by gen-
eration of a gluon mass, which in turn gives rise to a 〈G2

ij 〉 condensate and
to many of the solitons familiar in d = 4: center vortices, nexuses, and
sphalerons.

2. In d = 3, we will actually prove the existence of this G2
ij condensate and

entropy dominance of the effective action, simply on the hypothesis that the
full theory possesses only one mass scale (that of g2

3 itself). We will also
show that an approximation based on the pinch technique fully realizes the
expected functional form of the exact effective action and the taming of all
infrared-slavery singularities. The pinch technique shows that there is a direct
connection between the “wrong” sign of the one-loop self-energy, responsible
for infrared slavery, and the existence of a minimum in the effective action
at a finite condensate VEV.

3. The vacuum wave functional of the functional Schrödinger equation (FSE)
for d = 4 QCD is expressed in terms of a gauge-invariant effective action
whose arguments are background fields given by the coordinate gauge poten-
tials of this wave functional. Certain aspects of the form of the Schrödinger
functional are governed by the pinch technique. Gauge invariance gives rise
to an infinite tower of QED-like Ward identities, and the gauge technique is
effective in exploiting the Ward identities. The two lowest terms in a gauge-
technique-inspired expansion of the effective action around small momentum
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lead approximately to d = 3 QCD as an effective field theory for calculat-
ing matrix elements. (This is by no means obvious because Schrödinger
equation functionals depend intrinsically on square roots of operators, which
are forms not encountered in conventional effective actions.) This effective
field theory shows confinement (because it has a condensate of center vor-
tices), and d = 3 estimates of the gluon mass actually lead to an estimate
of the d = 4 coupling αs(m2) � 0.4 − 0.5, which is not too far (given the
approximations) from what we found in Chapter 6 and in phenomenological
evaluations.

4. Although d = 3 gauge theory does not have the usual d = 4 topological
charge, it does admit topologically interesting parity-violating CS terms in
the action. The coupling for this term in the action is integrally quantized
and called level k. In an elegant work, Witten [2] showed that Wilson-loop
expectation values in a field theory whose action was just the CS term (a
so-called topological field theory) generated some deep results about knots
in three dimensions. This Witten theory corresponds to very large values of
k. When the conventional Yang–Mills action is included along with the CS
term, it turns out that gauge bosons get mass ∼kg2

3 in perturbation theory.
Perhaps surprisingly, at large k, this mass does not lead to well-behaved
classical solitons. The pinch technique strongly suggests that at small k
(k � (1 − 2)N), infrared slavery problems still persist, and there is a phase
transition from the large-k Witten phase to a phase that also has a dynamically
generated gauge-boson mass. Modified forms of the usual k = 0 solitons exist
in this phase, which is confining.

5. The PT dynamical mass gives rise to the sphaleron, a soliton of interest
purely as a d = 3 object. The sphaleron becomes even more interesting
when it is coupled to a CS term. Because it is natural for the CS number of a
sphaleron to be a half-integral, a condensate of an odd number of sphalerons
challenges usual compactnesss assumptions, which suggests challenging the
conventional wisdom demanding integral levels k for the CS term, as well.
We show that, although noncompact theories could in principle exist, they
have infinitely higher energy than the corresponding compact versions. In the
process, we show that half-integrality is also related to d = 3 knots and to
nexuses in d = 2. So even though there is no topological charge per se in d =
3 gauge theory, there are many interesting and curious topological effects.

We start next with PT perturbation theory at one loop, and then, after finding the
exact form of the effective action, we show how the one-loop result realizes the
exact functional form of the effective action. This illustrates how infrared slavery
is directly related to condensate formation.
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9.2 Perturbative infrared instability

We easily see the problems of infrared slavery in d = 3 by calculating the one-
loop perturbative PT proper self-energy. This goes exactly as in the d = 4 case of
Section 1.3.3, except for the values of the integrals. The result [3, 4] for the scalar
part of the one-loop PT inverse propagator (as defined in Eq. (1.30)) is as follows:

d̂−1(q) = q2[1 − I3(q)] = q2 − πb3g
2
3q, (9.1)

where

I3(q) = 15Ng2
3

4

∫
d3k

(2π )3

1

k2(q − k)2
; b3 = 15N

32π
. (9.2)

Infrared slavery is simply the fact that I3 occurs with a negative sign in the self-
energy (or equivalently, that b3 is positive), which has the implication that there is
a pole in the propagator for positive q. In our metric, where q is the magnitude of
an ordinary three-momentum, this indicates a spacelike and thus tachyonic pole –
a pole corresponding to an imaginary mass.

What could be the cure for this unphysical behavior? At first glance, it could be
easy: because the coupling g2

3 has dimensions of mass, the omitted g4
3 term might

well provide a sufficiently positive term to overcome the negative one-loop term.
This is indeed what happens nonperturbatively, but not to any order of perturbation
theory, where the coefficient of g4

3 is identically zero to all orders. (If it were not
zero, we could add a bare mass term to the action, which would no longer be
perturbatively renormalizable.)

This is only the beginning of the bad perturbative behavior. At O(g2N
3 ), each

perturbative integral, by simple dimensional reasoning, has the infrared behavior
g4

3(g2
3/q)N−2, with poles of infinitely high order in the inverse propagator. But with

nonperturbative generation of a (nontachyonic) mass m, the infrared behavior of
every propagator in a loop is ∼1/m2, and an easy power counting shows that q in
the perturbative ordering expression is replaced by the dynamical mass m ∼ g2

3, so
all terms are of O(m2) for order N ≥ 2.

A one-loop PT calculation only clearly shows us (i.e., gauge invariantly) the disease,
not the cure – which is a dynamical gluon mass. In d = 4, this mass is directly
related to the gluon condensate, and we now argue that this is so also in d = 3.

9.3 The exact form of the zero-momentum effective action

Define a condensate operator θ by

θ (x) = − 1

2g2
3

Tr (Gij )2. (9.3)
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The key result is Eq. (9.10), giving the precise form of the effective action as a
function of the zero-momentum matrix elements of θ . This equation says that this
operator must have a (positive) VEV, and so there is a condensate of some sort.
It further says that the condensate generates so much entropy that the entropy (a
negative contribution to the effective action) overcomes the positive action from
whatever is in the condensate – just what we expect for center vortices and nexuses.
The condensate is important for the self-consistency of gluon mass generation
because it gives [5] the coefficient of q−2 in the falloff of the gluon mass at large q:

m2(q) → 58Ng2
3〈θ〉

15(N2 − 1)q2
. (9.4)

Before Lavelle found this result, people were not at all sure of what was going
on with the use of the OPE in gauge-boson propagators. The simple reason was
that the conventional Feynman propagator was gauge dependent, meaning that not
only condensates of gauge-invariant operators, such as θ , appeared in the OPE
but also other condensates, such as ghost condensates of the form c̄c and mixed
gluon-ghost condensates such as ∂i c̄Aic, as explicit computations showed. But
in the PT propagator, these gauge-dependent condensates drop out, leaving only
Lavelle’s simple result.

One can always resort to assuming the existence of a nonvanishing VEV 〈θ〉 with
no further argument. But in d = 3, we can actually prove [6] that there must be such
a (positive) VEV by determining the exact dependence of the effective potential on
the zero-momentum part of the operator θ . The answer is reminiscent of a similar
one-loop result in d = 4 QCD [7], showing evidence for a condensate. The only
assumption we need to make is that there is only one dimensional parameter in
d = 3 QCD (without matter fields), and that is the coupling g2

3, which has mass
dimension unity. We then show that the effective action �(θ ) has a minimum for
a nonzero value of its argument. We can also show [8] that the exact functional
form is actually found in the one-loop PT propagator in the presence of the fields
constituting the condensate.

Define the generating functional for zero-momentum matrix elements of the action
density θ :

Z(J ) ≡ e−W (J ) =
∫

[dAi] exp

[
(1 − J )

∫
d3x

1

2g2
3

TrG2
ij

]
, (9.5)

where W (J ) is the space-time integral of the vacuum action density in the presence
of a space-time constant source J coupled to θ :

W (J ) =
∫

d3x εvac(J ). (9.6)
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In the usual way, multiple derivatives of W (J ), evaluated at J = 0, give connected
matrix elements at zero momentum of the operator θ . In particular, the VEV of θ
at J = 0 is

〈θ〉 = − dθ

dJ

∣∣∣∣
J=0

. (9.7)

Given the assumption that g2
3 is the only mass parameter, it follows that εvac ∼ g6

3.
It is now completely trivial to find W (J ) because it differs from W (J = 0) simply
by the substitution g2

3 → g2
3/(1 − J ). So

εvac = −〈θ〉
3

(1 − J )−3, (9.8)

where the normalization follows from Eq. (9.7).

The next step is to make a Legendre transform to the effective action �(θ ):

�(θ ) = W (J ) + J

∫
d3x θ ;

d�

dθ
= J

∫
d3x. (9.9)

The effective action has the property that when the current J is turned off, it has an
extremum as a function of θ , and its value at the extremum is the vacuum action
W (0).

The differential equation for �, plus Eq. (9.8), is elementary to solve:

�(θ ) =
∫

d3x

[
θ − 4

3
θ3/4〈θ〉1/4

]
. (9.10)

This indeed has a minimum at θ = 〈θ〉, and this minimum value of − ∫
d3x〈θ〉/3

is negative.1 This negative action tells us that the theory is entropy dominated, and
so there are interesting nonperturbative effects.

9.3.1 The effective action and the pinch technique

Of course, Eq. (9.10) has nothing to say about what the effects are or how large
〈θ〉 is in units of g6

3. There are no exact results about the latter, although one can
make certain approximations [8] in estimating the effective action. One of two basic
approximations is to use the one-dressed-loop effective action, with the structure of
the loop supplied by our preceding PT results2; the other, commonly used by many
authors, is to replace the true condensate fields in θ (x) with a background field B
that is constant in space-time. This approximation of constancy makes it possible
to do the calculations but introduces an unphysical feature, noted long ago [9]:

1 Could 〈θ〉 be zero? Only if d = 3 gauge theory is free, which we know it is not.
2 Or equivalently, the one-loop effective action in the background-field Feynman gauge.
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a constant chromomagnetic field is unstable to decay into a tangle of space-time-
dependent fields. This, not unexpectedly, gives an imaginary part to the effective
action. We will simply ignore such features here, knowing that in the real world,
the condensate is made of such a tangle of fields and that the effective action is
real.

The one-loop effective action, including the classical term, is

�(θ ) =
∫

d3x

∫
d3k

(2π )3
Tr

−1

2g2
3

Gij (k)Gij (−k)[1 − I3(k)]. (9.11)

We can go beyond the strict one-loop form by allowing the PT function I3 to depend
on the condensate. The only feasible way to do this is to assume that the condensate
is made of constant fields, so we approximate θ , needed only at zero momentum,
by a constant-field condensate such that 〈θ〉 � B̄2/g2

3 for some constant magnetic
field of magnitude B̄ ≡ |B|.
It turns out [9] that in a constant chromomagnetic field, all gluonic fluctuation modes
except one become massive, with m2 ∼ B̄. The one exception is a tachyonic mode
that carries the instability for decay of the constant field. Without going through
the complicated calculations of Nielsen and Olesen [9], we can appreciate such a
mass relation from Lavelle’s relation in Eq. (9.4), noting3 that for finite momenta
q2 ∼ m2, the mass itself obeys m2 ∼ [g2

3〈θ〉]1/2 ∼ B̄. Let us replace (in the spirit
of one-loop gap equations, discussed in Section 9.4.2) the free propagators in the
integral I3 used for the perturbative one-loop propagator by adding a mass term
k2 → k2 + B̄, and so on. We omit detailed numerical constants that are not of
interest. Then the effective action of Eq. (9.11) is

�(θ ) =
∫

d3x θ [1 − I3(k = 0)] =
∫

d3x
1

2g2
3

(
B̄2 − b3g

2
3B̄

3/2
) + · · · , (9.12)

where, in calculating I3, the propagators have been modified as discussed earlier.
Because B̄ ∼ g3θ

1/2, this result is a real effective action that has the correct func-
tional form of the exact effective action in Eq. (9.10). No imaginary part shows up
because we omitted the tachyonic fluctuation mode.

The minus sign in this approximate effective action is exactly the minus sign coming
from infrared slavery, so as promised, infrared slavery and condensate formation
are really the same thing. The reader might find it interesting to carry out the same
calculation for the d = 4 effective action using the d = 4 PT self-energy. The result
is the famous one-loop effective action ∼G2 lnG2, which also shows condensate
formation, and for the same reason.

3 In this and what follows, we give explicit formulas only for SU (2). For SU (N ), the appropriate scalings follow
from Eq. (9.4); for example, � scales like N3(N2 − 1).
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9.4 The dynamical gauge-boson mass

The next question is estimation of the dynamical mass needed to cure infrared
slavery. There are both theoretical estimates [3, 4, 10, 11, 12, 13, 14, 15, 16, 17]
and lattice simulations [18, 19, 20, 21]. Some of the theoretical estimates are based
on the pinch technique [3, 4, 10, 11, 15, 16] and some on conventional Feynman-
graph technology [12, 13]. This is a technically difficult problem, and all authors4

use some form of one-dressed-loop equations.

9.4.1 Early pinch technique work

The early PT papers [3, 4, 10] used the spectral form of the gauge technique to write
the three-gluon vertex in terms of the PT propagator. This results in the one-loop
integral equation:

d̂−1(q) = q2

[
1 − 2b3g

2
3

πq

∫ ∞

0
k dk d̂(k) ln

∣∣∣∣2k + q

2k − q

∣∣∣∣] + d̂−1(0), (9.13)

for the scalar part d̂ of the PT propagator. One can check that if the bare propagator
d̂(k) = 1/k2 and the bare value d̂−1(0) = 0 are used on the right-hand side of this
equation, the one-loop propagator of Eq. (9.16), which has a tachyonic pole (to be
cured by a positive value of d̂−1(0)), is recovered. Note that this equation, although
necessarily approximate, does demand consistency in that the same propagator
d̂ appears both on the right-hand side and the left-hand side of this equation (in
contrast to the one-loop gap equations discussed next). As it stands, this equation
cannot be solved for a gluon mass because the last term d̂−1(0) is just a placeholder
for some dynamical expression. This expression has not yet been worked out
because the presence of logarithmically divergent terms that are canceled at two-
loop order requires working out the two-loop self-energy, and this remains to be
done. However, it is possible to give a lower bound to the gluon mass, or more
accurately, d̂−1(0), because Eq. (9.13) has no solution at all if this quantity vanishes.
(If one tries to solve Eq. (9.13) by successive substitution beginning with a massless
propagator, infrared singularities from the negative sign of the integral build up
uncontrollably.) Numerical investigations give an approximate value of the lower
limit, d̂−1(0)min, as

d̂−1(0)min = [1.96b3g
2
3]2, (9.14)

4 Except Karabali et al. [17], whose methods are original and unique. The estimate of Ref. [11] is really an
estimate of the ratio of the string tension to the squared mass; it is based on special methods that we will not
cover here.
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which is equivalent5 to m/(Ng2
3) ≥ 0.29. Next we will compare this lower limit to

estimates based on one-loop gap equations and find some problems.

9.4.2 One-loop gap equations and lattice simulations

Since the earlier work, a number of authors [12, 13, 15, 16] have addressed the
theoretical issues with one-loop gap equations, in which the internal propagators
of the one-loop self-energy are approximated by a simple massive form:

1

q2
→ Zin

q2 +m2
. (9.15)

The one-loop self-energy is calculated with this input, and one demands that the
output mass be equal to the input mass. Here one should include the (finite in
d = 3) input renormalization constant Zin and check that it, too, is reproduced
in the output, but this has not been done in the gap-equation papers, which all
use Zin = 1. It might seem reasonable to insist that not only the mass but also
the residue of the output propagator agree with the input values, but this is rarely
looked at. Part of the reason is that some authors [12, 13] use standard Feynman
propagators in the gap equation, and with these, only the pole position, but not its
residue, is gauge invariant. The specific concern of Buchmuller and Philipsen [12]
and Eberlein [13] is mass generation in finite-T electroweak theory (with the U (1)
part dropped), and so these works include Higgs fields. But it is straightforward to
suppress these Higgs fields by taking their mass to infinity [16], resulting in a form
of dynamical gluon mass generation without Higgs fields.

The results are inconclusive. This happens for two reasons: the first is the use of
the conventional Feynman propagator [12, 13] rather than the pinch technique.
The position of the pole in the conventional propagator is gauge independent, but
otherwise, the propagator, even the pole residue, is gauge dependent. The second
reason is that the hypothesized input propagator – even when the one-loop PT self-
energy is used [15, 8] – shows no signs of the infrared slavery that motivates the
study of dynamical mass in the first place. Recall that the one-loop PT propagator
̂ij (q) for d = 3 QCD is

̂ij (q) =
[
δij − qiqj

q2

]
1

q2 − πb3g
2
3q

+ terms ∼ qiqj , (9.16)

5 This defines the mass in terms of the behavior of the propagator at zero momentum rather than the pole mass.
This leads to minor inaccuracies, but it is still a gauge-invariant mass estimate.
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Table 9.1. Parameter values for three one-loop gap equations.

Reference α β γ

[12] 27/16 3/8 9/4
[15] 15/4 1/2 3/2
[16] 15/4 1/2 0

with b3 = 15N/32π . Roughly speaking, with mass generation, the PT propagator
would have the denominator of Eq. (9.16) replaced by something like the following:

q2 − πb3g
2
3q → q2 − πb3g

2
3q +m2. (9.17)

If m > πbg2
3/2, there are no tachyonic (real) poles of the propagator.

The one-loop gap equation input of Eq. (9.15) differs from the preceding form by
not having a negative term, which, of course, comes from infrared slavery. Without
this infrared-slavery effect in the input propagator, the self-consistent one-loop
masses are lower than they would be with this effect included. This has the effect
of giving an output pole residue Zout that is rather different from the input value
Zin, so that true self-consistency is not achieved. (This comparison of residues only
makes sense for the PT gap equations because for non-PT propagators, the residues
are not gauge invariant.)

All of the one-loop gap equation results have the same functional form[16]:

d−1(q2) = q2 + Ng2
3

4π

[(
−αq + γm2

q

)
arctan

q

2m
− βm

]
, (9.18)

with the values shown in Table 9.1 for the parameters. Observe that in extrapolating
Eq. (9.18) to Minkowski momenta (q → iq), there are only normal threshholds at
−q2 = 4m2. This is to be expected with the gauge-invariant pinch technique, but
it only happens in the Feynman gauge otherwise, where the ghosts and Goldstone
bosons all have the mass m. In other gauges, this is not so, and the self-energy of
Buchmuller and Philipsen [12] would have other terms. However, these unphysical
threshhold terms do not contribute to the pole mass.

Note that Alexanian and Nair [15] and Ref. [16] have the same values for α and
β; this is because both use the pinch technique. The differing value of γ comes
from differing treatments of the gauge-invariant mass terms used by these two
sets of workers. In contrast, [12] uses the Feynman gauge and has rather different
parameters.
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Table 9.2. Estimates of the SU (N) magnetic mass by
various techniques

Reference m/(Ng2
3) Technique Zout/Zin

[12] 0.14∗ 1-loop gap N/A
[13] 0.17∗ 2-loop gap N/A
[15] 0.19∗ Pinch/gap 150
[16] 0.13∗ Pinch/gap <0
[17] 0.16 See text N/A
[18] 0.18∗ Lattice N/A
[19] 0.24∗ Lattice N/A
[20] 0.26∗ Lattice N/A
[21] 0.19 Lattice N/A

Evaluating this and its derivative on the mass shell (at q = im) yields

m = Ng2
3

4π

(
α + γ

2
ln 3 − β

)
(9.19)

Zout =
(
α + γ

2
ln 3 − β

)[
α

(
1

4
ln 3 − 1

3

)
− β + γ

(
3

4
ln 3 − 1

3

)]−1

. (9.20)

The pole masses, following from setting d−1(q2 = −m2) = 0, seem reasonable
when compared to lattice values, as we will see shortly. But the PT residues are not
close to self-consistency, as one may easily check. It would be better to use an input
propagator of the form of Eq. (9.17), or something like it, but as far as we know,
this has not been done with one-loop gap equations; instead, there is the original
PT calculation, which demands a self-consistent propagator at all momenta but
which has only been carried (so far) to the point of estimating a lower bound for
the mass.6 Ironically, the presumably gauge-dependent parameters of [12] yield a
more reasonable value of Zout than do the PT parameters.

Table 9.2 shows various results for the ratio m/(Ng2
3), which should be roughly

independent of N for gauge group SU (N) (exactly so for one-loop gap equations).
Values marked by an asterisk were calculated for SU (2); the rest were calculated
for SU (3), and all were assumed to scale linearly in N . In Table 9.2, N/A means
that no residue factors were given. Reference [17] uses a very interesting approach
to d = 3 gauge theory that we cannot describe here; it culminates in the formula
m/(Ng2

3) = 1/(2π ).

6 Another problem with all the estimates we will discuss is that they do not properly account for the fact that the
magnetic mass is really a function of momentum q, vanishing like 1/q2 (modulo logarithms) at large momentum
(see Chapter 2). This is essential for the Schwnger–Dyson equations to yield finite results.
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From Table 9.2, we see that there is some spread in the ratio, with the average
lattice value larger than the average gap-equation value. Note that the previously
estimated lower bound of 0.29 is larger than any of the masses in the table. The
lattice results vary somewhat, in part because the propagators from which the
magnetic mass is extracted are in different gauges, and the extracted mass is not
exactly the (gauge invariant) pole mass, which is hard to reach on the lattice because
it involves extrapolation to negative values of momentum squared.

In any event, there seems to be no question that there is a finite d = 3 gluon mass
and therefore the solitons (center vortices, nexuses) that we have already discussed.

9.5 The functional Schrödinger equation

The FSE is another way, in principle, of expressing the content of a field theory in
d dimensions via functional differential equations in d − 1 dimensions. There is
nothing in the FSE approach that could not be understood directly from the field
theory, but sometimes one gains insight by looking at a hard problem in a different
way.

For any field theory, the FSE is no more or less than the usual Schrödinger equation,
with fields as the coordinates and functional derivatives with respect to these
fields as the momenta. The fields, as coordinates, are labeled by (in d = 3 + 1)
three spatial positions �x. For a gauge theory, the component Aa

0 has no canonical
momentum and is set to zero, leaving only the three magnetic potentials Aa

i (�x) at
zero time as coordinates.7 The canonical momentum is the electric field:

�a
i = Eai (�x) → −ig2 δ

δAa
i (�x)

. (9.21)

(Note that the commutator term is missing because we set Aa
0 = 0.) The Hamilto-

nian for the NAGT FSE is

H =
∫ {

−1

2
g2

(
δ

δAa
i

)2

+ 1

2g2

[
1

2

(
Ga
ij

)2
]}

≡
∫ [

1

2

(
�a

i

)2
]

+ V, (9.22)

and the Schrödinger equation is the usual H|ψ〉 = E|ψ〉. We consider the vac-
uum (ground state) wave functional ψ{Aa

i (�x)} and the time-independent FSE that
determines it. This wave functional is the matrix element

ψ{Aa
i (�x)} = 〈Aa

i (�x)|ψ〉, (9.23)

7 See Jackiw [22] for an elegant treatment of the fundamentals of the canonical FSE for gauge theories. We
temporarily use group-component notation.
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where the bra vector is an eigenvector of the field operator Aa
i and |ψ〉 is the

vacuum-state eigenvector, whose energy we normalize to zero for the present. The
vacuum wave functional has the form

ψ{Aa
i (�x)} = exp[−S{Aa

i (�x)}], (9.24)

where S can be written as a formal power series with infinitely many terms:

g2S = 1

2!

∫∫
Aa

i �ijAa
j + 1

3!

∫∫∫
Aa

iAb
jAc

k�
abc
ijk + · · · . (9.25)

The � functions relate their associated gauge potentials nonlocally and may have
derivatives of high order.

The exponent S is real, bounded below for finite arguments (vacuum wave func-
tionals do not have nodes), and positive for sufficiently large arguments (it is
normalizable). Most important, it is a gauge-invariant functional of its arguments.
These properties of S, plus the usual rules for constructing vacuum matrix ele-
ments, allow us to interpret 2S as an effective d = 3 action. The vacuum matrix
elements are of the type8

〈ψ | · |ψ〉 =
∫ [

dAa
i

]
e−2S(·). (9.26)

Define the effective d = 3 action by

Id=3 = 2S. (9.27)

So FSE matrix elements such as 〈ψ |W |ψ〉, where W is a spacelike Wilson loop,
are expectation values in the d = 3 theory with effective action Id=3.

The question is: how do we solve for this effective action, and what does it look
like? This is not an easy question. In the first place, it is not possible to solve the
FSE exactly,9 so there is little guidance from existing solutions. (Often workers
simply postulate what seems to be a reasonable approximate form forψ – typically
Gaussian – to be used for variational estimates, but often, in the process, gauge
invariance is lost.) A few low-N terms of the N -point coefficients �ijk... can be
found order by order in perturbation theory, but that is not very interesting; it is
analogous to a bare-loop expansion of the effective action. Much more interesting
is the dressed-loop expansion, in which the three-point and higher functions �ijk...

are expressed in terms of the dressed two-point function �ij ; then the FSE (or,
equivalently, extremalization of the effective action S) yields a nonlinear equation

8 As usual, we do not explicitly indicate ghost and gauge-fixing terms.
9 To forestall confusion, there is an exact zero-energy formal solution [23, 24, 25, 26] to the vacuum FSE, which

is ψ ∼ exp(−(8π2/g2)NCS), with NCS being the CS integral (see Eq. (9.51)). Although this solution is not
normalizable because the CS integral does not have a definite sign, it is applicable for certain high-energy,
few-to-many scattering processes; see [26].
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for the two-point function, quite analogous to the Schwinger–Dyson equation for
the PT propagator. This approach is quite successful [27] for the anharmonic
oscillator in one dimension (ordinary quantum mechanics) even in the limit where
the quadratic term in the potential vanishes and perturbation theory completely fails.
Because Id=3 is gauge invariant under gauge transformations of its background-
field arguments Ai(�x), it is natural to use the pinch technique and gauge technique
to approximate it, along with the dressed-loop expansion. Whether one uses a
dressed-loop approximation or a bare-loop expansion, the solution to the FSE
always involves the square root of operators. For example, a little experimentation
shows that a perturbative expansion involves unfamiliar operators such as

√−∇2.
Because we know that NAGTs show dynamic gluon mass generation, we expect that
square-root operators of the form

√
m2 − ∇2 are what turn up in the dressed-loop

expansion.

9.5.1 The gauge technique and the FSE

The generator of infinitesimal gauge transformations is Dab
j × (−iδ/δAb

j ), and this
must annihilate ψ or, equivalently, S. Invariance of S under infinitesimal gauge
transformations is trivial for the two-point function �ij ; this quantity must be
conserved (as in an Abelian gauge theory) so that in Fourier space,

�ij (k) = �(k)Pij (k) Pij = δij − kikj

k2
. (9.28)

For the free theory, �0(k) = k, but for the dressed theory, we expect something
like �(k) = √

k2 +m2.

Gauge invariance is more complicated for higher-point functions. Annihilating
ψ with the generator of gauge transformations yields a set of ghost-free Ward
identities, just as in the pinch technique. For example, the Ward identity for the
three-point function is

k1i�
abc
ijk (k1, k2, k3) = f abc

[
�jk(2) −�jk(3)

]
, (9.29)

where �jk(2) ≡ �jk(k2), and so on.

Further information comes from the FSE, where one finds that the equation deter-
mining the three-point function has the general form

�il(1)�abc
ljk +�jl(2)�bac

lik +�kl(3)�cab
lij = f abc�ijk. (9.30)

The right-hand side �ijk comes from the cubic term in H plus another term from
the five-point function. The Ward identity for �ijk is determined by the preceding
equation plus the Ward identities for the two- and three-point functions, as already
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given, and multiplying both sides of Eq. (9.30) by k1i yields

k1i�ijk = �2
jk(3) −�2

jk(2). (9.31)

For free particles with � = �0, this is satisfied by the usual free three-point vertex

�0
ijk = i(k1 − k2)kδij + c.p. (9.32)

The reader can verify that Eq. (9.30) has a solution of the form

�abc
ijk (k1, k2, k3) = f abc[�(1) +�(2) +�(3)]−1

×
{
�ijk +

[
�(1)

k1i

k2
1

(
�jk(2) −�jk(3)

) + c.p.

]}
, (9.33)

which respects the Ward identity of Eq. (9.29) by virtue of the massless pole terms
of Eq. (9.33). It should now be clear that these longitudinally coupled massless
excitations will occur, as a result of enforcing gauge invariance, for every n-point
function. We will shortly identify these with couplings of the gauged nonlinear
sigma (GNLS) field introduced in our conjecture for the infrared-effective action.

So far, the vertex function �ijk is undetermined, but we will find an approximation
to it, useful in the infrared, with the gauge technique. We can read off from Chapter 5
the needed relation

�ijk = δij (k1 − k2)k − k1ik2j

2k2
1k

2
2

(k1 − k2)l�lk(k3)

− [Pil(k1)�lj (k2) − Pjl(k2)�li(k1)]
k3k

k2
3

+ c.p., (9.34)

where the first term on the right-hand side is the free vertex �0
ijk, and �ij (k) ≡

Pij (k)�(k) is the transverse PT self-energy, related to �ij by

�2
ij = Pij [�2

0 +�{�}], (9.35)

where �2
0 = k2 is the free gluon contribution.

In the simple case studied here, � = m2, and the resulting expression for �ijk is

�ijk = δij (k1 − k2)k + m2

2

k1ik2j (k1 − k2)k
k2

1k
2
2

+ c.p. (9.36)

Combining the pinch technique and the gauge technique by solving the Ward iden-
tities ensures exact gauge invariance but is nonetheless an approximation (expected
to be valid in the infrared regime). Ultimately, it yields a dressed-loop equation for
a single transverse operator �ij (k) ≡ Pij (k)�(k). We will not explore this difficult
program further here.
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The order-by-order appearance of massless longitudinal poles in the gauge-
completion process is directly mirrored in the order-by-order solution of the clas-
sical GNLS model. Because the notation is more compact, we now switch to
anti-Hermitean matrix notation. The local GNLS model, normalized appropriately,
has the action

IGNLS = −m

g2

∫
d3x Tr [U−1DiU ]2, (9.37)

where U is a unitary matrix transforming as U → VU under the gauge transfor-
mation

Ai → VAiV
−1 + V ∂iV

−1. (9.38)

The classical equations for U express this quantity in terms of the Ai (see Chap-
ter 7), with the result

U = eω

ω = − 1

∇2
∂ · A + 1

∇2

{[
Ai , ∂i

1

∇2
∂ · A

]
+ 1

2

[
∂ · A, 1

∇2
∂ · A

]
+ · · ·

}
, (9.39)

showing the appearance of massless scalars. More generally, because U−1DiU

is a gauge transformation of Ai , functional integration over U is equivalent to
projecting the gauge-invariant part of the mass term. Note that the linear term in Ai

of the GNLS model field U−1DiU is the transverse part of Ai . This linear term is
the Abelian mass term that began our investigations. All higher-order terms of ω in
Eq. (9.39) are non-Abelian. One can straightforwardly verify that the three-point
function of Eq. (9.36) corresponds precisely to the three-point term found by using
the expansion of Eq. (9.39) in the GNLS model action. Because the GNLS action
is fully gauge invariant, it gives one solution to the all-orders ghost-free Ward
identities, and this solution is what is emerging from direct calculations using the
gauge technique.

9.5.2 The proposed infrared-effective action

Our proposed form of the effective action answer [28] is that in the infrared regime,
where no momenta are large compared to the gluon massm, this action is reasonably
well approximated by a d = 3 action that is essentially the d = 3 massive effective
action already studied in the last chapter. This action consists of a gauged, nonlinear
sigma model mass term, giving the gluon a mass m and the usual Yang–Mills term

Id=3 = −
∫

d3x

{
m2

g2
3

Tr [U−1DiU ]2 + 1

2g2
3

TrG2
ij

}
. (9.40)
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One finds this form by saving the first two terms in an expansion of a certain
approximation to S in powers of the operator −∇2/m2 or, equivalently, k2/m2 (k
is a momentum). The leading term gives the gauged, nonlinear sigma model, and
the next leading term gives the conventional Yang–Mills action. As momenta get
larger, correction terms with more and more derivatives enter, and finally, in the
region of large momenta, expanding in powers of k2/m2 is useless. Fortunately,
because d = 3 + 1 QCD is asymptotically free, perturbation theory determines the
leading large-momentum terms in ψ , but this is not of interest here.

Because this action must describe the same phenomena as, for example, the
Schwinger–Dyson equations do, it must be that the gluon mass described by the
effective action is the same in d = 3, 4. As for the d = 3 coupling g2

3, we have
already seen that d = 3 gauge dynamics determine the dimensionless ratio m/g2

3,
so knowing m gives the d = 3 coupling.

To understand how such an action might arise, consider just the two-point term in S
of Eq. (9.25), called S2. In perturbation theory, one can easily check that choosing

�ij = �0Pij , with Pij = δij − ∂i∂j

∇2
and �0 =

√
−∇2, (9.41)

solves the FSE for the free part of the action and also has the crucial property of
gauge invariance (in this case, under Abelian U (1)N

2−1 gauge transformations). To
describe mass generation, make the simple replacement

�0 → � ≡
√
m2 − ∇2 (9.42)

so that S2 is

S2 = 1

2g2

∫
Aa

i

√
m2 − ∇2PijAa

j . (9.43)

This S2 is an exact solution of an FSE with an Abelian gauge Hamiltonian with
gauge-invariant mass generation put in by hand:

H =
∫ {

−1

2
g2

(
δ

δAa
i

)2

+ 1

2g2

[
1

2
(Fa

ij )2 +m2Aa
i PijAa

j

]}

≡
∫ [

1

2

(
�a

i

)2
]

+ V, (9.44)

where Fa
ij = ∂iAa

j − ∂jAa
i are the Abelian field strengths.

Although this is a familiar Hamiltonian, closely related to that of the Abelian Higgs
model, the action Id=3 = 2S2 is not familiar, involving as it does a square root of
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an operator. Try the infrared expansion√
m2 − ∇2 → 1

m

(
m2 − 1

2
∇2

)
+ · · · . (9.45)

Now we do see familiar operators, and saving these two terms in the infrared
expansion of Id=3 = 2S2 is almost a repeat of the Hamiltonian of Eq. (9.44),
divided by m:

Id=3 → m

g2

∫
Aa

i PijAa
j + 1

4mg2

∫
[Fa

ij ]2 + · · · . (9.46)

Unfortunately, this action describes gluons of mass
√

2m and not m because of the
1/2 in the expansion of the square root. The problem is in trying to make a strict
expansion around zero momentum when, in fact, momenta of O(m) are important.
Reference [28] describes a least-squares operator approximation, intended to be
more or less accurate over the range of momenta from 0 to O(m), of the form√

m2 − ∇2 → Z

m

(
m2 − ∇2 + · · ·) , (9.47)

where Z is perhaps 1.1 or 1.2. This new approximation does describe gluons of
mass m, as required.

The next step is to make a gauge completion of this Abelian form by adding
the infinitely many terms in the expansion of S in Eq. (9.25) that are required
by gauge invariance. It turns out that for any given �, there are infrared-useful
approximations to all these terms that exactly preserve gauge invariance using
the techniques of [11]. The first term in a large-mass expansion of this gauge
completion is, as might be expected, equivalent to a gauged nonlinear sigma model
mass term. Equivalent means that what one actually finds is the d = 3 version
of the perturbative expansion of this model, as given in Eq. (9.39). The second
is the usual Yang–Mills term involving the full field strengths Ga

ij , as described in

Eq. (9.40). The same problem arises as in the Abelian case – the free mass is
√

2M –
and is approximately resolved in the same way as indicated for the Abelian theory
with a modified infrared expansion. The final result is the obvious modification of
the Abelian S2:

−2S = −Id=3

→ 2mZ

g2

∫
d3x Tr [U−1DiU ]2 + Z

mg2

∫
d3x TrG2

ij + O(M−3). (9.48)

The next question is: what are the consequences of this action? Three are worth
mentioning [28]. First, we know already that it has center vortices and nexuses.
The center vortices are closed strings, corresponding to the projection of closed
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surfaces in d = 4 onto d = 3; similarly, the nexuses are points on these strings.
Given an entropy-driven condensate of vortices, these will describe confinement
through matrix elements of the FSE.

Second, given values of Ng2
3/m (see Section 9.4), as found strictly in three

dimensions, we can actually estimate the on-shell value of the d = 4 coupling
αs(m2) ≡ g2/4π . Just compare the two forms of the conjecture, as stated in
Eqs. (9.40) and (9.48), and find the equation:

g2 = 2Zg2
3

m
. (9.49)

This equation expresses a d = 4 quantity, g2, in terms of the d = 3 ratio m/g2
3,

estimates for which we summarized in Table 9.2. Using Z � 1.2 and the estimate
[16] Ng2

3/m � 7.7 for N = 3 gives αs(M2) � 0.5, a value holding for no quarks.
This is close both to an early estimate [4] that comes out of the first PT attempt to
find the gluon mass and to modern estimates given in Chapter 6. The early analytic
PT estimate is

αs(M
2) = g2

4π
= 12π

[11N − 2Nf ] ln[5M2/�2)]
� 0.4, (9.50)

where the numerical value comes from m = 0.6 GeV, � = 0.3 GeV, and no quarks
(Nf = 0). Chapter 6 gives a value �0.5. We can also compare this result to
phenomenological determinations [29, 30, 31] of αs(q2 � 0) � 0.7 ± 0.3 coming
from studies of infrared-sensitive scattering data. But in the real world to which
these data apply, there are three families of light quarks, so we have to modify
the FSE estimate. Assuming that the PT formula of Eq. (9.50) applies, we should
multiply the result of Eq. (9.49) by 11/9, ending up with an FSE estimate of αs(m2)
of about 0.6 – near the lower end of the phenomenological range.

The third consequence of this FSE work comes from using it in one less dimension.
The same steps go through, yielding an effective action in two dimensions, Id=2, that
is once again the sum of a gauged nonlinear sigma model and a Yang–Mills term.
This action has center vortex solutions, and if they condense, they give confinement
as usual. Note the big difference with the usual confinement mechanism in d = 2
QCD, which just has the Yang–Mills term. The Yang–Mills action by itself is a free-
field theory with a confining propagator, and so all nontrivial group representations
of SU (N ) are confined. But this is not correct for d = 3, the dimensionality where
Id=2 is supposed to apply; the adjoint and similar representations are not confined
but screened. Therefore, it is essential to have the mass term in Id=2.

There is another way of creating gluon mass in d = 3, which works even in the
classical theory: add a CS term to the action.
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9.6 Dynamical gluon mass versus the Chern–Simons mass: Two phases

In Chapter 8, we already encountered the CS integral as a time slice of the topo-
logical charge density. We repeat the definition of the CS number NCS:

NCS = − 1

8π2

∫
d3x εijkTr

(
Ai∂jAk + 2

3
AiAjAk

)
. (9.51)

Form the Yang–Mills–Chern–Simons (YMCS) action by adding the CS action
2π ikNCS to the Yang–Mills action. The d = 3 functional integral with a CS term
(as always, omitting the gauge-fixing and ghost terms) with a new coupling k,
chosen to be real, is

Z =
∫

[dAi] exp

[
2π ikNCS +

∫
d3x

−1

2g2
3

TrG2
ij

]
. (9.52)

We can and will always choose the level k to be positive by changing the sign of
the gauge potential, that is, by making a parity transformation. In fact, because
either sign contributes equally in Z, the partition function is an even function of
k. The factor of i in the Euclidean action comes about because in transforming
from Minkowski space (where all actions have an i factor in the path integral) to
Euclidean space, no extra factor of i arises, as it usually does. So for real gauge
potentials, the resulting pure imaginary action contributes a phase factor to the path
integral. But once there is an imaginary part to the Euclidean action, there is no
longer any requirement that the dominant contributions to the path integral come
from real gauge potentials, and the CS action is generally complex. The partition
function is real because there are equal contributions from a complex CS action
and its complex conjugate.

The CS term is not gauge invariant under a so-called large-gauge transformation, the
kind that carries topological charge. According to Eq. (8.32), the CS term changes
by the integer N of that gauge transformation. We do not need to require that the
action itself be gauge invariant; just as with Dirac monopoles, only the functional
integrals created from it, such as Z, must be gauge invariant. That requires [32, 33]
the coupling k to be an integer.10 This integer is called the level of the CS action.

In perturbation theory, the main effect of adding the CS term is that the gluon
acquires a mass mCS. This follows from the easily established Euler–Lagrange
variation of the CS term:

δNCS

δAi(x)
= 1

16π2
εijkGjk(x) ≡ 1

8π2
Bi , (9.53)

10 One might wonder what happens if k is other than integral. If the only large gauge transformations allowed in
the path integrals change the CS number by an integer, then the partition function Z vanishes for k nonintegral.
We discuss in Section 9.7 [34] that there is no absolute prohibition on considering nonintegral CS numbers,
but a theory accommodating nonintegral CS numbers is energetically disfavored.
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from which the classical equations of motion for YMCS theory are

[Di ,Gij ] − ikg2
3

8π
εjklGkl = 0. (9.54)

This is a peculiar equation because it is complex. However, it has a perfectly fine
perturbative expansion. The linearized version of Eq. (9.54) is

εijk∂jBk = imCSBi , (9.55)

where the CS mass is

mCS = kg2
3

4π
, (9.56)

and Bi ≡ (1/2)εijkGjk is the magnetic field. Taking the curl of Eq. (9.55) gives

(∇2 −m2
CS)Bi = 0. (9.57)

Precisely because there is an i in front of the CS term in the equations of motion,
this linear propagation equation is nontachyonic and corresponds to a gluon of
physical mass mCS, although it is associated with the peculiarities of complexness
and parity violation.

We cannot immediately conclude that this mass, present in perturbation theory,
removes the infrared instability of ordinary Yang–Mills theory. It turns out, as we
will see using the pinch technique, that if the mass is large enough – that is, if
k is large enough – infrared slavery is indeed gone. The perturbative expansion
parameter Ng2

3/mCS behaves like N/k, and so large-k perturbation theory should
be well defined, as it is in QED. If perturbation theory is to work, there should be
no classical solitons – a result proven long ago [35]. This large-k theory, which
is in effect the theory without the Yang–Mills term, is a particularly beautiful and
mathematically powerful theory that is exactly soluble and beautifully organizes
some of the mathematics of d = 3 knots [2].

However, if k is small enough, we will show that the CS mass is not large enough
to remove infrared-slavery tachyons and that a dynamical gluon mass is required
as well. Quantum solitons return [36] along with the expected nonperturbative
effects, including confinement. There is a phase transition in YMCS theory at a
value k = kc, with kc � (1 − 2)N . For k > kc, perturbation theory and Witten’s
results hold, whereas for smaller k, infrared slavery must be solved the way we
have presented in this book. Of course, this nonperturbative phase is different from
that of QCD because of the parity-violating CS term, and the solitons differ in
detail. But there are still center vortices, nexuses, and sphalerons.

It is natural, from a physics point of view, to start with the Yang–Mills action as
fundamental – something to which we add the CS term. But Witten [2] showed
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that the theory defined by dropping the Yang–Mills action and keeping only the
CS term is not only sensible but is an example of a particularly interesting class of
field theories called topological field theories. The theory with only the CS term –
called CS theory – has no propagating gluonic modes and in fact can be solved
exactly. Its observables are completely characterized by the topologically invariant
CS numbers and the VEVs of other topological invariants such as Wilson loops.
Ultimately it turns out that the phase space of CS theory is finite. Witten showed
how the VEVs of multiple, knotted Wilson loops can be calculated to yield the Jones
polynomials that characterize the linkings and knottings of the loops. For large k,
Witten looks at a semiclassical expansion around the classical extrema of the action
that, according to Eq. (9.53), comes from configurations of vanishing field strength
or pure-gauge potentials. Canonical quantization of the theory requires a choice
of gauge; the choice A3 = 0 reduces the action to a quadratic form, and that is, in
part, why the theory is exactly soluble. We will not pursue this fascinating topic any
further, except to say that to define rigorously pure CS theory requires a regulator,
and the obvious one at large k is the Yang–Mills term. The next sections will focus
on the infrared-unstable phase.

9.6.1 The nonperturbative phase uncovered by the pinch technique

First, we make a heuristic argument. Because Z of Eq. (9.52) is even in k, we can
write it as

Z =
∫

[dAi] cos (2π ikNCS) exp

[
−
∫

d3x
1

2g2
3

TrG2
ij

]
≡ e−�(θ,k). (9.58)

In the formal limit of small k, this equation says that

�(θ, k) � �(θ ) + 2π2k2〈N2
CS〉; (9.59)

the CS term increases the effective action and at some point can be expected to
overcome the entropic effects that tend to make � negative. So there might be
a phase transition at some value of k = kc of O(N) separating a nonperturbative
phase with all the usual phenomena (gluon mass, a condensate, solitons) from a
perturbative phase.

The first step is to calculate the one-loop PT propagator ̂(p)ij for YMCS theory.
The corresponding bare propagator has a new parity-violating term:

̂−1
0 (p)ij = (p2δij − pipj ) +mCSεijapa + 1

ξ
pipj ; (9.60)
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here mCS = kg2
3/4π is the classical CS mass and ξ is a gauge-fixing parameter. The

PT self-energy, which enters the full propagator through

̂−1(p)ij = −1
0 (p)ij − �̂(p)ij , (9.61)

also has two conserved terms, a parity-conserving term and a parity-violating term:

�̂(p)ij = (p2δij − pipj )Â(p) +mCSεijapaB̂(p). (9.62)

These equations yield the propagator

̂(p)ij =
(
δij − pipj

p2

)
1

(1 − Â)(p2 +m2
R)

−mRεijapa
1

p2(1 − Â)(p2 +m2
R)

+ ξ
pipj

p4
(9.63)

in terms of a running mass

mR(p) = mCS

(
1 − B̂

1 − Â

)
. (9.64)

A lengthy calculation [36] gives equally lengthy results for Â(mCS/p), B̂(mCS/p),
and we will not quote them in full here. Both positive and negative powers ofmCS/p

appear, but owing to cancellations, the propagator is finite both in the mCS = 0 limit
and in the p = 0 limit. One simple-looking result is the one-loop PT propagator
in the limit of no CS mass. One might expect this to reduce to the usual QCD
expression of Eq. (9.16), but in the limit mCS = 0, there is a term ∼ 1/mCS that
leads to a cancellation:

̂−1(p)ij = (p2δij − pipj )(1 − πbg2
3p) + εijapag

2
3

(
k +N

4π

)
. (9.65)

Note the replacement of k by k +N , which happens also in Witten’s pure CS
topological theory. The N here arises from the mass cancellation. There is also the
infrared-slavery term already uncovered in Eq. (9.16), with b3 = 15N/(32π ).

So the question now is whether some finite value of mCS can overcome the infrared
slavery problem. By looking at the full expressions for Â, B̂, one can check that
the relevant self-energy Â is positive and monotone decreasing in momentum p,
vanishing like 1/p at large momentum. So the infrared-slavery problem is solved
if Â(p = 0) is less than 1. The result for this quantity is as follows:

1 − Â(p = 0) = 1 − 29N

12k
. (9.66)
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It then follows that, at the one-loop level, YMCS theory is consistent and free of
tachyons only if k is larger than a critical value kc, where

kc = 29N

12
. (9.67)

What happens for higher loops has not yet been studied, but a fair guess is that, for
example, the denominator k in Eq. (9.66) would be replaced by k +N , in which
case kc would be 17N/12. If so, these two values of kc suggest that we know the
critical value of kc to within a factor of 2 and that higher loops do not change the
fact that there is a critical value.

So the infrared slavery problem persists if k < kc, in which case, we solve it just
as before: there has to be a dynamical gluon mass m generated, and this mass
generation is self-consistently supported by condensates of solitons of the massive
effective action. If so, the resulting infrared-effective action has both a CS term
and a GNLS term (see Eq. (9.71)). In the following, we argue that as k → kc from
below, the dynamical gluon mass along with the condensate supporting it must
vanish, and the solitons composing the condensate no longer exist. There are [36]
qualitative arguments suggesting that the exact form, given in Eq. (9.10), of the
zero-momentum effective action as a function of the operator θ of Eq. (9.3) gets
modified in a certain way by a CS term. This modified effective action �(θ, k)
has all the right qualitative properties, including correct scaling in N and g for
all quantities appearing in it, a dynamical gluon mass consistent with the operator
product expansion of Eq. (9.4), a phase transition at a critical value of k at which
the condensate vanishes, a quadratic increase in � as a function of k for small k,
and the correct zero-k limit. We will not detail the arguments, all based on the
one-loop equations given so far, but will simply state the result here:

�(θ, k) =
∫
θ

⎧⎨⎩1 − kc

[
k2 +

(
4π

g2
3

)2 (
a3g

2
3θ
)1/2

]−1/2
⎫⎬⎭ ; (9.68)

here a3 is the Lavelle constant of Eq. (9.4), and the critical value kc is proportional
to N . The pure numbers in this expression are not to be taken seriously.

Now let us check the properties of this modified effective action. First, in the limit
k = 0, it is of the necessary form given in Eq. (9.10), with 〈θ〉 � (Ng2

3)3(N2 − 1).
Second, for small k, the leading correction term is positive and quadratic, as
expected from Eq. (9.59). Third, at k = kc, the minimum of � moves to θ = 0
so there is no condensate, whereas for positive θ , the effective action � is also
positive, indicating that entropy effects are no longer dominant.

The order parameter for this phase transition is the dynamical gluon mass m(k),
which now depends on k. When k � kc, some simple algebra shows that the
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minimum of � in Eq. (9.68) obeys the following:

θ1/2 ∼ (kc − k), (9.69)

and so

m(k) ∼ θ1/4 ∼ (kc − k)1/2, (9.70)

characteristic of a second-order phase transition. If there really is a phase transition
at k = kc, then one would expect solitons to appear for smaller k.

9.6.2 YMCS solitons

D’Hoker and Vinet [35] long ago looked for classical solitons of YMCS theory.
Their result is that there are no finite-action classical solitons of the vortex or
sphaleron type in classical YMCS theory. There are solitons, but they have a
curious instability that creates a singularity, preventing them from having finite
action.

The remaining questions are as follows: are there any finite-action solitons when
there is both a dynamical mass m and a CS mass in the effective action? How
do these solitons behave when m → 0? For k < kc, the full effective action with
dynamical mass term is∫

d3x

[
2π ikNCS − 1

2g2
3

∫
TrG2

ij − m2

g2
3

∫
Tr[U−1DiU ]2

]
. (9.71)

First, let us look for center vortices using the classical equations from Eq. (9.71).
Center vortices are Abelian, and this action leads to the Abelian solution [36]:

Aa
i (x) = 2πQa

μ

∮
dzk

{
εijk∂j [μ−(+(x − z) −0(x − z)) + (+ ↔ −)]

+ iδikμ+μ− [+(x − z) −−(x − z)]
}
, (9.72)

where the masses μ,μ± are

μ± = 1

2
[±mCS + (m2

CS + 4m2)1/2] μ = μ+ + μ−, (9.73)

and ± is the free Feynman propagator for mass μ±. This is a peculiar soliton
because it has a (parity violating) imaginary part. But the total action, including the
CS term, is real, and the action per unit length is finite (given that the running mass
m(q) decreases as in Eq. (9.4)). This soliton is twisted and has a nonzero 〈NCS〉.
The twist (or NCS) changes sign when k changes sign, and so the action is even in
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k. In the limit mCS → 0, this vortex reduces to the usual center vortex, and in the
limit m → 0, the soliton vanishes.11

Next, look for spherical solitons in SU (2), which should resemble modified
sphalerons. The usual spherical decomposition of the gauge potential is

2iAi = εiakτax̂k

[
φ1(r) − 1

r

]
− (τi − x̂i x̂ · �τ )

φ2(r)

r
+ x̂i x̂ · �τH1(r) (9.74)

U = exp

[
iβ(r)

�τ · x̂
2

]
. (9.75)

Inserting these into the effective YMCS plus mass action of Eq. (9.71) gives [36, 34]
what looks like four equations of motion, one for each of the four functions in
Eq. (9.74):

0 = (φ′
1 −H1φ2)′ + 1

r2
φ1(1 − φ2

1 − φ2
2)

+ (imCS −H1)(φ′
2 +H1φ1) −m2(φ1 − cosβ) (9.76)

0 = (φ′
2 +H1φ1)′ + 1

r2
φ2(1 − φ2

i − φ2
2)

− (imCS −H1)(φ′
1 −H1φ2) −m2(φ2 + sinβ) (9.77)

0 = φ1φ
′
2 − φ2φ

′
1 +H1(φ2

1 + φ2
2)

+
(

imCS(1 − φ2
1 − φ2

2) + 1

2
m2r2(H1 − β ′

)
(9.78)

0 = 1

r2
[r2(β ′ −H1)]′ − 2

r2
(φ1 sinβ + φ2 cosβ). (9.79)

Here primes indicate radial derivatives. In fact, there are only three independent
equations; Eq. (9.78), which comes from varying the matrix U , is (as we already
know) not independent and can be derived from the other three.

Why are there no classical solitons (at m = 0) but there are (quantum) solitons for
finite m? To a large extent, the answer to this question appears in Eq. (9.77) for
the amplitude H1 or, equivalently, A of Eq. (9.82). This equation is algebraic, not
differential, and has the solution

A = 1

φ2
1 + m2r2

2 − m2
CSB

2

m2

[
1

m
(Bφ′

1 − B ′φ1) + 1 − φ2
1 + m2

CS

m2
B2

]
. (9.80)

11 Because the Abelian equations are linear, there are other linear combinations of the preceding ± solutions
without this property, but they do not have finite action per unit length.
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D’Hoker and Vinet [35] have an analogous equation, but in the gauge B = 0 and
with no dynamical mass, so their equation is recovered by setting B,B/m andm to
zero. Their denominator, then, is just φ2

1 . They show that there is at least one zero
of this denominator and that the existence of one zero leads to an infinite number of
zeros and a “soliton” having an accumulation point of zeroes at r = 0. In our case,
ifm is large enough, it is possible that the m2r2/2 term in the denominator prevents
the denominator from vanishing, and this does happen, at least numerically [36].
The numerics show that for small enough m, there is at least one zero, and the
D’Hoker–Vinet disease arises: there are no sphaleron-like solitons.

So several different lines of investigation, all of them qualitative, lead to the same
conclusion: for large k, YMCS theory is in the Witten phase and can be solved
exactly, but for k < kc, with kc � (1 − 2)N , there is a second-order phase transition
to a nonperturbative phase with a dynamical gluon mass in addition to the CS mass.

9.7 Compactness and the Chern–Simons number of YMCS solitons

The developments so far provide a setting for investigating whether the assump-
tion of compactness, which quantizes various topological indices, is physically
necessary [34]. We know already that topological charge may consist of localized
lumps of nonintegral charge whose sum over all Euclidean space-time is integral,
but this does not challenge the notion of compactness, which is only needed for
infinite spaces and their boundaries at infinity. Compactness requires that quantum
numbers defined on such boundaries be integral, but here we assume otherwise
and look for the consequences, using a model of a dilute condensate of YMCS
sphalerons. The result is that the noncompact model has a vacuum energy density
higher than that of the compact theory by a finite amount and hence a vacuum
energy higher by an infinite amount after integrating over all three-space [34]. So
compactness is energetically preferred.

The model begins with sphalerons from Eqs. (9.76), (9.76), (9.77), and (9.78), with
boundary conditions

r = 0: φ1(0) = 1, φ2(0) = H1(0) = β(0) = 0;

r = ∞ : φ1(∞) = cosβ(∞), φ2(∞) = − sinβ(∞), H1 → β ′. (9.81)

These equations are again complex, but in one case, they can be reduced to real
equations for real functions, and this is the case of interest. Set β = π and α = 0.
Then one can choose H1, φ2 to be pure imaginary, with all other functions real:

H1 = imCSA(r); φ2 = i
mCS

m
B(r). (9.82)
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The equations become real, and so φ1, A, B are all real. Generally, solitons with
both real and imaginary field components have conjugate solitons found by complex
conjugation (which changes the sign of the CS number), but the soliton here is
self-conjugate, and its ordinary CS number vanishes. For this choice of boundary
conditions, the CS action 2π ikNCS is real (the integral in Eq. (9.51) is imaginary).
The general form of NCS for a spherical soliton is

NCS = 1

8π2

∫
d3x

r2
[φ1φ

′
2 − φ2φ

′
1 − φ′

2 −H1(1 − φ2
1 − φ2

2)]. (9.83)

Substitute the forms of Eq. (9.82) to find a purely imaginary NCS and so a purely
real CS action. (There is no reason that the contribution of solitons to NCS should
be integral or even real.) This action is O(k2) and positive for small k, as we argued
earlier on general grounds.

The only interpretation we can make of a pure imaginaryNCS is that what we usually
think of as the (topological) CS number vanishes. This soliton is very much like the
QCD sphaleron of Chapter 7, which, considered only as a d = 3 soliton, has no CS
number. However, by making a special gauge transformation on this solution, we
can endow it with a genuine (and nonintegral) CS number. The spherical equations
of motion have a residualU (1) gauge invariance that preserves spherical symmetry:

φ1(r) → φ1(r) cosα(r) + φ2(r) sinα(r)

φ2(r) → φ2(r) cosα(r) − φ1(r) sinα(r)

β(r) → β(r) + α(r)

H1(r) → H1(r) + α′(r). (9.84)

These transformations can be read off from the gauge transformation:

Aa
i → VAa

i V
−1 + V ∂iV

−1, (9.85)

with12

V (α) = exp
[ i

2
�τ · r̂α(r)

]
. (9.86)

Of course, the subgroup generated by all group elements of the form in Eq. (9.86)
is Abelian, but it does not commute with the general vector potential. We call gauge
transformations of the type in Eq. (9.86) spherical gauge transformations.

For any gauge transformation, as in Eq. (9.85),NCS changes according to Eq. (8.33).
With the assumption of compactness, the gauge transformation V approaches the
identity on the sphere at infinity, and the gauge potential Ai vanishes at least as

12 To avoid singularities at the origin, choose α(0) = 0.
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fast as 1/r , and so the change in NCS reduces to the winding number of Eq. (9.87),
with the added requirement that α(r = ∞) = 2πL for an integer L. When V

approaches I on the sphere at infinity, the space of gauge transformations is really
defined on the three-sphere S3 rather than on R3 because all the points at infinity
are mapped to a single point. This integral winding number is that of the map of
the group space S3 onto the spatial S3 that we just identified, or in other words,
the homotopy �3(S3) � Z, and this winding number is L. The winding number is
topological, which means two things: it is independent of a choice of metric, and
it can be expressed as a boundary-value integral. It is not completely elementary to
find the function whose divergence is the winding-number integrand; the answer
is in the work of Deser et al. [32] for general gauge transformations.13 For the
spherical gauge transformation of Eq. (9.86), a straightforward calculation (easiest
with Eq. (9.83)) gives

1

8π2

∫
εijk Tr

1

3
V (α)−1∂iV (α)V −1(α)∂jV (α)V −1(α)∂kV (α)

= 1

2π

∫ ∞

0
dr α′(r)[1 − cosα(r)] = 1

2π
[α(r) − sinα(r)]|∞0 . (9.87)

The answer depends only on the boundary value α(r = ∞) because we choose
α(0) = 0.

Now we abjure compactness and let α(r = ∞) be arbitrary. There is a (real) CS
number that is not integral. A particularly interesting case removes an integrable
singularity arising from β(0) = 0; this singularity can be removed by invoking a
spherical gauge transformation with α(0) = −π, α(∞) = 0. The CS number is
1/2, just as we would expect for a sphaleron.

We assume that for entropic reasons, there is a dilute (noninteracting) condensate
of sphalerons in the vacuum so that all solitons are essentially independent. When
a CS term is present in the action, the dilute-gas partition function Z is the usual
expansion as a sum over sectors of different sphaleron number:

Z(k) =
∑
J

ZJ ZJ (k) =
∑
c.c.

1

J !
e−∑

Ic + · · · , (9.88)

where ZJ (k) is the partition function in the sector with J sphalerons; the subscript
c.c. indicates a sum over collective coordinates of the sphalerons; Ic is the action
(including CS action) of a sphaleron, and the omitted terms indicate corrections
to the dilute-gas approximation. To be explicit, separate the sum over collective

13 We know without calculation that the winding number for spherical gauge transformations has to be a total
divergence because it changes the action without changing the equations of motion.
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coordinates into kinematic coordinates, such as spatial position (the ath soliton is at
position �r − �a ≡ �r(a)) and gauge-collective coordinates. The former we represent
in the standard dilute-gas way; the latter, we indicate as a functional integral over
spherical gauge transformations U :

Z(k)=
∫

[dU ]
∑ 1

J !

(
V

Vc

)J

exp
{−J�e Ic−2π ik [JNCS(A) +NCS(U )]

}
. (9.89)

Here V is the volume of all three-space; Vc is a finite collective-coordinate volume;
�e Ic is the real part of the action; NCS(A) is the CS number of each individual
soliton of gauge potential A; and NCS(U ) is the CS number of the large gauge
transformation.

Even when we consider the apparently innocuous case of sphalerons of CS number
1/2, choose k integral, and allow only compact gauge transformations, problems
arise. The NCS contribution to a term in the sum in the partition function is a phase
factor exp(iπkJ ), which is –1 if both k and J are odd. When k is odd, the odd J

terms in lnZ have the opposite sign to those of a normal dilute-gas condensate,
which means that the free energy, which for a normal dilute-gas condensate is
negative, has turned positive. So the noncompactified theory splits into two sectors,
one with even numbers of sphalerons and the other with odd numbers, and the
odd-number sector has infinitely higher free energy than the (compactified) even-
number sector. (Noncompactification also leads to a number of other unphysical
results in the dilute-gas approximation not considered here.)

Now generalize to arbitrary noncompact gauge transformations. Begin with poten-
tials A (all indices suppressed) of the self-conjugate soliton given earlier, satisfying
the equations of motion with boundary conditions of Eq. (9.81) and fixed to a stan-
dard spherical gauge (to be specific, we use the self-conjugate soliton with zero
CS number). Introduce a different CS number for each soliton (labeled by a set of
indices a) by making a spherical gauge transformation characterized by α(a; ∞)
for the ath soliton. If we assume compactness, these gauge transformations, with
integral CS numbers, have no effect (as long as the CS index k is integral). But we
give up compactness, so these gauge transformations do have an effect, and each
α(a; ∞) is a collective coordinate.

Because the total CS number of all J sphalerons comes from a surface contribution,
we can immediately write the phase factor in the action by using Eq. (9.87):

Z(k) =
∑
J

1

J !

(
V

Vc

)J

exp[−J�e Ic] exp[ik(α − sinα)], (9.90)
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where

α =
J∑

a=1

α(a; ∞). (9.91)

The α(a; ∞) are collective coordinates, and we integrate over them:

Z(k) =
∑
J

ZRJ ×
{∏

a

∫ 2π

0

dα(a; ∞)

2π

}
exp[ik(α − sinα)], (9.92)

where ZRJ indicates the explicitly real terms in the summand of Eq. (9.90). This
integral is reduced to a product by using the familiar Bessel identity

eiz sin θ ≡
∞∑

−∞
JN (z)eiNθ , (9.93)

and the integral becomes, for integral k, [Jk(k)]J . So the dilute-gas partition function
is

Z(k) =
∑
J

1

J !

(
V

Vc

)J

exp
{
J [−�e Ic + ln Jk(k)]

}= exp

[
V

Vc
e−�e IcJk(k)

]
. (9.94)

Because 1 ≥ Jk(k) > 0 for all levels k, integrating over the collective coordinates
has increased the free energy (the negative logarithm of Z). This shows that by
compactifying the sphalerons, we lower the free energy, yielding something like the
usual dilute-gas partition function (which is Eq. (9.94) without the Jk(k) factor).
This simply requires that the total CS number α be an integer, not that each
contributing soliton have integral CS number.

There are a number of other issues concerning compactness that we will not discuss
here; for example, what happens if the CS level k is nonintegral [34]? The upshot
is that compactness is more than just a mathematical assumption because compact
theories always have infinitely less free energy than noncompact theories.

9.7.1 Sphalerons, knots, and compactness

We conclude this chapter by noting [34] that sphalerons of CS number 1/2 can
be topologically mapped onto the linkages of d = 3 knots (see Kaufmann [37]) –
the same sort of linkages that occur between center vortices and Wilson loops.
For compact knots (knots whose links are closed strings), the total link number is
integral and is composed of a sum of an even number of terms, each ±1/2, one for
each crossing (defined subsequently). But noncompact knots, involving nonclosed
strings, may have half-integral link numbers.
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ε(p) = −1ε(p) = +1

Figure 9.1. Overcrossings or undercrossings of knot components; the sign ε(p)
distinguishes the two possibilities shown.

The connection between the non-Abelian gauge potentials of a sphaleron and link
numbers is an Abelian gauge potential formed from the sphaleron gauge potential,
whose Abelian CS integral describes the linkages in terms of knots that occur in
the Abelian magnetic field lines. For gauge group SU (2), there is a deep relation
between the CS integral and these Abelian gauge potentials and field strengths.
This turns the non-Abelian CS form, with its characteristic cubic term, into an
Abelian CS form that measures the linkages of the closed lines of Abelian field
strength. The Abelian CS form, when described in terms of its Dirac string as
in the confinement picture, has [34] exactly the form of the integral used in knot
theory to describe over- and undercrossings, as shown in Figure 9.1. Aside from
the topological characteristics we briefly note here, there is no particular physical
meaning to this Abelian gauge potential.

The simplest way to think of knots in three dimensions is to project them onto a
d = 2 plane, carefully distinguishing the various overcrossings and undercrossings
that arise (see Kaufmann [37] for details). Knots are made of links or closed
oriented loops (such as those occurring in d = 3 center vortices). A single link
can be self-knotted, but the description of such knots is ambiguous until either the
twist or the writhe of the single link is prescribed. Spread a system of linked closed
strings out on a table to see undercrossings and overcrossings, such as idealized in
Figure 9.1.

For the crossings of two distinct curves, the link number Lk, which is an integer,
is defined as

Lk = 1

2

∑
p∈C

ε(p), (9.95)

where C is the set of crossing points of one curve with the other. It turns out that a
single sphaleron corresponds (through the knot structure of its associated Abelian
field lines) to a single term in this sum for NLk, and the 1/2 for every term is
precisely the CS number for the sphaleron.

The projection of two links formed from (nonpathological) closed loops has to
have an even number of terms in the sum for NLk, so the sum yields an integer. But
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if the links are open, there can be an odd number (e.g., either of the crossings in
Figure 9.1). An open link is equivalent to a closed link with one closure at infinity
or, in other words, a noncompact link. So compactness of the knotted links implies
integrality of NCS.

The underlying topology comes from the perhaps surprising result that there is a
topological map S3 → S2, with the homotopy�3(S2) � Z. (As usual, that this map
be described by integral indices requires compactness.) This map and homotopy
were found by Hopf, and the map is called the Hopf fibration. The simplest way to
look at the Hopf fibration (which describes, in essence, a total bundle space S3 as
the fibration of the base space S2 by a fiber in S1) is to begin with an SU (2) matrix
U (�r) in the fundamental representation and from it construct a unit vector n̂ by

Uτ3U
−1 = �τ · n̂ (9.96)

(the �τ are the Pauli matrices). The unit vector lives on S2, and the group space
of SU (2) is S3. Something must be redundant in such a map, and it is that U
can be right multiplied by exp[iα(�r)τ3/2] without changing n̂; the unit vector field
corresponds to the coset SU (2)/U (1). This redundancy, parametrized by α(�r), will
turn out to be a change of gauge for the fictitious Abelian potential (a shift by ∂iα).

The fictitious Abelian gauge potential is

Ai = i Tr
(
τ3U∂iU

−1
)
, (9.97)

and its field strength is

Bi = εijk∂jAk = −iεijkTr
(
τ3U∂jU

−1U∂kU
−1
) = 1

2
εijkεabcn

a∂jn
b∂kn

c. (9.98)

Some manipulations using the antisymmetric property of the ε symbol lead to a
very elegant formula, expressing the pure-gauge form of NCS as an Abelian CS
integral:

−1

12π2

∫
d3r εijkTr

(
U∂iU

−1U∂jU
−1U∂kU

−1
) = 1

16π2

∫
d3rAiBi. (9.99)

We have already encountered such an Abelian CS integral in interpreting the
link number of a center vortex and a Wilson loop in Eq. (7.41). For the Hopf
map, the link number is the integer in the homotopy �3(S2) � Z. However, for the
standard sphaleron, this link number is half-integral because the standard sphaleron
is noncompact; the field lines ofBi terminate only at spatial infinity. Half-integrality
of the link number of Eq. (9.95) also occurs when the links are noncompact.
Reference [34] gives full details of this relation between sphalerons and knots.
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Each 1/2, with appropriate sign, marks an overcrossing or undercrossing of knots
in its d = 2 projection. Although knots are uniquely a property of Euclidean three-
space, because d = 1 strings do not link in any other space,14 a great deal of knot
theory is essentially two-dimensional, based on projecting the knots’ overcrossings
and undercrossings onto a d = 2 space (see Figure 9.1).

This leads to a useful d = 2 interpretation of knots and sphalerons that is quite
analogous to the d = 4 interpretation of topological charge as counting, through a
nonoriented intersection number, the linkages of center vortices and nexuses. An
analogous nonoriented d = 2 intersection-number integral of closed d = 1 strings,
with SU (2) nexuses put by hand on the strings, yields some elementary knot
properties.

A special ribbon framing is often used. In this, called the Frenet–Serret framing,
the unit vector field of Eq. (8.28) is the principal normal vector ê2, lying in the
direction of the curve’s curvature vector (or derivative of the tangent vector ê1).
With this framing in the ε → 0 limit, the twist is

Tw = 1

2π

∮
�

ds ê2 · dê3

ds
, (9.100)

where ê3 is the principal binormal vector, given by ê3 = ê1 × ê2. This expression for
twist is well defined, provided that the curvature of the curve is not zero somewhere
(in which case, ê2 is not defined).

References

[1] J. M. Cornwall, A three-dimensional scalar field theory model of center vortices and
its relation to k-string tensions, Phys. Rev. D70 (2004) 065005.

[2] E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys.
121 (1989) 351.

[3] J. M. Cornwall, Non-perturbative mass gap in continuum QCD, in Proceedings of
the French–American Seminar on Theoretical Aspects of Quantum
Chromodynamics, Marseille, France (1981).

[4] J. M. Cornwall, Dynamical mass generation in continuum QCD, Phys. Rev. D26
(1982) 1453.

[5] M. Lavelle, Gauge invariant effective gluon mass from the operator product
expansion, Phys. Rev. D44 (1991) R26.

[6] J. M. Cornwall, Exact zero-momentum sum rules in d = 3 gauge theory, Nucl.
Phys. B416 (1994) 335.

[7] V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Are all hadrons
alike? Nucl. Phys. B191 (1981) 301.

[8] J. M. Cornwall, How d = 3 QCD resembles d = 4 QCD, Phys. A 158 (1989) 97.

14 A d = 1 string links to a d − 2-dimensional closed hypersurface, so in any dimension, a Wilson loop links to
a center vortex.

https://doi.org/10.1017/9781009402415 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415


224 A brief summary of d = 3 NAGTs

[9] N. K. Nielsen and P. Olesen, An unstable Yang-Mills field mode, Nucl. Phys. B144
(1978) 376.

[10] J. M. Cornwall, W. S. Hou, and J. E. King, Gauge-invariant calculations in finite-T
QCD: Landau ghost and magnetic mass, Phys. Lett. B153 (1985) 173.

[11] J. M. Cornwall and B. Yan, String tension and Chern-Simons fluctuations in the
vortex of d = 3 gauge theory, Phys. Rev. D53 (1996) 4638.

[12] W. Buchmuller and O. Philipsen, Magnetic screening in the high temperature phase
of the standard model, Phys. Lett. B397 (1997) 112.

[13] F. Eberlein, Two-loop gap equations for the magnetic mass, Phys. Lett. B439 (1998)
130.

[14] F. Eberlein, The gauge-Higgs system in three dimensions to two-loop order, Nucl.
Phys. B550 (1999) 303.

[15] G. Alexanian and V. P. Nair, A self-consistent inclusion of magnetic screening for
the quark-gluon plasma, Phys. Lett. B352 (1995) 435.

[16] J. M. Cornwall, On one-loop gap equations for the magnetic mass in d = 3 gauge
theory, Phys. Rev. D57 (1998) 3694.

[17] D. Karabali, C. J. Kim, and V. P. Nair, On the vacuum wavefunction and string
tension of Yang-Mills theories in (2 + 1) dimensions, Phys. Lett. B434 (1998) 103,
and references therein.

[18] F. Karsch, T. Neuhaus, A. Patkos, and J. Rank, Gauge boson masses in the 3D,
SU(2) gauge-Higgs model, Nucl. Phys. B 474 (1997) 217.

[19] U. M. Heller, F. Karsch, and J. Rank, Gluon propagator at high temperature:
Screening, improvement and nonzero momenta, Phys. Rev. D57 (1998) 1438, and
references therein.

[20] A. Cucchieri, F. Karsch, and P. Petreczky, Propagators and dimensional reduction of
hot SU(2) gauge theory, Phys. Rev. D64 (2001) 036001.

[21] A. Nakamura, T. Saito, and S. Sakai, Lattice calculation of gluon screening masses,
Phys. Rev. D69 (2004) 014506.

[22] R. Jackiw, Introduction to the Yang-Mills quantum theory, Rev. Mod. Phys. 52
(1980) 661.

[23] H. G. Loos, Canonical gauge- and Lorentz-invariant quantization of the Yang-Mills
field, Phys. Rev. 188 (1969) 2342.

[24] J. P. Greensite, Calculation of the Yang-Mills vacuum wave functional, Nucl. Phys.
B158 (1979) 469.

[25] R. Jackiw, in Current Algebras and Anomalies, ed. S. B. Trieman, R. Jackiw, B.
Zumino, and E. Witten (Princeton University Press, Princeton, 1985), 258.

[26] J. M. Cornwall and G. Tiktopoulos, Functional Schrödinger equation approach to
high-energy multileg amplitudes, Phys. Rev. D47 (1993) 1629.

[27] J. M. Cornwall, Nonperturbative treatment of the functional Schrödinger equation in
QCD, Phys. Rev. D38 (1988) 656.

[28] J. M. Cornwall, Conjecture on the infrared structure of the vacuum Schrodinger
wave functional of QCD, Phys. Rev. D76 (2007) 025012.

[29] E. G. S. Luna, Diffraction and an infrared finite gluon propagator, Braz. J. Phys. 37
(2007) 84.

[30] A. A. Natale, Phenomenology of infrared finite gluon propagator and coupling
constant, Braz. J. Phys. 37 (2007) 306.

[31] A. C. Aguilar, A. Mihara, and A. A. Natale, Freezing of the QCD coupling constant
and solutions of Schwinger-Dyson equations, Phys. Rev. D65 (2002) 054011.

[32] S. Deser, R. Jackiw, and S. Templeton, Three-dimensional massive gauge theories,
Phys. Rev. Lett. 48 (1982) 975.

https://doi.org/10.1017/9781009402415 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415


References 225

[33] S. Deser, R. Jackiw, and S. Templeton, Topologically massive gauge theories, Ann.
Phys. 140 (1982) 204 [Erratum, ibid. 185 (1988) 406, 281 (2000) 409].

[34] J. M. Cornwall and N. Graham, Sphalerons, knots, and dynamical compactification
in Yang-Mills-Chern-Simons theories, Phys. Rev. D66 (2002) 065012.

[35] E. D’Hoker and L. Vinet, Classical solutions to topologically massive Yang-Mills
theory, Ann. Phys. 162 (1985) 413.

[36] J. M. Cornwall, Phase transition in d = 3 Yang-Mills-Chern-Simons gauge theory,
Phys. Rev. D54 (1996) 1814.

[37] L. Kaufmann, On Knots (Princeton University Press, Princeton, 1987).

https://doi.org/10.1017/9781009402415 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415


10

The pinch technique for electroweak theory

In this chapter, we give a general overview of how the pinch technique (PT) is
modified in the case of a theory with spontaneous (tree level) symmetry breaking
(Higgs mechanism) [1, 2, 3], using the electroweak sector of the standard model
as the reference theory.

The application of the pinch technique in the electroweak sector brings about sig-
nificant conceptual and practical advantages. First, from the purely theoretical point
of view, it is important to know that the PT construction is sufficiently general to
encompass theories other than massless Yang–Mills. Though the required technical
manipulations in the electroweak sector turn out to be fairly cumbersome, the basic
underlying principles are practically the same; what increases the complexity is
not the principle itself but rather the proliferation of fields and vertices involved.
In addition, the PT algorithm exposes systematically the vast number of cancella-
tions that take place when the (nonrenormalizable) Green’s functions of the unitary
gauge are put together to form physical amplitudes. In fact, one may start directly
from the unitary gauge and derive the same PT Green’s function constructed in
the context of the (renormalizable) Rξ gauges. The application of the pinch tech-
nique provides a deeper understanding of the connection between the unitary gauge
and the optical theorem and analyticity. Moreover, in the context of a theory with
symmetry breaking, one gains new, important insights on the connection between
the pinch technique and the background field method (BFM). Specifically, the
BFM Feynman gauge is uniquely and unambiguously singled out by the power-
ful physical requirement of having Green’s functions that display only physical
thresholds. Last, but not least, one may derive crucial Ward identities, relating the
various propagators of the theory from the sole requirement of the complete gauge
independence of S-matrix elements.

226
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10.1 General considerations

The application of the pinch technique in theories with tree-level symmetry break-
ing in general, and in the electroweak sector of the standard model in particular, is
significantly more involved than in the QCD case. The reasons are both bookkeep-
ing related, because of the proliferation of particles and Feynman diagrams, and
conceptual, related to the correct allocation of the various pinch terms among the
self-energies and vertices under construction:

1. There is a considerable increase in the number of sources of gauge-fixing
parameter-dependent terms. In particular, in the Rξ gauges, the tree-level
gauge-boson propagators – three massive gauge bosons (W± and Z) and a
massless photon (A) – are given by


μν

i (q) =
[
gμν − (1 − ξi)qμqν

q2 − ξiM
2
i

]
di(q

2)

di(q
2) = −i

q2 −M2
i

, (10.1)

where i = W,Z,A and M2
A = 0. In general, the gauge-fixing parameters ξW ,

ξZ, and ξA will be considered different from one another. The inverse of the
gauge-boson propagators, to be denoted by −1

i,μν , is given by

−1
i,μν(q) = i

[
(q2 −M2

i )gμν − qμqν + 1

ξi
qμqν

]
. (10.2)

Three unphysical (would-be) Goldstone bosons are associated with the three
massive gauge bosons, to be denoted by φ± and χ . Their tree-level propaga-
tors are ξ dependent, and given by

Di(q) = i

q2 − ξiM
2
i

, (10.3)

with i = W,Z (no Goldstone boson is associated with the photon). Note that


μν

i (q) = U
μν

i (q) − qμqν

M2
i

Di(q), (10.4)

where

U
μν

i (q) =
(
gμν − qμqν

M2
i

)
di(q

2) (10.5)

is the corresponding propagator in the so-called unitary gauge (ξi → ∞). In
addition, the ghost propagators are also given by Di(q), with i = W,Z,A
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ϕϕ

ϕ†

Bμ

q k + q

k ϕ

ϕ†

Bμ

ΓF
μ

ϕ†

Bμ

ΓP
μ

= +

Figure 10.1. The PT decomposition of the generic elementary gauge-boson-scalar
vertex �Bμϕϕ† .

(there is a massless ghost associated with the photon). Finally, the bare prop-
agator of the physical Higgs boson is gauge-fixing parameter-independent at
tree level, and given by H (q) = i/(q2 −M2

H ).
2. In addition to the longitudinal momenta coming from the propagators of the

gauge bosons (proportional to λi = 1 − ξi) and the PT decomposition of the
vertices involving three gauge bosons, a new source of pinching momenta
appears, originating from graphs having an external (i.e., carrying the phys-
ical momentum q) would-be Goldstone boson. Specifically, interaction ver-
tices, such as �Aαφ±φ∓ , �Zαφ±φ∓ , �W±

α φ
∓χ , and �W±

α φ
∓H , also furnish pinching

momenta when the gauge boson is inside the loop carrying (virtual) momen-
tum k. Such a vertex will then be decomposed as (see Figure 10.1)

�(0)
α (q, k,−q − k) = �F

α(q, k,−q − k) + �P
α(q, k,−q − k) (10.6)

with

�(0)
α (q, k,−q − k) = (2q + k)α

�F
α(q, k,−q − k) = 2qα

�P
α(q, k,−q − k) = kα, (10.7)

which is the scalar case analog of Eqs. (1.41), (1.42), and (1.43).
3. When the fermions involved (external or inside loops) are massive, the Ward

identity of Eq. (1.45) receives additional contributions, which correspond
precisely to the tree-level coupling of the would-be Goldstone bosons to the
fermions. To see this concretely, let us consider the analog of the fundamental
pinching Ward identity of Eq. (1.45), (e.g., in the case in which the incoming
boson is a W ). Contracting the �W+

μ ūd
vertex with kμ (the fermions u and d

are isodoublet partners), we have

/kPL = PRS
−1
d (k + p) − S−1

u (p)PL + [mdPR −muPL], (10.8)

where the chirality projection operators are defined according to PL,R =
(1 ∓ γ5)/2. The first two terms will pinch and vanish on shell, respectively,
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as they did in the case of QCD; the leftover term in the square bracket
corresponds precisely to the coupling φ+ūd (the case involving the �W−

μ d̄u

is identical). A completely analogous Ward identity is obtained when the
incoming boson is a Z. Again, contraction with the vertex �Zf̄ f furnishes a
Ward identity similar to Eq. (10.8), with the additional term proportional to
mf γ5, which corresponds to the coupling �χf̄ f .

4. After the various pinch contributions have been identified, particular care is
needed when allocating them among the PT quantities that one is construct-
ing. So unlike the QCD case, in which all propagator-like pinch contributions
were added to the only available self-energy, �αβ (to construct �̂αβ), in the
electroweak case, such pinch contributions must in general be split among
various propagators. Thus, in the case of the charged channel, they will be
shared in general between the self-energies �WαWβ

, �Wαφ , �φWβ
, and �φφ .

This is equivalent to saying that when forming the inverse of the W prop-
agator, in general, the longitudinal parts may no longer be discarded from
the four-fermion amplitude because the external current is not conserved up
to terms proportional to the fermion masses. The correct way of treating the
longitudinal terms is to employ identities such as [3]

igνα = qνqαDi(q) −
νμ

i (q)
[
(q2 −M2

i )gμα − qμqα
]

iqμ = q2Di(q)qμ +M2
i qν

μν

i (q). (10.9)

The neutral channel is even more involved; one has to split the propagator-like
pinch contributions among the self-energies �ZαZβ

, �AαAβ
, �ZαAβ

, �AαZβ
,

�Zαχ , �χZβ
, �χχ , and �HH .

We emphasize that the preceding four points are tightly intertwined. The extra
terms appearing in the Ward identity are precisely needed to cancel the gauge
dependence of the corresponding graph in which the gauge boson is replaced
by its associated Goldstone boson. In addition, as we will see in Section 10.3,
when the external currents are not conserved, the appearance of the scalar-scalar or
scalar-gauge-boson self-energies is crucial for enforcing the gauge-fixing parameter
independence of the physical amplitude.

10.2 The case of massless fermions

We will now study the application of the pinch technique in the case where all
fermions involved are massless. This simplification facilitates the PT procedure
considerably because no scalar particles (Higgs and would-be Goldstone bosons)
couple to the massless fermions. As a result, (1) the scalars can appear only
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Figure 10.2. (a) The general process f1(p1)f̄1(p2) → f2(r1)f̄2(r2) mediated at
tree level by a Z-boson and a photon and (b) the basic pinching and one of the
unphysical vertices produced at the one-loop level.

inside the self-energy graphs, where they obviously cannot pinch; (2) Eq. (10.8) is
practically reduced to its QCD equivalent; and (3) there are no self-energies with
incoming scalars (i.e., no �Wαφ , �Zαχ , �φφ , etc.).

We now focus for concreteness on the the process f1(p1)f̄1(p2) → f2(r1)f̄2(r2),
mediated at tree level by a Z-boson and a photon, as shown in Figure 10.2(a).
At one-loop order, the box and vertex graphs furnish propagator-like contributions
every time the Ward identity of Eq. (10.8) is triggered by a pinching momentum.
Specifically, the term in Eq. (10.8) proportional to the inverse of the internal
fermion propagator gives rise to a propagator-like term whose coupling to the
external fermions f and f̄ (with f = f1, f2) is proportional to an effective vertex
CWαf f̄ given by (see also Figure 10.2(b))

CWαf f̄ = −i
(gw

2

)
γαPL. (10.10)

Note that this effective vertex is unphysical in the sense that it does not correspond to
any of the elementary vertices appearing in the electroweak Lagrangian. However,
it can be written as a linear combination of the two physical tree-level vertices
�Aαf f̄ and �Zαf f̄ given by

�Aαf f̄ = −iQfγα

�Zαf f̄ = −i[(s2
wQf − T f

z )PL + s2
wQfPR], (10.11)

as follows:

CWαf f̄ =
(

sw

2T f
z

)
�Aαf f̄ −

(
cw

2T f
z

)
�Zαf f̄ . (10.12)

In the preceding formulas, Qf is the electric charge of the fermion f and T f
z is its

z-component of the weak isospin. The identity established in Eq. (10.12) allows
one to combine the propagator-like parts with the conventional self-energy graphs
by writing 1 = di(q2)d−1

i (q2).
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Next we will describe how the cancellation of the gauge-fixing parameter proceeds
at the one-loop level for the simple case in which f1 is a charged lepton, to be
denoted by �, and f2 is a neutrino, denoted by ν. Of course, on the basis of general
field-theoretic principles, one knows in advance that the entire amplitude will be
gauge-fixing parameter independent. What is important to recognize, however, is
that this cancellation goes through without having to carry out any of the integra-
tions over virtual loop momenta, exactly as happened in the case of QCD. From
the practical point of view, the extensive gauge cancellations that are implemented
through the pinch technique finally amount to the statement that one may start
out in the Feynman gauge, that is, set directly ξW = 1 and ξZ = 1, with no loss of
generality.

The cancellation of ξZ is easy to demonstrate. The box diagrams containing two
Z-bosons (direct and crossed) form a ξZ-independent subset. The way this works is
completely analogous to the QED case, in which the two boxes contain photons: the
ξZ dependence of the direct box cancels exactly against the gauge-fixing parameter
dependence of the crossed one. The only other set of graphs with a ξZ dependence is
the self-energy graphs; it is easy to show, by employing the simple algebraic identity

1

k2 − ξiM
2
i

= 1

k2 −M2
i

− (1 − ξi)M2
i

(k2 −M2
i )(k2 − ξiM

2
i )
, (10.13)

that their sum is independent of ξZ, separately for ZZ and AZ.

Demonstrating the cancellation of ξW is significantly more involved. In what fol-
lows, we set λW ≡ 1 − ξW and suppress a factor g2

w

∫
k
. We also define

I3 ≡ {
(k2 − ξWM

2
W

)(k2 −M2
W

)[(k + q)2 −M2
W

]
}−1

I4 ≡ {
(k2 − ξWM

2
W

)[(k + q)2 − ξWM
2
W

](k2 −M2
W

)[(k + q)2 −M2
W

]
}−1

.

(10.14)

Note that terms proportional to qα or qβ may be dropped directly because the
external currents are conserved (massless fermions).

To get a feel of how the pinch technique organizes the various gauge-dependent
terms, consider the box graphs shown in Figure 10.3. We have

(a) = (a)ξW=1 + VWα��̄

(
λ2
W
I4kαkβ − 2λWI3gαβ

)
VWβνν̄, (10.15)

where the vertices V are defined according to

VWαf f̄
= v̄f CWαf f̄

uf

VVαf f̄ = v̄f �Vαf f̄ uf ; V = A, Z. (10.16)

The first term on the right-hand side (rhs) of Eq. (10.15) is the pure box, that is, the
part that does not contain any propagator-like structures, whereas the second term
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Figure 10.3. The box and vertex diagrams that depend on the gauge-fixing param-
eter ξW .

is the propagator-like contribution that must be combined with the conventional
propagator graphs of Figure 10.4. To accomplish this, we employ Eq. (10.12) to
write the unphysical vertices VW��̄ and VWνν̄ in terms of the physical vertices, VA��̄,
VZ��̄, and VZνν̄ . Specifically, using that in our case T �

z = −1/2 and T ν
z = 1/2, we

have

CWα��̄ = −sw�Aα��̄ + cw�Zα��̄

CWανν̄ = −cw�Zανν̄ . (10.17)

Equation (10.17) determines unambiguously the parts that must be appended to
�ZαZβ

and �AαZβ
self-energies. To make this separation manifest, one must do the

extra step of writing dZ(q2)d−1
Z

(q2) = dA(q2)d−1
A (q2) = 1 to force the external tree-

level propagators to appear explicitly (see Figure 10.5). Thus, from the propagator-
like part of the box, we finally obtain

(a)AαZβ
= swcwq

2(q2 −M2
Z
)
(
λ2
W
I4kαkβ − 2λWI3gαβ

)
(a)ZαZβ

= −c2
w(q2 −M2

Z
)2
(
λ2
W
I4kαkβ − 2λWI3gαβ

)
. (10.18)
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Figure 10.4. The ξW -dependent diagrams contributing to �ZαZβ
and �ZαZβ

and
the corresponding diagrams in the BFM.

A similar procedure must be followed for the vertex graphs shown in Figure 10.3.
Then all propagator-like terms identified from the boxes and the vertex graphs
must be added to the conventional self-energy diagrams given in Figure 10.4.
At this point, it would be a matter of straightforward algebra to verify that all
ξW -dependent terms cancel; in doing that, Eq. (10.13) is useful. Of course, this
cancellation proceeds completely independently for the ZZ and AZ contributions.
Note that the inclusion of the tadpole graphs, namely, diagrams (r), (s), and (t)
of Figure 10.4, is crucial for the final cancellation of the gauge-fixing parameter-
dependent contributions that do not depend on q2. Exactly as happened in the QCD
case, the gauge-fixing parameter cancellations amount effectively to choosing the
Feynman gauge, ξW = ξZ = 1.

The next step is to consider the action of the remaining pinching momenta stemming
from the three-gauge-boson vertices inside the non-Abelian diagrams (b), (c), and
(d) of Figure 10.3, exposed after employing the standard PT decomposition of
Eqs. (1.41). The propagator-like contributions that will emerge from the action of
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ν

ν̄¯

pinch

¯

ν

ν̄

CWα
¯ CWανν̄ = −swΓAα

¯ −cwΓZβνν̄ cwΓZα
¯+

CWα
¯

¯

¯

ν

ν̄ ¯

CWανν̄

ν

ν̄

−cwΓZβνν̄

ν

ν̄

= −swΓAα
¯ dA dZ

¯

−cwΓZβνν̄

ν

ν̄

cwΓZα
¯ dZ dZ

¯

−cwΓZβνν̄

ν

ν̄

+

W+

W+

W−

W−

ZA

ZZ

dd−1

Figure 10.5. The procedure needed for splitting the propagator-like pieces coming
from the WW box among the different AZ and ZZ self-energies.

�P must then be reassigned to the conventional self-energy graphs, thus giving rise
to the one-loop PT self-energies, which in this case are �̂ZαZβ

and �̂AαZβ
. The part

of the vertex graph containing the �F, together with the Abelian graph which, in
the Feynman gauge, remains unchanged, constitutes the one-loop PT verticesAνν̄,
Zνν̄, and Z��̄, to be denoted by �̂Aνν̄ , �̂Zνν̄ , and �̂Z��̄, respectively.

The PT self-energies �̂ZαZβ
and �̂ZαZβ

are simply the sum of all propagator-like
contributions, namely,

�̂ZαZβ
(q) = �

(ξW=1)
ZαZβ

(q) + 4g2
wc

2
w(q2 −M2

Z)gαβIWW (q)

�̂AαZβ
(q) = �

(ξW=1)
AαZβ

(q) − 2g2
wswcw(2q2 −M2

Z)gαβIWW (q), (10.19)

with

IWW(q) =
∫
k

1

(k2 −M2
W

)[(k + q)2 −M2
W

]
. (10.20)

https://doi.org/10.1017/9781009402415 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415


10.2 The case of massless fermions 235

It is relatively straightforward to prove that the ξW -independent PT self-energies
given in Eqs. (10.19) coincide with their BFM counterparts computed at ξQW = 1. In
particular, notice that (1) in the BFM, there is no ÂW±φ∓ interaction, and therefore
graphs (k) and (l) of Figure 10.4 are absent in �ÂαẐβ

, and (2) diagram (̂u) of the

same figure, corresponding to the characteristic BFM four-field coupling V̂ V̂ uu,
has been generated dynamically from the simple rearrangement of terms.

With a small extra effort, we can now obtain the closed expressions for �̂ZαZβ

and �̂AαZβ
in terms of the Passarino–Veltman functions [4]. We will only focus

on the parts of the self-energies originating from Feynman graphs containing W

propagators, together with the associated Goldstone boson and ghosts. The contri-
butions coming from the rest of the diagrams (e.g., containing loops with fermions
or Z- and H -bosons) are common to the conventional and PT self-energies, i.e.,
�

(f̄ f )

AZ = �̂
(f̄ f )

AZ and �
(f̄ f )

ZZ = �̂
(f̄ f )

ZZ , and we do not report them here. Therefore, the
only Passarino–Veltman function that will appear is B0(q2,M2

W,M
2
W ).

To that end, one may use the closed expressions for �(ξW=1)
ZαZβ

and �
(ξW=1)
AαZβ

given
by Denner [5] and add to them the pinch terms given in Eqs. (10.19) and (10.20).
Using the identity iB0(q2,M2

W,M
2
W ) = 16π2 IWW (q), we finally obtain

�̂
(WW)
AZ (q2) = α

4π

1

3swcw

×
{[(

21c2
w + 1

2

)
q2 + (12c2

w − 2)M2
W

]
B0(q2,M2

W,M
2
W )

− (12c2
w − 2)M2

WB0(0,M2
W,M

2
W ) + 1

3
q2

}
�̂

(WW)
ZZ (q2) = − α

4π

1

6s2
wc

2
w

×
{[(

42c4
w + 2c2

w − 1

2

)
q2 + (24c4

w − 8c2
w − 10)M2

W

]
×B0(q2,M2

W,M
2
W ) − (24c4

w − 8c2
w + 2)M2

WB0(0,M2
W,M

2
W )

+ 1

3
(4c2

w − 1) q2

}
. (10.21)

Note that �̂
(WW )

AZ (0) = 0, exactly as happens for the corresponding subset of
fermionic corrections: evidently, as a result of the PT rearrangement, bosonic and
fermionic radiative corrections are treated on the same footing. This last property
is important for phenomenonogical applications, as, for example, the unambiguous
definition of the physical charge radius of the neutrinos (see Chapter 11).
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10.2.1 The unitary gauge

In the previous sections, we have applied the pinch technique in the framework of
the linear renormalizableRξ gauges, and we have obtained ξ -independent one-loop
self-energies for the gauge bosons. What would happen, however, if one were to
work directly in the unitary gauge? The unitary gauge is reached after gauging
away the would-be Goldstone bosons through an appropriate field redefinition
(which, at the same time, corresponds to a gauge transformation) φ(x) → φ′(x) =
φ(x) exp (−iζ (x)/v), where ζ (x) denotes generically the Goldstone fields. Note that
the unitary gauge is defined completely independently of the Rξ gauges; of course,
operationally, it is identical to the ξW, ξZ → ∞ limit of the latter. In particular, in the
unitary gauge, the W and Z propagators are given by Eq. (10.5), where i = W,Z.

Given that the contributions of unphysical scalars and ghosts cancel in this gauge,
the unitarity of the theory becomes manifest (hence its name). In the language
employed before, manifest unitarity means that the optical theorem (a direct conse-
quence of unitarity) holds in its strong version. The most immediate way to realize
this is by noticing that the unitary gauge propagators Eq. (10.5) and the expression
for the sum over the polarization vectors of a massive spin one vector boson (see
Eq. (10.26)) are practically identical.

Since the early days of spontaneously broken non-Abelian gauge theories, the uni-
tary gauge has been known to give rise to nonrenormalizable Green’s functions in
the sense that their divergent parts cannot be removed by the usual mass and field-
renormalization counterterms. It is easy to deduce from the tree-level expressions
of the gauge-boson propagators why this happens: the longitudinal contribution
in Eq. (10.5) is divided by a squared mass instead of a squared momentum, i.e.,
qμqν/M2

i instead of qμqν/q2, and therefore Ui
μν(q) ∼ 1 as q → ∞. As a con-

sequence, when Ui
μν(q) is inserted inside quantum loops (and q is the virtual

momentum that is being integrated over), it gives rise to highly divergent integrals.
If dimensional regularization is applied, this hard short-distance behavior manifests
itself in the occurrence of divergences proportional to high powers of q2. Thus, at
one loop, the divergent part of the W or Z self-energies proportional to gμν has the
general form

�div
WW (q2) = 1

ε
(c1q

6 + c2q
4 + c3q

2 + c4) , (10.22)

where the coefficients ci , of appropriate dimensionality, depend on the gauge cou-
pling and combinations of M2

W
and M2

Z
. The important point is that, whereas

the last two terms on the rhs of Eq. (10.22) can be absorbed into mass and
wave-function renormalization, as usual, the first two cannot be absorbed into
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a redefiniton of the parameters in the original Lagrangian because they are propor-
tional to q6 and q4.

As was shown in a series of papers [6, 7, 8], when one puts together the individual
Green’s functions to form S-matrix elements, an extensive cancellation of all
nonrenormalizable divergent terms takes place, and the resulting S-matrix element
can be rendered finite through the usual mass and gauge coupling renormalization.
Actually, in retrospect, this cancellation is nothing but another manifestation of
the pinch technique (of course, the papers mentioned predate the pinch technique).
Even though this situation may be considered acceptable from the practical point
of view, in the sense that S-matrix elements may still be computed consistently, the
inability to define renormalizable Green’s functions has always been a theoretical
shortcoming of the unitary gauge.

The actual demonstration of how to construct renormalizable Green’s functions
at one loop starting from the unitary gauge was given in [9]. The methodol-
ogy is identical to that used in the context of the Rξ gauges: the propagator-like
parts of vertices and boxes are identified and subsequently redistributed among
the various gauge-boson self-energies. Evidently, the pinch contributions them-
selves contain divergent terms proportional to q6 and q4, which, when added
to the analogous contributions contained in the conventional propagators, cancel
exactly. After this cancellation, the remaining terms reorganize themselves in such
a way as to give rise exactly to the unique PT gauge-boson self-energies, viz.
Eqs. (10.21).

10.2.2 Absorptive construction in the electroweak sector

We will now study with an explicit example how the PT subamplitudes of the
electroweak theory satisfy the strong version of the optical theorem [10, 11].
As in the case of QCD, the fundamental reason for this may be traced back to a
characteristic s-t cancellation operating also in the presence of tree-level symmetry
breaking.

Consider the process f (p1)f̄ (p2)→W+(k1)W−(k2), with q = p1 + p2 = k1 +
k2 and s = q2 = (p1 + p2)2 = (k1 + k2)2 > 4M2

W . The corresponding tree-level
amplitude, T μν , is given by two s-channel graphs, one mediated by a photon and
the other by a Z-boson, to be denoted by T μν

A and T μν

Z , respectively, and one
t-channel graph, to be denoted by T μν

t , i.e. (see also Figure 10.6),

T μν = T μν

s,A + T μν

s,Z + T μν
t , (10.23)
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Figure 10.6. The fundamental s-t cancellation for the process f (p1)f̄ (p2) →
W+(k1)W−(k2).

where

T μν

s,A = −VAαf f̄ dA(q2)gwsw�
μν
α (q, k1, k2),

T μν

s,Z = VZαf f̄ dZ(q2)gwcw�
μν
α (q, k1, k2),

T μν
t = −g2

w

2
v̄f (p2)γ μPL S

(0)
f ′ (p1 − k1)γ νPLuf (p1). (10.24)

Note that we have already used current conservation to eliminate the (gauge-
fixing parameter-dependent) longitudinal parts of the tree-level photon andZ-boson
propagators. Then,

M = [TA + TZ + Tt ]μν Lμμ′(k1)Lνν ′(k2)
[
T ∗
A + T ∗

Z + T ∗
t

]μ′ν ′
, (10.25)

where the polarization tensor Lμν(k) corresponds to a massive gauge boson,
that is,

Lμν(k) =
3∑

λ=1

ελμ(k)ελν (k) = −gμν + kμkν

M2
W

. (10.26)

On shell (k2 = M2
W

), we have that kμLμν(k) = 0. Therefore, as in the QCD case,
when the two non-Abelian vertices are decomposed as in Eq. (1.41), the �P parts
vanish, and only the �F parts contribute in the s-channel graphs; we denote them
by T μν

A,F and T μν

Z,F, respectively.

Let us then study what happens when Tμν is contracted by a longitudinal momen-
tum, kμ1 or kν2 , coming from the polarization tensors. Employing the appropriate
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tree-level Ward identities, we obtain

k1μT μν

A,F = −swVAνf f̄ + Sν
A,

k1μT μν

Z,F = cwVZνf f̄ + Sν
Z,

k1μT μν
t = VWνf f̄ , (10.27)

with

Sν
A = −VAαf f̄ dA(q2)gwsw(k1 − k2)αk

ν
2

Sν
Z = VZαf f̄ dZ(q2)gwcw

[
(k1 − k2)αk

ν
2 −M2

Z
gαν

]
. (10.28)

Adding by parts both sides of Eq. (10.27), we see that a major cancellation takes
place: the pieces containing the vertices VAνf f̄ and VZνf f̄ cancel against VWνf f̄ by
virtue of Eq. (10.17), and one is left on the rhs with a purely s-channel contribution,
namely,

k1μT μν = Sν
A + Sν

Z. (10.29)

An exactly analogous cancellation takes place when one contracts with kν2 .

After the implementation of the preceding cancellations, we can isolate, e.g., the
part of the squared amplitude that is purely s-channel–mediated by a Z-boson, to
be denoted by M̂ZZ. It is composed of the sum of the following terms:

M̂ZZ = T F
Z · T F∗

Z − 2
SZ · S∗

Z

M2
W

+ (k2 · SZ) · (k2 · S∗
Z)

M4
W

. (10.30)

After elementary algebra, we find

M̂ZZ = VZαf f̄ dZ(q2)Kαβ

ZZdZ(q2)VZβf,f̄ , (10.31)

with

K
αβ

ZZ = −g2
w

c2
w

[(
8q2c4

w − 2M2
W

)
gαβ +

(
3c4

w − c2
w + 1

4

)
(k1 − k2)α(k1 − k2)β

]
.

(10.32)

We must then integrate this last expression over the available phase space and
isolate its coefficient proportional to gαβ , to be denoted by KZZ. Then, if the
optical theorem holds at the level of the �̂(WW )

ZZ (q), we should have

2
m�̂(WW )

ZZ (q) = KZZ, (10.33)

where the left-hand side (lhs) of Eq. (10.33) must be obtained from Eq. (10.21) by
taking its imaginary part.
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Using for the lhs the elementary result


mB0(q2,M2
W,M

2
W ) = 8π2

∫
PSWW

, (10.34)

with
∫

PSWW
the two W s phase space integral (see Section 1.7.2), and for the rhs that∫

PSWW

(k1 − k2)α(k1 − k2)β = −1

3
(q2 − 4M2

W )gαβ
∫

PSWW

, (10.35)

it is easy to verify that Eq. (10.33) is indeed satisfied.

At this point, one could go a step further and employ a twice-subtracted dispersion
relation to reconstruct the real part of �̂(WW )

ZZ (q). The end result of this procedure
will coincide with the corresponding expression obtained from Eq. (10.21) after
appropriate renormalization (for a detailed derivation, see [11]).

Finally, we return to the nonrenormalizability of the unitary gauges, now seen
from the absorptive point of view. As mentioned in the previous subsection, in the
unitary gauge, the strong version of the optical theorem is satisfied; in relation to
this section, what this means is that the optical theorem is satisfied diagram by
diagram, without having to resort explicitly to the s-t cancellation. For example,
the imaginary part of the conventional self-energy �(WW )

ZZ (s) in the unitary gauge is
given by


m�(WW )

ZZ (s) ∼ (s −MZ)2
∫

PSWW

T μν

Z Lμμ′(k1)Lνν ′(k2)T ∗μ′ν ′
Z . (10.36)

What is the price one pays for not implementing explicitly the s-t cancellation?
Simply, the conventional subamplitudes, such as the one given earlier, contain
terms that grow as s2 or as s3 (see, e.g., [11, 12]); indeed, the s-t cancellation
eliminates precisely terms of this type. Consequently, if one were to substitute the

m�(WW )

ZZ (s) obtained from the rhs of Eq. (10.36) into a twice-subtracted dispersion
relation – the maximum number of subtractions allowed by renormalizability –
ultraviolet divergent real parts proportional to q4 or q6 would be encountered. Of
course, these are precisely the nonrenormalizable terms encountered in Eq. (10.22),
now obtained not from a direct one-loop calculation but rather from the combined
use of unitarity and analyticity.

10.2.3 Background field method away from ξQ = 1:
physical versus unphysical thresholds

As mentioned already, the fact that the BFM Green’s functions satisfy the same
QED-like Ward identities for every value of the quantum gauge-fixing parameter
ξQ does not mean that the PT Green’s functions, reproduced from the background
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field method at ξQ = 1, are simply some among an infinity of physically equivalent
choices, parametrized by ξQ. This interpretation is not correct: the BFM Green’s
functions obtained away from ξQ = 1 are not physically equivalent to the privi-
leged case of ξQ = 1. The following basic observation clarifies this point beyond
any doubt: for ξQ = 1, the imaginary parts of the BFM electroweak self-energies
include terms with unphysical thresholds [11, 10]. For example, for the one-loop
contributions of the W and its associated would-be Goldstone boson and ghost to
�̃

(WW )

ZZ (ξQ, s), one obtains


m�̃(WW )

ZZ (s, ξQ) = 
m�̂(WW )

ZZ (s) + α

24s2
wc

2
w

(
s −M2

Z

sM4
Z

)
× [

W1(s) +W2(s, ξQ) +W3(s, ξQ)
]
, (10.37)

with

W1(s) = f1(s)θ (s − 4M2
W

)

W2(s, ξQ) = f2(s, ξQ)λ1/2(s, ξQM
2
W
, ξQM

2
W

)θ (s − 4ξQM
2
W

)

W3(s, ξQ) = f3(s, ξQ)λ1/2(s,M2
W
, ξQM

2
W

)θ (s −M2
W

(1 + √
ξQ)2), (10.38)

where λ(x, y, z) = (x − y − z)2 − 4yz and

f1(s) = (
8M2

W
+ s

) (
M2

Z
+ s

) + 4M2
W

(
4M2

W
+ 3M2

Z
+ 2s

)
f2(s, ξQ) = f1(s) − 4

(
ξQ − 1

)
M2

W

(
4M2

W
+M2

Z
+ s

)
f3(s, ξQ) = −2

[
8M2

W
+ s − 2

(
ξQ − 1

)
M2

W
+ (

ξQ − 1
)2 M

4
W

s

] (
M2

Z
+ s

)
.

(10.39)

These gauge-dependent unphysical thresholds (see the arguments of the θ func-
tions) are artifacts of the BFM gauge-fixing procedure; in the calculation of any
physical process, they cancel exactly against unphysical contributions from the
imaginary parts of the one-loop vertices and boxes. After these cancellations have
been implemented, one is left just with the contribution proportional to the tree-level
cross section for the on-shell physical process f f̄ → W+W−, with thresholds only
at q2 = 4M2

W
. In fact, by obtaining in the previous subsection the full W -related

contribution to the PT self-energy, namely, �̂(ZZ)
WW (s), directly from the on-shell

physical process f f̄ → W+W−, we have shown explicitly that in the background
field method at ξQ = 1, the thresholds that occur at q2 = 4M2

W
are due solely to

the physical W+W− pair. We therefore conclude that the particular value ξQ = 1
in the background field method is distinguished on physical grounds from all other
values of ξQ.
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10.3 Nonconserved currents and Ward identities

We now discuss some important issues related to the application of the pinch
technique when the fermions are massive, as discussed in Section 2.2.5. Consider
the elastic process e−(r1)νe(p1) → e−(p2)νe(r2), and concentrate on the charged
channel, which, at tree level, is shown in Figure 10.7. The momentum transfer q is
defined as q = p1 − p2 = r2 − r1, and we will consider the electrons to be massive,
with a mass me, whereas the neutrinos will be treated for simplicity as massless.
The tree-level propagators of the W and the corresponding Goldstone boson are
those given in Eq. (10.1) and Eq. (10.3) (for i = W ); the indexW will be suppressed
in what follows. The elementary vertices describing the coupling of the charged
bosons with the external fermions are �α ≡ �W+

α ν̄ee
= �W−

α ēνe
, �+ ≡ �φ+ν̄ee, and

�− ≡ �φ−ēνe and are given by

�α = igw√
2
γαPL; �+(−) = − igw√

2

me

MW

PR(L). (10.40)

When sandwiched between the external spinors, they are denoted by �α
1 =

ūνe (r2)�αue(r1), �α
2 = ūe(p2)�α uνe (p1), �1 = ūνe (r2)�+ ue(r1), and �2 =

ūe(p2)�− uνe (p1). The elementary identities

qα�
α
1,2 = MW�1,2

i�1,2 = MWq
ββα(q)�α

1,2 + q2D(q)�1,2, (10.41)

valid for every ξ , are also useful.

We will start by considering the S-matrix at tree level (Figure 10.7), to be denoted
by T0:

T0 = �α
1 αβ(q)�β

2 + �1 D(q)�2 . (10.42)

Of course, T0 must be ξ independent, and it is easy to demonstrate that this is
indeed so. Using Eqs. (10.4) and (10.41), it is elementary to verify that T0 can be
written as

T0 = �α
1Uαβ(q)�β

2 . (10.43)

Thus, even though one works in the Rξ gauge, making no assumption on the value
of ξ (in particular, not taking the limit ξ → ∞), one is led effectively to the unitary
gauge, with no (unphysical) would-be Goldstone bosons present.

There is an alternative way of writing T0 that makes manifest the role of the massless
Goldstone bosons. It is well known that the Ward identities (or Slavnov–Taylor
identities) in theories with spontaneous symmetry breaking maintain the same form
as in the unbroken theory at the expense of introducing massless longitudinal poles.
The role of these massless poles is obscured because, through the process of gauge
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Figure 10.7. The process eνe → eνe at tree level in the standard model.

fixing, they can be changed to poles of arbitrary mass (as explained earlier). These
massless poles do not appear in the S-matrix to the extent that they are absorbed
by gauge bosons. However, simple algebra can recast the tree-level amplitude into
a form in which the presence of the massless poles becomes manifest. Specifically,
using the algebraic identity

1

M2
= 1

q2
+ q2 −M2

q2M2
, (10.44)

we can write Uαβ(q) as

Uαβ(q) = Pαβ(q)dW (q2) + qαqβ

M2
W

i

q2
, (10.45)

where we have used the transverse projector Pαβ(q) defined in Eq. (1.26). Then
Eq. (10.43) can be rewritten as

T0 = �α
1Pαβ(q)dW (q2)�β

2 + �1
i

q2
�2. (10.46)

It turns out that the PT rearrangement of the physical amplitude allows the gen-
eralization of Eq. (10.43) and Eq. (10.46) to higher orders. To see how this hap-
pens, assume that the PT procedure has been carried out as usual (with the addi-
tional operational complications mentioned earlier), giving rise to the gauge-fixing
parameter-independent self-energies �WαWβ

, �Wαφ , �φWβ
, and �φφ , to be denoted

by �̂αβ , "̂α, "̂β , and �̂, respectively (Figure 10.8). During this construction,
it becomes clear that the cancellations of the gauge-fixing parameter-dependent
loop contributions proceed without interfering with the the gauge-fixing param-
eter dependence of the tree-level propagators connecting the one-loop graphs to
the external fermions. Of course, any residual gauge-fixing parameter dependence
coming from these tree-level propagators (see Eqs. (10.1) and (10.3)) must also
cancel to obtain fully gauge-fixing parameter-independent subamplitudes T̂1 and T̂2

(T̂3, being boxlike, does not have external propagators and is already fully gauge-
fixing parameter independent). It turns out that, quite remarkably, the requirement
of this final gauge-fixing parameter cancellation imposes a set of nontrivial Ward
identities on the one-loop PT self-energies and vertices [1, 3].
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Figure 10.8. The ξ -independent PT self-energies (grey blobs); the tree-level prop-
agators are still ξ -dependent. Requiring that any gauge-fixing parameter depen-
dence coming from these tree-level propagators must cancel imposes a set of
non-trivial Ward identities on the one-loop PT self-energies (and vertices).

We see how the Ward identities for the self-energies are derived from the require-
ment of the full gauge-fixing parameter independence of T̂1. Neglecting tadpole
contributions, we have that T̂1 is given by

T̂1 = �
μ

1 μα(q)�̂αβ(q)βν(q)�ν
2 + �1D(q) �̂(q)D(q)�2

+�
μ

1 μα(q)"̂α(q)D(q)�2 + �1D(q)"̂β(q)βν(q)�ν
2 , (10.47)

or, after using Eq. (10.4),

T̂1 = �
μ

1

[
Uμα(q) − qμqα

M2
W

D(q)

]
�̂αβ(q)

[
Uβν(q) − qβqν

M2
W

D(q)

]
�ν

2

+�
μ

1

[
Uμα(q) − qμqα

M2
W

D(q)

]
"̂α(q)D(q)�2

+�1D(q) "̂
β
(q)

[
Uβν(q) − qβqν

M2
W

D(q)

]
�ν

2 + �1D(q)�̂(q)D(q)�2.

(10.48)

This way of writing T̂1 has the advantage of isolating all residual ξ dependence
inside the propagators D(q). Demanding that T̂1 be ξ independent, we obtain as a
condition for the cancellation of the quadratic terms in D(q)

qβqα�̂αβ(q) − 2MWq
α"̂α(q) +M2

W
�̂(q) = 0, (10.49)
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whereas for the cancellation of the linear terms, we must have

qα�̂αβ(q) −MW"̂β(q) = 0. (10.50)

From Eqs. (10.49) and (10.50), it follows that

qβqα�̂αβ(q) = M2
W
�̂(q) (10.51)

qα"̂α(q) = MW�̂(q). (10.52)

Equations (10.49) and (10.52) are the announced Ward identities. To be sure, they
are identical to those obtained formally within the background field method but
are derived through a procedure that has no apparent connection with the latter;
indeed, all that one evokes is the full gauge-fixing parameter independence of the
S-matrix. Applying an identical procedure for T̂2, one obtains the corresponding
Ward identity relating the higher-order PT vertices �̂α and �̂±.

Finally, the gauge-fixing parameter–independent T̂1 is given by

T̂1 = �
μ

1 Uμα(q) �̂αβ(q)Uβν(q)�ν
2 . (10.53)

Notice that Eq. (10.53) is the higher-order generalization of Eq. (10.43).

We can now use the Ward identities derived previously to reformulate the S-matrix
in a very particular way; specifically, we will show that the higher-order physical
amplitude given earlier may be cast in the tree-level form of Eq. (10.46). Such a
reformulation gives rise to a new transverse gauge-fixing parameter-independent
W self-energy �̂t

αβ with a gauge-fixing parameter-independent longitudinal part,
exactly as in Eq. (10.46). Of course, the cost of such a reformulation is the appear-
ance of massless Goldstone poles in our expressions. However, inasmuch as both
the old and new quantities originate from the same unique S-matrix, all poles intro-
duced by this reformulation will cancel against each other because the S-matrix
contains no massless poles to begin with.

To see how this works out, write "̂α in the form

"̂α(q) = qα"̂(q) ; (10.54)

from Eq. (10.52), it follows that

"̂(q) = MW

q2
�̂(q). (10.55)

Then we can define �̂t
αβ(q) in terms of �̂αβ(q) and "̂(q) as follows:

�̂t
αβ(q) = �̂αβ(q) − qαqβ

q2
MW"̂(q). (10.56)
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Evidently �̂t
αβ(q) is transverse, e.g., qα�̂t

αβ(q) = qβ�̂t
αβ(q) = 0. Moreover, using

Eqs. (10.50) and (10.55),

�̂t
αβ(q) = Pαμ(q)�̂μν(q)Pβν(q). (10.57)

We may now reexpress T̂1 of Eq. (10.53) in terms of �̂t
αβ and �̂; using Eq. (10.45)

and (10.41), we have

T̂1 = �α
1 dW (q2)�̂t

αβ(q)dW (q2)�β

2 + �1
i

q2
�̂(q)

i

q2
�2. (10.58)

Equation (10.58) is the generalization of Eq. (10.46): T̂1 is the sum of two self-
energies, one corresponding to a transverse massive vector field and one to a
massless Goldstone boson. It is interesting to notice that the preceding rearrange-
ments have removed the mixing terms "̂α and "̂β betweenW and φ, thus leading to
the generalization of the well-known tree-level property of the Rξ gauges to higher
orders. It is important to emphasize again that the massless poles in the preceding
expressions would not have appeared had we not insisted on the transversality of
theW self-energy (or the vertex); notice in particular that they are not related to any
particular gauge choice, such as the Landau gauge (ξ = 0). A completely analogous
procedure may be followed for the one-loop (and beyond) vertex [1], yielding the
corresponding Abelian-like Ward identity; as in the case of the self-energy studied
earlier, the Ward identity of the vertex is realized by means of massless Goldstone
bosons.

10.4 The all-order construction

The all-order extension of the pinch technique in theories with spontaneous sym-
metry breaking can be achieved by resorting to the same algorithm described in
Chapter 3 for QCD; however, now the construction is significantly more involved.
First, depending on the nature of the line carrying the physical momentum q, there
are four vertices to be constructed: two for the gauge-boson sector (charged (W±)
and neutral (A,Z)) and, as described in Section 10.1, two for the scalar sector
(charged (φ±) and neutral (χ,H )). In addition, the BRST symmetry, and therefore
the Slavnov–Taylor identities, are now realized through Goldstone bosons; thus the
different identities one needs to derive will have a richer structure than that shown
in the QCD case (Eq. (3.5)). Finally, the comparison of the PT Green’s functions
with those of the background Feynman gauge is more laborious because of the
proliferation of couplings, e.g., tri- and quadrilinear mixed gauge-boson–scalar
vertices.
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Figure 10.9. The subset of all the diagrams that contribute to the vertex �χf f̄ (in
the Rξ gauge) and receive the action of pinching momenta. Here 
 and 
′ denote
all fields allowed by the different couplings. The ellipses represent all remaining
graphs, where pinching cannot take place. Finally, Bose-symmetric terms are not
shown.

We illustrate some of the preceding points through a specific example, namely,
the construction of the vertex �̂χf f̄ . This case is particularly instructive because it
exposes a new type of PT-driven cancellation not encountered so far in the book.

As usual, we choose the Feynman gauge as our starting point, thus receiving
pinching momenta only from the tree-level vertices. Figure 10.9 shows all the
graphs that must be contracted by the longitudinal momentum contained in the
term �P

α(q, k1, k2). We will concentrate only on diagram (a), which is proportional
to a tree-level�(0)

χφ+W−
α

vertex. Diagram (b), proportional to�(0)
χW+

α φ
− , will give rise to

very similar structures, whereas diagram (c), proportional to �(0)
χHZα

, does not mix
with the previous two, and the corresponding analysis can be carried out separately.

The pinching part of diagram (a) reads

(a)P = gw

2

∫
kα2

[
Tφ+W−

α
(k1, k2)

]
t,I
, (10.59)

where Tφ+W−
α

represents the amplitude φ+W−
α → f f̄ , where the fermions are taken

to be on shell. Then, similar to the QCD case, the pinching action amounts to the
replacement

kα2
[
Tφ+W−

α

]
t,I

→ [
kα2 Tφ+W−

α

]PT
t,I

= [
Sφ+W−

]
t,I
. (10.60)

In this case, the (on-shell) Slavnov–Taylor identity gives [13]

Sφ+W−(k1, k2) = MWDc(k1)Dc(k2)Gc̄+c−(k1, k2)

−MWDW (k1)DW (k2)Gφ+φ−(k1, k2)

+ gw

2
Dc(k2)

[
iQ{χc+}c+(k1, k2) + Q{Hc+}c+(k1, k2)

]
− gwswDc(k2)Q{φ+cA}c+(k1, k2)

+ gw
c2
w − s2

w

2cw
Dc(k2)Q{φ+cZ}c+(k1, k2), (10.61)

https://doi.org/10.1017/9781009402415 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415


248 The pinch technique for electroweak theory

where Dc is the propagator of the ghosts associated with the W -bosons. The func-
tions G and Q are shown in Figure 3.4; their subindices denote the corresponding
particle content, and curly brackets enclose fields evaluated at the same space-time
point. Adding the preceding contribution (and the ones not explicitly considered
here) to the remaining PT-inert diagrams furnishes the PT vertex �̂χf f̄ .

One can next compare �̂χf f̄ with the background Feynman gauge vertex �χ̂f f̄ .
First, it is fairly straightforward to show that the last three terms in Eq. (10.61)
will generate the needed ghost-scalar quadrilinear couplings (χ̂H c̄−c+, χ̂χ c̄−c+,
χ̂φ+c̄−cA, and χ̂φ+c̄−cZ).

The remaining PT terms must be appropriately combined with some of the other
Rξ diagrams contributing to �χf f̄ . Consider first the trilinear scalar-ghost sector. In
the Rξ gauge, it reads

− gw

2
MW

∫
k2

Dc(k1)Dc(k2) [Gc̄+c−]t,I , (10.62)

and cancels precisely against the corresponding PT term (first term in Eq. (10.61)).
This is the new type of PT cancellation mentioned earlier: within the PT, the
absence of tree level coupling between a background field χ̂ and two ghosts (see,
e.g., Denner et al. [14]) is obtained dynamically. Similarly, had we chosen to
construct the PT Higgs-fermion vertex �̂Hf f̄ instead, these two terms would have
added up, furnishing the correct background Higgs-ghost coupling.

Finally, consider the scalar-scalar trilinear sector. The second term in Eq. (10.61)
gives a contribution to an effective PT vertex of the type χφ+φ−. A similar contri-
bution is generated from Figure 10.9(b), whose pinching action is proportional to
[kα1 TW+

α φ
−(k1, k2)]t,I = [SW+φ−]t,I . It turns out that these two contributions exactly

cancel out in accordance with the absence of the (tree-level) couplings χφ+φ−

and χ̂φ+φ−. Once again, when constructing the Higgs vertex �̂Hf f̄ , the two con-
tributions would add up, thus providing the correct BFM coupling Ĥφ+φ− when
summed with the corresponding Rξ diagram. All remaining diagrams are identical
to those of the background Feynman gauge because of the equality of the corre-
sponding tree-level couplings. This concludes our (partial) proof of the equality
�̂χf f̄ = �χ̂f f̄ .
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11

Other applications of the pinch technique

11.1 Introduction

The pinch technique (PT) makes it possible to understand many questions in a
variety of gauge theories gauge invariantly, as we have already seen for QCD in
Chapters 7, 8, and 9 and for the electroweak sector of the standard model (SM)
theory in Chapter 10. This chapter goes into more detail on some physical questions
in electroweak theory and thermal NAGTs1 that were difficult to interpret in the
conventional framework of Feynman graphs and sometimes resulted in unfounded
attempts to find physical properties in gauge-dependent calculations. Different
authors used different gauges and got different results, sometimes not even agreeing
on the sign. The pinch technique has resolved these issues. We also mention
some interesting results for NAGTs embedded in supersymmetric theories, where
the pinch technique confirms a number of supersymmetry nonrenormalization
relations among the contributions of scalars and fermions to the PT three-gluon
vertex, already discussed in Chapter 2. At the level of off-shell Green’s functions,
these relations hold only for the pinch technique and not for the conventional
gauge-dependent Green’s functions.

In this chapter, we cover the following subjects: (1) non-Abelian effective charges,
(2) physical renormalization schemes versus MS, (3) non-Abelian off-shell form
factors, (4) the neutrino charge radius, (5) making gauge-particle resonance widths
gauge invariant, (6) finite-temperature NAGTs, and (7) hints of supersymmetry in
the PT Green’s functions.

11.2 Non-Abelian effective charges

The extension of the concept of the effective charge from QED to non-Abelian
gauge theories is, as the reader has already appreciated in Chapter 6, of

1 The three-dimensional NAGTs of Chapter 9 carry the nonperturbative infrared singularities of finite-temperature
gauge theories in four dimensions.
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fundamental interest. This concept is even more important in theories involv-
ing unstable particles – for example, in the SM electroweak sector or disparate
energy scales (e.g., grand unified theories). In the former, the Dyson summation
of (appropriately defined) self-energies is needed to regulate the kinematic singu-
larities of the corresponding tree-level propagators in the vicinity of resonances.
In the latter, instead, the extraction of accurate low-energy predictions requires an
exact treatment of threshold effects due to heavy particles: the construction of an
effective charge, valid for all momenta and not just the asymptotic regime governed
by the β function, constitutes the natural way to account for such threshold effects.
As we know from Chapter 6, because the pinch technique cures the problem of
the gauge-fixing parameter dependence of the conventionally defined gauge-boson
self-energies, it is an ideal tool for the definition of physical effective charges in
NAGTs.

11.2.1 Electroweak effective charges

In the electroweak sector of the SM, the various PT self-energies organize them-
selves into appropriate renormalization group (RG)-invariant combinations, essen-
tially for the same fundamental reasons as in QCD [1]. The effective weak mixing
angle s̄2

w(q2) corresponds to the RG-invariant combination

s̄2
w(q2) = (s0

w)2

[
1 −

(
c0
w

s0
w

)
�̂0

AZ(q2)

q2 + �̂0
AA(q2)

]
= s2

w

[
1 −

(
cw

sw

)
�̂AZ(q2)

q2 + �̂AA(q2)

]
.

(11.1)

Using the fact that �̂AZ(0) = 0, we may write �̂AZ(q2) = q2�̂AZ(q2); then, at the
one-loop level, s̄2

w(q2) reduces to

s̄2
w(q2) = s2

w

[
1 −

(
cw

sw

)
�̂AZ(q2)

]
. (11.2)

Evidently, s̄2
w(q2) constitutes a universal modification to the effective vertex of the

charged fermion.

Similarly, one may demonstrate that the combinations

g2
ŵWW (q2);

g2
w

c2
w

̂ZZ(q2);
g2
w

M2
W

̂H (q2), (11.3)

are RG-invariant. The analog of Eq. (6.53) may be defined for the first two
combinations. Specifically, retaining only the real parts of the corresponding
self-energies, and casting �e�̂(q2)ii in the form �e�̂ii(q2) = �e�̂ii(M2

i ) +
(q2 − M2

i )�e�̂ii(M2
i ), and then pulling out a common factor (q2 −M2

i ), we
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obtain

αw,eff(q
2) = αw

1 + �e�̂WW (q2)
; αz,eff(q

2) = αz

1 + �e�̂ZZ(q2)
, (11.4)

where, as with �̂AZ, we factor out a mass-shell factor

�̂ii(q
2) = �̂ii(q2) − �̂ii(M2

i )

q2 −M2
i

, i = W,Z, (11.5)

and αw = g2
w/4π and αz = αw/c

2
w.

Interestingly enough, the third RG-invariant combination in Eq. (11.3) leads to the
concept of the Higgs boson effective charge [1]: the SM Higgs boson H couples
universally to matter with an effective charge inversely proportional to its VEV.

11.2.2 Relation to physical cross sections

We consider the QED effective charge introduced in Chapter 6. This quantity
displays a nontrivial dependence on the fermion masses mf , which allows its
reconstruction from physical amplitudes by resorting to the optical theorem and
analyticity (i.e., dispersion relations). Given a particular contribution to the photon
spectral function 
m�(s), the corresponding contribution to �(q2) can be recon-
structed via a once-subtracted dispersion relation (see, e.g., de Rafael [2]). For
example, for the one-loop contribution of the fermion f , choosing the on-shell
renormalization scheme,

�f f̄ (q2) = 1

π
q2

∫ ∞

4m2
f

ds

m�f f̄ (s)

s(s − q2)
. (11.6)

For f = e, 
m�f f̄ (s) is measured directly in the tree-level cross section for
e+e− → f +f −. Forf = e, it is necessary to isolate the self-energy-like component
of the tree-level Bhabha cross section. This is indeed possible because the self-
energy-, vertex, and boxlike components of the Bhabha differential cross section
are linearly independent functions of cos θ ; they may therefore be projected out by
convoluting the differential cross section with appropriately chosen polynomials in
cos θ . Thus, in QED, knowledge of the spectral function 
m�f f̄ (s), determined
from the tree-level e+e− → f +f − cross sections, together with a measurement
of the fine structure constant α, enables the construction of the one-loop effective
charge αeff(q2) for all q2.

Keeping the QED example in mind, let us now turn to the case of the PT electroweak
effective charges and study the procedure that would allow, at least in principle,
the extraction of αz,eff(q2) from experiment [3]. In general, the renormalization of
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Figure 11.1. The relation between the imaginary parts of the subset of the
W -related one-loop corrections to e+e− → e+e− and the tree-level process
e+e− → W+W−.

�̂ZZ requires two subtractions: for mass and field renormalization. If we denote the
subtraction point by s0, then the twice-subtracted dispersion relation corresponding
to the renormalized W+W− contributions reads

�̂
(WW )

ZZ (q2) = 1

π
(q2 − s0)2

∫ ∞

4M2
W

ds

m�̂(WW )

ZZ (s)

(s − q2)(s − s0)2
. (11.7)

The property instrumental for the observability of αz,eff(q2) is that, in contrast to
the conventional gauge-dependent self-energies, the absorptive parts of the PT self-
energies appearing on the right-hand side (rhs) of Eq. (11.7) are directly related to
components of the physical cross section e+e− → W+W− that are experimentally
observable (see Figure 11.1). Indeed, as we have already seen in Chapter 10, the
characteristic s-t cancellation, triggered by the longitudinal momenta of the on-
shell polarization tensors, rearranges the tree-level cross section e+e− → W+W−

into subamplitudes, which, through the use of the optical theorem, can be con-
nected unambiguously with the absorptive parts of the one-loop PT Green’s
functions.
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To simplify the algebra without compromising the principle, let us consider the limit
of e+e− → W+W− when the electroweak mixing angle vanishes: s2

w = 0. In this
limit, all photon-related contributions are switched off, and the two massive gauge
bosons become degenerate (MZ = MW ≡ M). Let us denote by θ the center-of-
mass scattering angle and set x = cos θ , β =

√
1 − 4M2/s, and z = (1 + β2)/2β.

Then it is relatively straightforward to show that the differential tree-level cross
section for e+e− → W+W− can be cast in the form [3]

(z − x)2

(
dσ

dx

)
sw=0

= g4

64π

sβ

(s −M2)2
θ (s − 4M2)

5∑
i=1

Ai(s)Fi(s, x), (11.8)

where the Fi(s, x), i = 1, 2 . . . 5, are linearly independent polynomials in x of
maximum degree 4. The coefficients A1(s) and A2(s) contribute only to the self-
energy-like component of the cross section, being related to 
m�̂

(WW )

ZZ (s) by


m�̂
(WW )

ZZ (s)
∣∣
sw=0 = g2

4π
βs

(
A1(s) + 1

3
A2(s)

)
. (11.9)

To project the functionsAi(s), we construct a further set of five polynomials F̃i(s, x)
satisfying the orthogonality conditions∫ 1

−1
dx Fi(s, x)F̃j (s, x) = δij . (11.10)

The coefficient functions Ai(s) may then be projected from the observable formed
by taking the product of the differential cross section with the kinematic factor
(z − x)2: ∫ 1

−1
dx F̃i(s, x) (z − x)2

(
dσ

dx

)
sw=0

= g4

64π

sβ

(s −M2)2
Ai(s). (11.11)

Thus it is possible to extract 
m�̂
(WW )

ZZ (s)|sw=0 directly from dσ (e+e− →
W+W−)/dx|sw=0.

Of course, to use the dispersion relation of Eq. (11.7) to compute �̂
(WW )

ZZ (q2),
one needs to integrate the spectral density 
m�̂

(WW )

ZZ (s) over a large number of
values of s. This in turn means that one needs experimental data for the process
e+e− → W+W− for a variety of center-of-mass energies s, and for each value of s,
one must repeat the procedure described earlier. Regardless of whatever practical
difficulties this might entail, it does not constitute a problem of principle. Finally,
the general case with s2

w = 0 requires, in addition, the observation of spin density
matrices [4]; though technically more involved, the procedure is in principle the
same.
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11.3 Physical renormalization schemes versus MS

It is no secret that the popular renormalization schemes, such as MS and DR,
convenient as they may be for formal manipulations, are plagued with persistent
threshold and matching errors. The origin of these errors can be understood by
noting that the aforementioned (unphysical) schemes implicitly integrate out all
masses heavier than the physical energy scale until they are crossed, and then they
turn them back on abruptly by means of a step function. Integrating out heavy
fields, however, is only valid for energies well below their masses. This procedure
is conceptually problematic because it does not correctly incorporate the finite
probability that the uncertainty principle gives for a particle to be pair produced
below threshold [5]. In addition, complicated matching conditions must be applied
when crossing thresholds to maintain consistency for such desert scenarios. In
principle, these schemes are only valid for theories in which all particles have zero
or infinite mass or if one knows the full field content of the underlying physical
theory.

Instead, in the physical renormalization scheme defined with the pinch technique,
gauge couplings are defined directly in terms of physical observables, namely, the
effective charges. The latter run smoothly over spacelike momenta and have non-
analytic behavior only at the expected physical thresholds for timelike momenta; as
a result, the thresholds associated with heavy particles are treated with their correct
analytic dependence. In particular, particles will contribute to physical predictions
even at energies below their threshold [5].

Historically, the gauge-invariant parametrization of physics offered by the pinch
technique has been first systematized by Hagiwara et al. [6] and has led to an
alternative framework for confronting the precision electroweak data with theo-
retical predictions. This approach resorts to the pinch technique to separate the
one-loop corrections into gauge-fixing, parameter-independent universal (process
independent) and process-specific pieces; the former are parametrized using the PT
effective charges αeff(q2), s̄2

w(q2), αw,eff(q2), and αz,eff(q2), defined earlier. There
is a total of nine electroweak parameters that must be determined in this approach:
the eight universal parameters MW , MZ, αeff(0), s̄2

w(0), αw,eff(0), αz,eff(0), s̄2
w(M2

Z),
and αz,eff(M2

Z) and one process-dependent parameter δb(M2
Z), related to the form

factor of the Zb̄LbL vertex.

Reference [6] explains in detail the advantage of their approach over the MS
scheme. In particular, they emphasize that the nondecoupling nature of the MS
forces one to adopt an effective field theory approach in which the heavy particles
are integrated out of the action. The couplings of the effective theories are then
related to each other by matching conditions ensuring that all effective theories
give identical results at zero momentum transfer because the effects of heavy
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particles in the effective light field theory must be proportional to q2/M2, where
M is the heavy mass scale. This procedure, however, is not only impractical in the
presence of many quark and lepton mass scales but introduces errors because of the
mistreatment of the threshold effects. In addition, direct use of the MS couplings
leads to expressions in which the masses used for the light quarks are affected by
sizable nonperturbative QCD effects.

The relevance of the effective charges in the quantitative study of threshold correc-
tions due to heavy particles in grand unified theories (GUTs) was already recognized
in [6], but it was not until a decade later that this was actually accomplished by
Binger and Brodsky [5]. As was shown by these authors, the effective charges
defined with the pinch technique furnish a conceptually superior and calculation-
ally more accurate framework for studying the important issue of gauge-coupling
unification. The main advantage of the effective charge formalism is that it pro-
vides a template for calculating all mass threshold effects for any given GUT; such
threshold corrections may be instrumental in making the measured values of the
gauge couplings consistent with unification.

In [5], the effective charges αeff(q2), αs,eff(q2), and the effective mixing angle
s̄2
w(q2) were used to define new effective charges α̃1(q2), α̃2(q2), and α̃3(q2), which

correspond to the standard combinations of gauge couplings used to study gauge-
coupling unification. Specifically,

α̃1(q2) =
(

5

3

)
αeff(q2)

1 − s̄2
w(q2)

; α̃2(q2) = αeff(q2)

s̄2
w(q2)

; α̃3(q2) = αs,eff(q
2).

(11.12)

The preceding couplings were used to obtain novel heavy and light threshold
corrections, and the resulting impact on the unification predictions for a general
GUT model was studied. Notice that even in the absence of new physics, i.e.,
using only the known SM spectrum, there are appreciable numerical discrepancies
between the values of the conventional and PT couplings at MZ (see Table I of
[5]). Given that these values are used as initial conditions for the evolution of
the couplings to the GUT scale, these differences alone may affect the unification
properties of the couplings.

11.4 Gauge-independent off-shell form factors

It is well known that renormalizability and gauge invariance restrict severely
the type of interaction vertices that can appear at the level of the fundamental
Lagrangian. Thus, the tensorial possibilities allowed by Lorentz invariance are
drastically reduced to relatively simple tree-level vertices. Beyond tree level, the
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tensorial structures that have been so excluded appear due to quantum corrections;
that is, they are generated from loops. This fact does not conflict with renormal-
izability and gauge invariance provided that the tensorial structures generated, not
present at the level of the original Lagrangian, are UV finite; that is, no counterterms
need be introduced to the fundamental Lagrangian proportional to the forbidden
structures.

To fix the ideas, let us consider a concrete textbook example. In standard QED,
the tree-level photon-electron vertex is simply proportional to γμ, whereas kine-
matically, one may have, in addition (for massive on-shell electrons, using the
Gordon decomposition), a term proportional to σμνq

ν that would correspond to
a nonrenormalizable interaction. Of course, the one-loop photon-electron vertex
generates such a term: one has

�μ(q) = γμF1(q2) + σμνq
νF2(q2), (11.13)

where the scalar cofactors multiplying the two tensorial structures are the cor-
responding form factors; they are in general nontrivial functions of the photon
momentum transfer. F1(q2) is the electric form factor, whereas F2(q2) is the mag-
netic form factor. F1(q2) is UV divergent and becomes finite after carrying out the
standard vertex renormalization. On the other hand, F2(q2) comes out UV finite, as
it should, given that there is no term proportional to σμνqν (in configuration space)
in the original Lagrangian, where a potential UV divergence could be absorbed.
Of course, in the limit of q2 → 0, the magnetic form factor F2(q2) reduces to the
famous Schwinger anomaly [7].

At the level of an Abelian theory, such as QED, the preceding discussion exhausts
more or less the theoretical complications associated with the calculation of off-
shell form factors. However, in NAGTs, such as the electroweak sector of the
SM, there is an additional important complication: the off-shell form factors
obtained from the conventional one-loop vertex (and beyond) depend explicitly
on the gauge-fixing parameter. This dependence disappears when going to the
on-shell limit of the incoming gauge boson (q2 → 0 for a photon, q2 → M2

Z

for a Z-boson, etc.) but is present for any other value of q2. This fact becomes
phenomenologically relevant because one often wants to study the various form
factors of particles that are produced in high-energy collisions, where the gauge
boson mediating the interaction is far off shell. In the case of e+e− annihilation into
heavy fermions, the value of q2 must be above the heavy fermion threshold. For
example, top quarks may be pair produced through the reaction e+e− → t t̄ , with
center-of-mass energy s = q2 ≥ 4m2

t . In such a case, the intermediate photon and
Z are far off-shell, and therefore the form factors FV

i , appearing in the standard
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Figure 11.2. (a) The conventional one-loop vertex and (b) the vertexlike piece
extracted from the box for ξ = 1.

decompositions

�V
μ (q2) = γμF

V
1 (q2, ξ ) + σμνq

νFV
2 (q2, ξ ) + γμγ5F

V
3 (q2, ξ )

+ γ5σμνq
νFV

4 (q2, ξ ), (11.14)

depend explicitly on ξ , which stands collectively for ξW , ξZ, ξA, and V = A,Z.

The situation described is rather general and affects most form factors; very often,
the residual gauge dependences have serious physical consequences. For
example, the form factors display unphysical thresholds, have bad high-energy
behavior, and sometimes are UV and IR divergent. The way out is to use the
PT construction and extract the physical, gauge-independent form factors from
the corresponding off-shell one-loop PT vertex (and beyond). Applying the pinch
technique to the case of the form factors amounts to saying that one has to identify
vertexlike contributions (with the appropriate tensorial structure corresponding to
the form factor considered) contained in box diagrams, as shown in Figure 11.2. The
latter, when added to the usual vertex graphs, render all form factors ξ independent
and well behaved in all respects.

A particularly interesting case in which the pinch technique has been successfully
applied is the study of the three-boson vertices AW+W− and ZW+W−, with the
neutral gauge bosons off shell and theW pair on shell, or off shell and subsequently
decaying to on-shell particles. Historically, the main motivation for exploring their
properties was that they were going to be tested at LEP2 by direct W -pair produc-
tion, proceeding through the process e+e− → W+W−; their experimental scrutiny
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could provide invaluable information on the non-Abelian nature of the electroweak
sector of the SM. Particularly appealing in this quest has been the possibility of
measuring anomalous gauge-boson couplings, that is, the appearance of contribu-
tions to AW+W− and ZW+W− not encoded in the fundamental Lagrangian of the
SM. Linear combinations of these form factors are related to the magnetic dipole
and the electric quadrupole moments of the W boson. Such contributions may
originate from two sources: (1) from radiative corrections within the SM, (2) from
physics beyond the SM, or both. Therefore, the first theoretical task is to carry out
the necessary calculations for completing part (1).

Calculating the one-loop expressions for these anomalous form factors is a non-
trivial task, both from technical and conceptual points of view. We focus for
concreteness on the photon case. If one calculates just the Feynman diagrams con-
tributing to the AW+W− vertex and then extracts from them the contributions to
the relevant form factors, one arrives at expressions that are plagued with several
pathologies, gauge-fixing parameter dependence being one of them. Indeed, even
if the twoW s are considered to be on-shell (p2

1 = p2
2 = M2

W ) because the incoming
photon is not, there is no a priori reason why a gauge-fixing parameter-independent
answer need emerge. Indeed, in the context of the renormalizable Rξ gauges, the
final answer depends on the choice of the gauge-fixing parameter ξ , which enters
into the one-loop calculations through the gauge-boson propagators (W , Z, A, and
unphysical would-be Goldstone bosons). In addition, as shown by an explicit cal-
culation performed in the Feynman gauge (ξ = 1), the answer is infrared divergent
and violates perturbative unitarity, that is, it grows monotonically for q2 → ∞ [8].

All the preceding pathologies may be cured if one uses the PT definition of the
relevant (off-shell) gauge-boson vertices [9]. The application of the pinch technique
identifies vertexlike contributions from the box graphs, as shown in Figure 11.3,
which are subsequently distributed, in a unique way, among the various form
factors. Thus one arrives finally at new expressions that are gauge-fixing parameter-
independent, ultraviolet and infrared finite, and monotonically decreasing for large
momentum transfers q2.

11.4.1 Neutrino charge radius

The neutrino electromagnetic form factor and the neutrino charge radius have
constituted an important theoretical puzzle for more than three decades. Since
well before the SM, it has been pointed out that radiative corrections will induce an
effective one-loopA∗(q2)νν vertex, to be denoted by�μ

Aνν̄ , withA∗(q2) an off-shell
photon. Such a vertex would in turn give rise to a small but nonvanishing charge
radius. Traditionally (and, of course, nonrelativistically and rather heuristically),
this charge radius has been interpreted as a measure of the size of the neutrino
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PT
A,Z A,Z

W+ W− W+ W−

PT

A,Z

W+ W−

A,Z

W+ W−

Figure 11.3. Two of the graphs contributing pinching parts to the gauge indepen-
dent VW+W− vertex.

νi when probed electromagnetically, owing to its classical definition (in the static
limit) as the second moment of the spatial neutrino charge density ρν(r), i.e.,

〈
r2
ν

〉 ∼ ∫
dr r2ρν(r). (11.15)

From the quantum field theory point of view, the neutrino charge radius is defined
as follows. If we write �μ

Aνν̄ in the form

�
μ

Aνν̄(q2) = γμ(1 − γ5)FD(q2), (11.16)

where FD(q2) is the (dimensionless) Dirac electromagnetic form factor, then the
neutrino charge radius is given by

〈
r2
ν

〉 = 6
∂FD(q2)

∂q2

∣∣∣∣
q2=0

. (11.17)

Gauge invariance (if not compromised) requires that in the limit q2 → 0, FD(q2)
must be proportional to q2; that is, it can be cast in the form FD(q2) = q2F (q2),
with the dimensionful form factor F (q2) being regular as q2 → 0. As a result, the
q2 contained in FD(q2) cancels against the (1/q2) coming from the propagator of
the off-shell photon, and one obtains effectively a contact interaction between the
neutrino and the sources of the (background) photon, as would be expected from
classical considerations.
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Figure 11.4. The electroweak diagrams contributing to the entire electron-neutrino
scattering process at one loop. Diagram (j ) (and the corresponding dressing) is
absent when the neutrino species is muonic.

Even though, in the SM, the one-loop computation of the entire S-matrix element
describing the electron-neutrino scattering, shown in Figure 11.4, is conceptu-
ally straightforward, the identification of a subamplitude that would serve as the
effective�μ

Aνν̄ has been faced with serious complications, associated with the simul-
taneous reconciliation of crucial requirements such as gauge invariance, finiteness,
and target independence. Various attempts to define the value of the neutrino charge
radius within the SM from the one-loop �

μ

Aνν̄ vertex calculated in the renormaliz-
able (Rξ ) gauges reveal that the corresponding electromagnetic form factor depends
explicitly on the gauge-fixing parameter ξ . In particular, even though in the static
limit of zero momentum transfer, q2 → 0, the Dirac form factor vanishes and there-
fore is independent of ξ , its first derivative with respect to q2 (which corresponds
to the definition of the neutrino charge radius) continues to depend on it. Similar
(and sometimes worse) problems occur in the context of other gauges (e.g., the
unitary gauge). These complications have obscured the entire concept of a charge
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radius for the neutrino and have cast serious doubt on whether it can be regarded
as a genuine physical observable.

Of course, if a quantity is gauge dependent, it is not physical. But that the off-
shell vertex is gauge dependent only means that it does not serve as a physical
definition of the neutrino charge radius; it does not mean that an effective charge
radius cannot be encountered that satisfies all necessary physical properties, gauge
independence being one of them. Indeed, several authors have attempted to find
a modified vertexlike amplitude that would lead to a consistent definition of the
electromagnetic neutrino charge radius. The common underlying idea in all these
works is to rearrange somehow the Feynman graphs contributing to the scattering
amplitude of neutrinos with charged particles in an attempt to find a vertexlike
combination that would satisfy all desirable properties. What makes this exercise
so difficult is that in addition to gauge independence, a multitude of other crucial
physical requirements need to be satisfied as well. For example, one should not
enforce gauge independence at the expense of introducing target dependence.
Therefore, a definite guiding principle is needed, allowing for the construction
of physical subamplitudes with definite kinematic structure (i.e., self-energies,
vertices, boxes).

The guiding principle in question has been provided by the pinch technique. As was
shown in [10], the rearrangement of the physical amplitude f ±ν → f ±ν, where
f ± are the target fermions, into PT self-energies, vertices, and boxes conclusively
settles the issue: the proper PT vertex with an off-shell photon and two on-shell
neutrinos, denoted by �̂

μ

Aνi ν̄i
, furnishes unambiguously and uniquely the physical

neutrino charge radius.

Most recently, the issue of the neutrino charge radius was revisited in a series of
papers [11, 12, 13]. There three important conceptual points have been conclusively
settled:

1. As explained in [10], the box diagrams furnish gauge-dependent (propagator-
like) contributions that are crucial for the gauge cancellations, but once these
contributions have been identified and extracted, the remaining pure box can-
not form part of the neutrino charge radius because it would introduce pro-
cess dependence (in view of its nontrivial dependence on the target fermion
masses, for one thing). The most convincing way to understand why the
pure box could not possibly enter into the neutrino charge radius definition
is to consider the case of right-handed polarized target fermions that do not
couple to the W s: in that case, the box diagram is not even there. The gauge
cancellations proceed differently because the coupling of the Z-boson to the
target fermions is also modified [11, 12, 13].
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2. The mixing self-energy �̂AZ(q2) should not be included in the definition of
the neutrino charge radius either. The reason for this is more subtle: �̂AZ(q2)
is not an RG-invariant quantity; adding it to the finite contribution coming
from the proper vertex would convert the resulting neutrino charge radius
into a μ-dependent, and therefore unphysical, quantity. Instead, �̂AZ(q2)
must be combined with the appropriate Z-mediated tree-level contributions
(which evidently do not enter into the definition of the charge radius) to
form with them the RG-invariant combination s̄2

w(q2) of Eq. (11.2), whereas
the ultraviolet-finite neutrino charge radius will be determined from the
proper vertex only. Writing �̂

μ

Aνi ν̄i
= q2F̂i(q2)γμ(1 − γ5), the physical neu-

trino charge radius is then defined as
〈
r2
νi

〉 = 6F̂i(0), and the explicit calcula-
tion yields

〈
r2
νi

〉 = GF

4
√

2π2

[
3 − 2 log

(
m2
i

M2
W

)]
, (11.18)

where i = e, μ, τ , mi denotes the mass of the charged isodoublet partner of
the neutrino under consideration and GF is the Fermi constant.

3. The neutrino charge radius defined through the pinch technique may be
extracted from experiment, at least in principle. One may express a set of
experimental electron-neutrino cross sections in terms of the finite neutrino
charge radius and the two additional gauge- and RG-invariant quantities,
corresponding to the electroweak effective charge αz,eff(q2) and mixing angle
s̄2
w(q2), defined earlier.

11.5 Resummation formalism for resonant transition amplitudes

The physics of unstable particles and the computation of resonant transition ampli-
tudes have attracted significant attention in recent years because they are both
phenomenologically relevant and theoretically challenging. The practical interest
in the problem is related to the resonant production of various particles in all sorts
of accelerators, most notably LEP1 and LEP2, the TEVATRON, and the LHC.
From the theoretical point of view, the issue comes up every time fundamental
resonances, i.e., unstable particles that appear as basic degrees of freedom in the
original Lagrangian of the theory (as opposed to composite bound states), can
be produced resonantly. The presence of such fundamental resonances makes it
impossible to compute physical amplitudes for arbitrary values of the kinematic
parameters, unless a resummation has taken place first. Simply stated, perturbation
theory breaks down in the vicinity of resonances, and information about the dynam-
ics to all orders needs to be encoded already at the level of Born amplitudes. The
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difficulty arises that in the context of NAGTs, the standard Breit–Wigner resumma-
tion used for regulating physical amplitudes near resonances is at odds with gauge
invariance, unitarity, and the equivalence theorem [14]. Consequently, the result-
ing Born-improved amplitudes in general fail to capture faithfully the underlying
dynamics. It is therefore important to devise a self-consistent calculational scheme
that manifestly preserves all relevant field-theoretic properties [1, 15, 16, 17, 18].

The mathematical expressions for computing transition amplitudes are ill defined
in the vicinity of resonances because the tree-level propagator of the particle
mediating the interaction (i.e., = (s −M2)−1) becomes singular as the center-of-
mass energy approaches the mass of the resonance (i.e., as

√
s ∼ M). The standard

way to regulate this physical kinematic singularity is to use a Breit–Wigner type of
propagator; this amounts essentially to the replacement (near the resonance) (s −
M2)−1 → (s −M2 + iM�)−1, where � is the width of the unstable (resonating)
particle. The presence of iM� in the denominator prevents the amplitude from
being divergent, even at physical resonance (i.e., when s = M2).

The actual field-theoretic mechanism that justifies the apperance of the width is the
Dyson resummation of the self-energy�(s) of the unstable particle, which amounts
to the rigorous substitution (s −M2)−1 → (s −M2 +�(s))−1 . The running width
of the particle is then defined as M�(s) = 
m�(s), whereas the usual (on shell)
width (see earlier) is simply its value at s = M2.

It is relatively easy to realize that the Breit–Wigner procedure, as described ear-
lier, is tantamount to a reorganization of the perturbative series. Resumming the
self-energy �(s) amounts to removing a particular piece from each order of the
perturbative expansion because from all the Feynman graphs contributing to a
given order n, we only pick the part that contains the corresponding string of
self-energy bubbles �(s) and then take n → ∞. Notice, however, that the off-
shell Green’s functions contributing to a physical quantity, at any finite order of
the conventional perturbative expansion, participate in a subtle cancellation that
eliminates all unphysical terms. Therefore the act of resummation, which treats
unequally the various Green’s functions, is in general liable to distort these can-
cellations. To put it differently, if �(s) contains unphysical contributions (which
would eventually cancel against other terms within a given order), resumming it
naively would mean that these unphysical contributions would also undergo infi-
nite summation (they now appear in the denominator of the propagator (s)). To
remove them, one would have to add the remaining perturbative pieces to an infi-
nite order, clearly an impossible task because the latter (boxes and vertices) do not
constitute a resummable set. Thus, if the resummed �(s) contains such unphysical
terms, one arrives at predictions plagued with unphysical artifacts. The crucial
novelty introduced by the pinch technique is that the resummation of the (physical)
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Figure 11.5. The amplitude for the process f f̄ → ZZ. The s-channel graph (a)
may become resonant and must be regulated by appropriate resummation of the
Higgs propagator and dressing of the HZZ vertex.

self-energy graphs must take place only after the amplitude of interest has been
cast via the PT algorithm into manifestly physical subamplitudes, with distinct
kinematic properties, order by order in perturbation theory. Put in the language
employed earlier, the PT ensures that all unphysical contributions contained
inside �(s) have been identified and properly discarded before �(s) undergoes
resummation.

11.5.1 An example

To get a flavor of the subtle interplay between the various physical constraints [1, 15,
16, 17, 18], we consider a concrete example. We study the process f (p1)f̄ (p2) →
Z(k1)Z(k2), shown in Figure 11.5, and s = (p1 + p2)2 = (k1 + k2)2 is the center
of mass energy squared. The tree-level amplitude of this process is the sum of an
s- and t-channel contribution, denoted by Ts and Tt , respectively, given by

T μν
s = �

μν

HZZH (s) v̄(p2)�Hf f̄ u(p1)

T μν
t = v̄(p2)

[
�ν
Zf f̄

S(0)(p1 + k1)�μ

Zf f̄
+ �

μ

Zf f̄
S(0)(p1 + k2)�ν

Zf f̄

]
u(p1),

(11.19)

where

�
μν

HZZ = igw
M2

Z

MW

gμν ; �Hf f̄ = −igw
mf

2MW

�
μ

Zf f̄
= −i

gw

cw
γμ (T f

z PL −Qf s
2
w), (11.20)

are the tree-level HZZ, Hf f̄ , and Zf f̄ couplings, respectively.

The s-channel contribution is mediated by the Higgs boson of mass MH and
becomes resonant if the kinematics are such that

√
s lies in the vicinity of MH ;
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in that case, the resonant amplitude must be properly regulated. The simplest
way to accomplish this is to (1) Dyson-resum the one-loop PT self-energy of the
(resonating) Higgs boson and (2) appropriately dress the tree-level vertex �

μν

HZZ,
that is, by replacing in the amplitude the vertex �μν

HZZ with the one-loop PT vertex
�̂
μν

HZZ.

We first see what happens if one attempts to regulate the resonant amplitude
by means of the conventional one-loop Higgs self-energy in the Rξ gauges. A
straightforward calculation yields (tadpole and seagull terms omitted) [1, 18]

�
(WW )

HH (s, ξW ) = αw

4π

(
s2

4M2
W

− s + 3M2
W

)
B0(s,M2

W,M
2
W )

+ αw

4π

(
M4

H − s2

4M2
W

)
B0(s, ξWM

2
W, ξWM

2
W ). (11.21)

We see that for ξW = 1, the term growing as s2 survives and is proportional to the
differenceB0(s,M2

W,M
2
W ) − B0(s, ξWM2

W, ξWM
2
W ). For any finite value of ξW , this

term vanishes for sufficiently large s, that is, s � M2
W and s � ξWM

2
W . Therefore

the quantity in Eq. (11.21) displays good high-energy behavior in compliance
with high-energy unitarity. Notice, however, that the onset of this good behavior
depends crucially on the choice of ξW . Because ξW is a free parameter and may
be chosen to be arbitrarily large, but finite, the restoration of unitarity may be
arbitrarily delayed as well. This fact poses no problem as long as one is restricted
to the computation of physical amplitudes at a finite order in perturbation theory.
However, if the preceding self-energy were to be resummed to regulate resonant
transition amplitudes, it would lead to an artificial delay of unitarity restoration,
which becomes numerically significant for large values of ξW . In addition, a serious
pathology occurs for any value of ξW = 1, namely, the appearance of unphysical
thresholds [15, 16, 17]. Such thresholds may be particularly misleading if ξW is
chosen in the vicinity of unity, giving rise to distortions in the line shape of the
unstable particle.

How does the situation change if, instead, we compute the corresponding part of
the Higgs-boson self-energy in the BFM for an arbitrary value of ξQ? Denoting it
by �̃(WW )

HH (s, ξQ), and using the appropriate set of Feynman rules [19], we obtain

�̃
(WW )

HH (s, ξQ) = �HH (s, ξW → ξQ) − αw

4π
ξQ(s −M2

H )B0(s, ξQM
2
W, ξQM

2
W ).

(11.22)

Evidently, away from ξQ = 1, �̃(WW )

HH (s, ξQ) displays the same unphysical char-
acteristics mentioned earlier for �(WW )

HH (s, ξW ). Therefore, when it comes to the

https://doi.org/10.1017/9781009402415 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415


11.5 Resummation formalism for resonant transition amplitudes 267

study of resonant amplitudes, calculating in the BFM for general ξQ is as patho-
logical as calculating in the conventional Rξ gauges.

To solve these problems, one has simply to follow the PT procedure, within either
gauge-fixing scheme Rξ or background field method; identify the corresponding
Higgs-boson-related pinch parts from the vertex and box diagrams; and add them
to Eq. (11.21) or Eq. (11.22). Then a unique answer emerges, the PT one-loop
Higgs boson self-energy, given by �̂HH (q2)

�̂
(WW )

HH (s) = αw

16π

M4
H

M2
W

[
1 + 4

M2
W

M2
H

− 4
M2

W

M4
H

(2s − 3M2
W )

]
B0(s,M2

W,M
2
W ).

(11.23)

Setting ξQ = 1 in the expression of Eq. (11.22), we recover the full PT answer of
Eq. (11.23), as expected. Clearly �̂

(WW )

HH (s) has none of the pathologies observed
earlier.

We now turn to the way the PT-regulated amplitude satisfies the equivalence theo-
rem [14]. This theorem states that at very high energies (s � M2

Z), the amplitude
for emission or absorption of a longitudinally polarized gauge boson becomes equal
to the amplitude in which the gauge boson is replaced by the corresponding would-
be Goldstone boson. The preceding statement is a consequence of the underlying
local gauge invariance of the SM and holds to all orders in perturbation theory for
multiple absorptions and emissions of massive vector bosons. Compliance with this
theorem is a necessary requirement for any resummation algorithm because any
Born-improved amplitude that fails to satisfy it is bound to be missing important
physical information. The reason why most resummation methods are at odds with
the equivalence theorem is that in the usual diagrammatic analysis, the underly-
ing symmetry of the amplitudes is not manifest. Just as happens in the case of
the optical theorem, the conventional subamplitudes, defined in terms of Feynman
diagrams, do not satisfy the equivalence theorem individually. The resummation
of such a subamplitude will in turn distort several subtle cancellations, thus giving
rise to artifacts and unphysical effects. Instead, the PT subamplitudes satisfy the
equivalence theorem individually; as usual, the only nontrivial step for establishing
this is the proper exploitation of elementary Ward identities.

Turning to our explicit process f (p1)f̄ (p2) → Z(k1)Z(k2), the equivalence theo-
rem states that the full amplitude T = Ts + Tt satisfies

T (ZLZL) = −T (χχ ) − iT (χz) − iT (zχ ) + T (χχ ), (11.24)

where ZL is the longitudinal component of the Z-boson, χ is its associated would-
be Goldstone boson, and zμ(k) = εLμ(k) − kμ/MZ is the energetically suppressed
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Figure 11.6. The Higgs-boson-related contribution extracted from the boxes
through pinching; to get it, we must contract with both momenta.

part of the longitudinal polarization vector εLμ . It is crucial to observe, however,
that already at tree level, the conventional s- and t-channel subamplitudes Ts and
Tt fail to satisfy the equivalence theorem individually [1, 18].

To verify this, one has to calculate Ts(ZLZL), using explicit expressions for the
longitudinal polarization vectors, and check if the answer obtained is equal to
the Higgs-boson-mediated s-channel part of the left-hand side of Eq. (11.24). In
particular, in the center-of-mass system, we have

zμ(k1) = εLμ(k1) − k1μ

MZ

= −2MZ

k2μ

s
+ O

(
M4

Z

s2

)
(11.25)

and an exactly analogous expression for zμ(k2). The residual vector zμ(k) has the
properties kμzμ = −MZ and z2 = 0. After a straightforward calculation, we obtain
a new term T P

s ∼ (igw/2MW )v̄(p2)�Hf f̄ u(p1) not found in Eq. (11.24)

Ts(ZLZL) = −Ts(χχ ) − iTs(zχ ) − iTs(χz) + Ts(zz) − T P
s , (11.26)

where

Ts(χχ ) = �HχχH (s)v̄(p2)�(0)
Hf f̄

u(p1)

Ts(zχ ) + Ts(χz) = [zμ(k1)�μ

HZχ + zν(k2)�ν
HχZ]H (s)v̄(p2)�Hf f̄ u(p1)

Ts(zz) = zμ(k1)zν(k2)T μν
s (ZZ), (11.27)

with �Hχχ = −igwM2
H/(2MW ) and �

μ

HZχ = −gw(k1 + 2k2)μ/(2cw). Evidently
the presence of the term T P

s prevents T H
s (ZLZL) from satisfying the equivalence

theorem. This is, of course, not surprising given that an important Higgs-boson-
mediated s-channel part has been omitted. The momenta kμ1 and kν2 , stemming from
the leading parts of the longitudinal polarization vectors εμL(k1) and ενL(k2), extract
such a term from Tt (ZLZL) (see Figure 11.6); this term is precisely T P

s and must
be added to Ts(ZLZL) to form a well-behaved amplitude at high energies. In other
words, the amplitude

T̂s(ZLZL) = Ts(ZLZL) + T P
s (11.28)

satisfies the equivalence theorem by itself (see Eq. (11.24)).
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In fact, this crucial property persists after resummation – thanks to the Ward identi-
ties satisfied by the PT vertices. As shown in Figure 11.5(a), the resummed ampli-
tude, to be denoted by T s(ZLZL), is constructed from Ts(ZLZL) in Eq. (11.19)
by replacing H (s) with the resummed Higgs-boson propagator ̂H (s) and �μν

HZZ

with the expression �
μν

HZZ + �̂
μν

HZZ, where �̂
μν

HZZ is the one-loop HZZ vertex
calculated within the pinch technique. It is then straightforward to show that the
Higgs-mediated amplitude T̃s(ZLZL) = T s(ZLZL) + T P

s respects the equivalence
theorem individually; to that end, we only need to employ PT Ward identities such
as

k2ν�̂
μν

HZZ(q, k1, k2) + iMZ�̂
μ

HZχ (q, k1, k2) = − gw

2cw
�̂

μ

Zχ (k1)

k1μ�̂
μ

HZχ (q, k1, k2) + iMZ�̂Hχχ (q, k1, k2) = − gw

2cw

[
�̂HH (q2) + �̂χχ (k2

2)
]
.

(11.29)

In addition to the preceding issues, scattering amplitudes ought to be RG invariant;
that is, they should not depend on the renormalization point μ chosen to carry
out the subtractions nor on the renormalization scheme (MS, on-shell scheme,
momentum subtraction, etc.). This property must remain true in the vicinity of
resonances, i.e., after resummation. To see how this happens for the process at
hand, note that after the PT rearrangement, the resulting amplitude is decomposed
into three individually RG-invariant parts:

1. A universal (process-independent) part, corresponding to the Higgs-boson
effective charge, namely, the RG-invariant combination (g2

w/M
2
W

)̂H , defined
in Eq. (11.3); the line shape of the Higgs boson, being a universal quantity,
must be obtained precisely from this part.

2. A process-dependent part, composed of the vertex corrections and the wave
function renormalization of the external particles, which is RG invariant
because of Abelian Ward identities.

3. A process-dependent part, coming from ultraviolet finite boxes; this is
trivially RG invariant because it is ultraviolet finite and does not get
renormalized.

Finally, on physical grounds, one expects that, far from the resonance, the Born-
improved amplitude must behave exactly as its tree-level counterpart. In fact, a
self-consistent resummation formalism should have this property built in; that is,
far from resonance, one should recover the correct high-energy behavior with-
out having to reexpand the Born-improved amplitude perturbatively. Recovering
the correct asymptotic behavior is particularly tricky, however, when the final
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particles are gauge bosons. The exact mechanism that enforces the correct high-
energy behavior of the Born-improved amplitude, when the PT width and vertex
are used, has been studied in detail in [20] for the specific process considered
here.

11.6 The pinch technique at finite temperature

Finite-temperature gauge theories are a large and complicated subject (see, e.g.,
Gross et al. [21]) for which the pinch technique is useful. In Chapter 9 we men-
tioned the relationship of d = 3 gauge theories to d = 4 gauge theories at very high
temperature, where a hierarchy of scales, based on the smallness of the coupling,
made it possible to ignore chromoelectric fields and other phenomena. There are, in
principle, three scales (besides momenta) in a thermal SU (N) NAGT: the temper-
ature T itself, (Ng2)1/2T , and Ng2T . (We ignore factors such as 1/4π that may or
may not occur in particular applications, although these can be very important.) By
g we mean the four-dimensional coupling as a function of T (and other variables,
if needed). The so-called magnetic mass of a thermal NAGT scales with Ng2T ,2

and the scale (Ng2)1/2T appears as the scale of mass of the longitudinal electric
degrees of freedom (the Debye or plasmon mass). In QCD, where the coupling
decreases as T increases, or in EW theory, with its small coupling, these three
scales should obey T > (Ng2)1/2T > Ng2T , although this is not necessarily the
case in any particular real-world application. Clearly the smallest scale,Ng2T , sets
the scale for infrared-dominated phenomena. Nonperturbative infrared phenomena
at high T occur even for gauge theories normally thought of as weakly coupled
such as the electroweak part of the standard model. Indeed, this theory is weakly
coupled at low temperatures because of Higgs mass generation but strongly cou-
pled at large T , where the Higgs VEV vanishes and the electroweak gauge bosons
are perturbatively massless.

In the period 1980–1995, there were many attempts at calculating such quantities as
the thermal β function and thermal plasmon3 damping rate with standard Feynman-
graph techniques, nearly all of which were plagued with gauge dependence. In an
attempt to resolve this and other problems, some people argued for using the
Batalin–Vilkovisky approach – in the Landau gauge – and others argued for using
the background field method – in an arbitrary covariant gauge (see Elmfors and
Kobes [22] for such calculations and references to other authors). But because PT
principles were not invoked, the methods used were dependent on gauge, just as

2 Just as in d = 4, the mass runs and decreases at large momentum, as signaled by a magnetic condensate 〈TrG2
ij 〉.

Recall that in Chapter 9 we proved that such a condensate exists in three dimensions.
3 The plasmon is essentially the longitudinal electric degree of freedom with its Debye mass.
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were the usual Feynman-gauge approaches. One notable exception is the work of
Braaten and Pisarski [23, 24, 25] on hard thermal loops, which we discuss briefly
later on.

In Section 11.7, we briefly review the Matsubara decomposition of a thermal field
theory into an infinite set of coupled d = 3 field theories labeled by an integer K
for bosons or K + 1/2 for fermions. In each d = 3 theory, the corresponding fields
have mass 2πT |K| (bosons) or 2πT |K + 1/2| (fermions). It follows that for all
except the K = 0 bosonic sector, the basic scale of these field theories is T itself;
all infrared nonperturbative phenomena come from the K = 0 sector of an NAGT.
Moreover, as we will see, the coupling of any of these theories is g2T . In particular,
the K = 0 sector is just the d = 3 NAGT of Chapter 9, with the replacement of the
coupling g2

3 by g2T , the lowest available scale. The characteristic dimensionless
parameter of any of these field theories is Ng2T/k at momentum scale k. Because
the minimum momentum scale is a particle mass, it follows that theK = 0 sector is
strongly coupled (dimensionless parameter of O(1)), but this parameter is O(Ng2)
for all other sectors, possibly allowing for a perturbative expansion.4

11.7 Basic principles of thermal field theory

Consider the partition function of a bosonic quantum theory:

Z = Tr e−βH =
∫

[dφ(�x)]〈φ(�x)|e−βH |φ(�x)〉, (11.30)

where β = 1/T , and write this as a path integral for a generic field theory over
field coordinates at zero time. The matrix element has a standard path integral
representation:

〈φ(�x)|e−βH |φ(�x)〉 =
∫

[d
] exp

[
−
∫

LE

]
, (11.31)

where LE is the Euclidean Lagrangian corresponding to the Hamiltonian H , and
the integral sign means ∫

→
∫

d3x

∫ β

0
dτ (11.32)

for Euclidean time τ . Because the trace sums diagonal matrix elements, the bound-
ary conditions on the 
 path integral are


(�x, τ = 0) = φ(�x) = 
(�x, τ = β). (11.33)

4 Except for strong effects coming from the coupling of a massive theory to the K = 0 sector, including effects
from the Debye mass scale.
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(For fermions, there is an extra minus sign.) So the quantum fields 
 are periodic
(or antiperiodic, for fermions) in the time coordinate τ with period β. We can
therefore write 
 as a Fourier sum,


(�x, τ ) =
∞∑

−∞
φK(�x)e−iωKτ , (11.34)

with frequencies (called Matsubara frequencies) ωK = 2πKT . All Green’s func-
tions of 
 are similarly periodic. Inserting this periodic decomposition into LE

exposes it as the sum over Euclidean field theories with K-dependent masses, as
we said earlier. Moreover, the τ integral introduces a Kronecker delta function that
conserves frequencies and an overall factor of β. When combined with the 1/g2

factor in LE, the d = 3 coupling becomes g2T .

The well-known Feynman rules for a thermal field theory differ in the treatment of
the energy component of momentum, with the replacement

i

2π

∫
dk0 → T

∑
K

(11.35)

2πδ
(∑

k0(j )
)

→ 1

T
δ0,

∑
ωj
.

The free-field thermal propagator for a massless scalar field is (aside from an
irrelevant constant factor)

(�x, τ ) = T

(2π )3

∫
d3p

∑
K

ei �p·�x−iωkτ
1

−(iωK )2 + ω2
p

, (11.36)

with ωp = +
√

| �p|2 +m2; this is a sum of Euclidean propagators with masses
ωK = 2πKT . The sum over Matsubara frequencies yields

(�x, τ ) = 1

(2π )3

∫
d3p

2ωp

ei �p·�x{e−ωpτ [1 + n( �p)] + eωpτn( �p)}, (11.37)

where

n( �p) = 1

eβωp − 1
(11.38)

is the Bose–Einstein occupation number. Similar formulas hold for fermions; we
need not record them here.

11.7.1 The pinch technique in the zero-Matsubara-frequency sector

The first PT calculations for thermal field theory were done, as reported in Chapter 9,
for d = 3 gauge theory or, in other words, the zero-Matsubara-frequency sector
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[26, 27]. Note that when the Matsubara frequency is fixed, there is no question of
the dependence of the result on τ , which can only be reliably estimated by a sum
over all frequencies. In any case, the zero-frequency sector gives no τ dependence
to the periodic thermal fields.

The computations were actually done in the light-cone gauge, which causes no
problems because all dependence on the gauge-fixing vector nμ cancels out before
any integrations or sums are done. We translate the one-loop PT propagator of
Eq. (9.1) to the thermal regime, with the result:

d̂(q, T ) = 1

q2 − πb3g2T q
b3 = 15N

32π
. (11.39)

In later years, a number of people attempted to extract a running charge from their
calculations, as we describe in the next section. The usual procedure is to choose
a definition (which is not necessarily unambiguous) for a thermal running charge
gT (q, T ) and to define a beta function by

βT = T
dgT (q, T )

dT
. (11.40)

From Eq. (11.39), we extract a zero-Matsubara-frequency running charge in one-
loop perturbation theory as

g2
T
(q, T ) = q2g2d̂(q, T ) = g2

1 − 15g2T/(32q)
. (11.41)

This yields

T
dgT (q, T )

dT
= +15NTg3

T

64q
. (11.42)

The derivative is positive because the running charge depends on T/q and the q
derivative has the negative sign associated with infrared slavery. This means that
the coupling constant runs away as T increases. Of course, this is equivalent to the
infrared limit q → 0, where we expect infrared-slavery diseases to arise.

This thermal β function, based as it is on one-loop perturbation theory in the zero-
Matsubara-frequency sector, does not account for many important phenomena that
are beyond the scope of this book. In particular, accounting for gluon electric
masses in resummed internal propagators could, in principle, give rise to a term of
O(g4T 2/q2), which is of higher order in the infrared limit T � q. Other corrections
come from including a magnetic mass. These have been discussed by Elmfors and
Kobes [22] using a general covariant background-field gauge; one important result
of this work is that for any gauge parameter ξ , the O(g4T 2/q2) term vanishes.
Although these authors did not realize that to find a gauge-invariant result, all we
need to do is choose the Feynman background-field gauge ξ = 1, we do realize it.
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When this is done and corrections from the magnetic mass are omitted, exactly the
result of our Eq. (11.42) is found.

11.7.2 Developments in the full thermal field theory

Reference [28] gave the first PT calculation of the full thermal NAGT propagator
at one-loop order. Again, the computations were done in the light-cone gauge. The
result for the PT proper self-energy is (omitting the seagull graph that vanishes by
dimensional integration)

�̂μν = 1

2
g2NT

∑
K

∫
d3k

(2π )3

1

k2(q + k)2

× [
8(q2δμν − qμqν) + 2(2k + q)μ(2k + q)ν

]
. (11.43)

The time component of the Euclidean four-vector k is k4 = 2πTK . This self-
energy is conserved and has two independent scalar pieces multiplying two tensorial
structures; these are equivalent to calculating �̂44 and �̂ij . Most authors give results
only for q4 = 0, and we do the same; in the following results, q is a three-vector.
After doing the integrals, one finds the renormalized propagator

(g2̂)−1
44 = bq2 ln

(
q2

�2

)
+ NT 2

π2
P (ε) (11.44)

(g2̂)−1
ij =

(
δij − qiqj

q2

)[
bq2 ln

(
q2

�2

)
+ NT 2

π2
Q(ε)

]
,

where

b = 11N

48π2
; ε = q

2T
, (11.45)

and

P (ε) = π2

3
+ 1

2ε

∫ ∞

0

dy

ey − 1

[
(y2 − 4ε2) ln

∣∣∣∣y + ε

y − ε

∣∣∣∣ − 2yε

]
(11.46)

Q(ε) = 1

2

∫ ∞

0

dy

ey − 1

[
y − y2 + 7ε2

2ε
ln

∣∣∣∣y + ε

y − ε

∣∣∣∣] .
In the infrared limit q = 0 (or T = ∞), we have P (0) = π2/3 and Q(0) = 0.
These correspond to the often-quoted perturbative values m2

e = Ng2T 2/3 for the
electric mass and zero for the magnetic mass mm, respectively. However, the
kinetic term q2 ln(q2/�2) is not well behaved at small q at the one-loop level, and
the interpretation of the electric mass requires resummations that replace ln q2 by
something like ln(q2 + 4m2), which accounts for masses on the internal lines. We
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11.7 Basic principles of thermal field theory 275

will not discuss that interesting problem any further. In any event, as is well known,
an electric mass arises at the one-loop level, but the magnetic mass vanishes to all
orders in perturbation theory, despite thatm2

m ∼ (Ng2)2T 2 looks like a fourth-order
effect. Of course, the magnetic mass is nothing but the d = 3 dynamical gluon mass
for which we argued in Chapter 9.

The next work that explicitly invoked the pinch technique to achieve gauge invari-
ance in a thermal NAGT was an attempt to calculate the plasmon damping rate
gauge invariantly [29]. Earlier gauge-dependent calculations gave a negative damp-
ing rate, which is a physical impossibility in any covariant gauge. Other calcula-
tions with other methods and in other gauges gave a positive damping coeffi-
cient. Finally, Nadkarni [29], using the results of Cornwall et al. [28], as stated
in Eq. (11.43), found a one-loop PT damping rate that was unambiguously gauge
invariant and also unambiguously negative. It was clear that this negative sign was
precisely that arising from asymptotic freedom and that – as Nadkarni suggested –
other, possibly nonperturbative effects needed to be included to get a positive rate.
In an independent development, Braaten and Pisarski [23, 24, 25] developed an
algorithm for resumming so-called hard thermal loops and using it to find a positive
and gauge-invariant plasmon damping rate. An amplitude with external lines whose
momenta p are soft (of order of the electric mass O(gT )), coupled to a loop with
hard loop momenta (of order O(T )), has terms characterized by a dimensionless
parameter O(g2T 2/p2) that is of order unity and contributes at the same order
as the soft tree-level amplitude. Here a factor g2T comes from the coupling, and
another power of T in the numerator comes from hard loop momenta. It is perhaps
not surprising that the sum of all such hard loops is gauge invariant, as Braaten
and Pisarksi proved, because they are all of the same order in the coupling. With
this process of resummation, these authors found a positive and gauge-invariant
plasmon damping rate.

Braaten and Pisarski made no reference to the pinch technique, although their
arguments would strongly suggest PT principles to those familiar with them. A few
years later, Sasaki [30, 31, 32] made this connection. First, he calculated [30, 31]
a thermal β function using the pinch technique, checking that he found the same
result in four distinct gauge families, including the background-field gauges. Then
he [32] showed that using the one-loop PT propagator with resummed internal
propagator lines also coming from the PT actually yielded precisely Braaten and
Pisarski’s result for the plasmon damping rate.

We quote here Sasaki’s result for the thermal β function, as defined through the
running charge gT of Eq. (11.41). He finds that

T
dgT S
dT

= +14NTg3

64q
, (11.47)
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which is hardly different from what was found from the d = 3 PT propagator, as
shown in Eq. (11.42), which has 15 rather than 14 in the numerator. This perhaps
surprisingly small difference may arise because Sasaki used the full thermal PT
propagator rather than just its zero-frequency part, as we did in Eq. (11.42). (But
remember that this β function is infrared dominated, and so the zero-frequency sec-
tor should give the largest contribution.) The development of the plasmon damping
rate would take us too far afield here, and we refer the reader to Sasaki’s papers.

In thermal NAGTs, just as in NAGTs at zero temperature, the pinch technique
does not solve difficult physics problems, but it does make it possible to separate
true physics issues from gauge artifacts. No one should be surprised that mere use
of the pinch technique itself at some low order of perturbation theory [29] does
not give physical results in an asymptotically free theory; it is this unphysicality
that ultimately drives the formation of a dynamical gluon mass and requires a
self-consistent formulation of these gauge theories, such as we have argued for
throughout this book. The demonstration that the resummation of hard thermal
loops is equivalent to a PT resummation should not be a surprise either. The fact
that Braaten and Pisarski did not recognize the connection of their earlier work
to the pinch technique should not lull the reader into thinking that there is no
connection to the pinch technique, as Sasaki showed.

11.8 Hints of supersymmetry in the pinch technique Green’s functions

Let us now focus on a very interesting property of the one-loop PT three-gluon
vertex discovered recently by Binger and Brodsky [33]. These authors first added
quark and scalar loops to �̂amn

αμν (q1, q2, q3); this is straightforward from the point
of view of gauge independence and gauge invariance because these loops are
automatically gauge-fixing parameter independent and satisfy the Ward identity
(Eq. (1.92)). All resulting one-loop integrals, including those of Eqs. (1.85) and
(1.86), were evaluated for the first time, thus determining the precise tensorial
decomposition of �̂amn

αμν (q1, q2, q3). Then, after choosing a convenient tensor basis,
�̂amn
αμν (q1, q2, q3) was expressed as a linear combination of 14 independent tensors,

each multiplied by its own scalar form factor. Every form factor receives, in general,
contributions from gluons (G), quarks (Q), and scalars (S). It turns out that these
three types of contributions satisfy very characteristic relations that are closely
linked to supersymmetry and conformal symmetry and, in particular, the N = 4
nonrenormalization theorems. For all form factors F (in d-dimensions), it was
shown that

FG + 4FQ + (10 − d)FS = 0, (11.48)
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which encodes the vanishing contribution of the N = 4 supermultiplet in d = 4.
Similar relations have been found in the context of supersymmetric scattering
amplitudes [34, 35].

It should be emphasized that relations such as Eq. (11.48) do not exist for the
gauge-dependent three-gluon vertex (see, e.g., Davydychev et al. [36]) because the
gluon contributions depend on the gauge-fixing parameter, whereas the quarks and
scalars do not. Indeed, it is uniquely the PT (or, equivalently, in the background
Feynman gauge, ξQ = 1) Green’s function that satisfies this homogeneous sum
rule. Most important, calculating in the background field method with ξQ = 1
leads to a nonzero rhs of Eq. (11.48).

As was explained in detail by Binger and Brodsky, this type of relation hints at
supersymmetry. To appreciate this point, it is useful to consider various super-
symmetries in d = 4, as was done in [33]. Specifically, one may distinguish the
following three cases, depending on the number N of supersymmetries:

1. N = 1: From the preceding definitions, it is clear that a vector superplet V1

(gluons plus gluinos) contributes ig2Nc(FG + FQ) ≡ ig2NcFV1 to a generic
form factor F , whereasN
 chiral superplets contribute ig2N
( 1

2FQ + FS) ≡
ig2N
F
. By the sum rule Eq. (11.48) in d = 4, we have FV1 + 6F
 = 0.
Thus, any form factor can be written as

F = ig2(NcFV1 +N
F
) = ig2

3
β

(N=1)
0 FV1, (11.49)

where β (N=1)
0 = 3Nc − 1/2N
 is the first coefficient of the β function. Hence

the contributions of vector and chiral superplets have precisely the same
functional form for each form factor. Furthermore, every form factor is pro-
portional to β0, even though all but one of them are ultraviolet finite.

2. N = 2: In this case, the vector superplet gives ig2Nc(FG + 2FQ + 2FS) ≡
ig2NcFV2 , whereas Nh hyperplets (a Weyl fermion of each helicity plus a
doublet of complex scalars) yield ig2Nh(FQ + 2FS) ≡ ig2NhFh. The sum
rule of Eq. (11.48) can be written as FV2 + 2Fh = 0, and thus

F = ig2(NcFV2 +NhFh) = ig2

2
β

(N=2)
0 FV2, (11.50)

where β (N=2)
0 = 2Nc −Nh.

3. N = 4: Now the vector superplet (the only multiplet allowed) contributes
2ig2Nc(FG + 4FQ + 6FS) ≡ NcFV4 , which is identically zero by the sum
rule, which, of course, is a consequence of β (N=4)

0 = 0.
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Thus, the similarities between form factors in d = 4 are related to supersymmetric
nonrenormalization theorems. In particular, the exact conformal invariance of
N = 4 implies that the gauge-invariant, three-gluon Green’s function is not renor-
malized at any order in perturbation theory. In fact, at one-loop order, there are not
even finite corrections, as reflected in Eq. (11.48).
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Appendix

Feynman rules

A.1 Rξ and BFM gauges

The Feynman rules for QCD inRξ gauges are given in Figure A.1. In the case of the
background field gauge, because the gauge-fixing term is quadratic in the quantum
fields, apart from vertices involving ghost fields, only vertices containing exactly
two quantum fields might differ from the conventional ones. Thus, the vertices
�Âψψ̄ and �ÂAAA have, to lowest order, the same expression as the corresponding
Rξ vertices �Aψψ̄ and �AAAA (to higher order, their relation is described by the
corresponding BQIs). Feynman rules for background fields are shown in Figure A.2.

A.2 Antifields

The couplings of the antifields 
∗ with fields is entirely encoded in the BRST
Lagrangian of Eq. (4.4). When choosing the BFM gauge, the additional coupling
gf amnA∗m

μ Ân
νc

a will arise in the BRST Lagrangian LBRST as a consequence of the
background field method splitting A → Â+ A. One then gets the Feynman rules
given in Figure A.3.

A.3 BFM sources

Feynman rules involving the background field source �m
μ can be easily derived by

the one involving the (gluon) antifield A∗m
μ through the replacements A∗m

μ → �m
μ

and cm → c̄m.

281
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m,μ n, ν

m n

i, f j, f

p1

q

p2

a,α

ψj
fψ̄i

f

k1

q

k2

a,α

cnc̄m

q

k1

k2

m,μ

n, νa,α

s, σ

k3

r, ρ

k2m,μ n, ν

k1

k4

−iδmn 1
q2 gμν − (1 − ξ)qμqν

q2

iδmn 1
k2

iδijδff 1
kμγμ−mf

gf amnk1α

igγαtaij

−ig2 [fmsef ern (gμρgνσ − gμνgρσ)

+fmnef esr (gμσgνρ − gμρgνσ)

+fmref esn (gμσgνρ − gμνgρσ)]

gf amn [gμν(k1 − k2)α + gαν(k2 − q)μ

+gαμ(q − k1)ν]

Figure A.1. Feynman rules for QCD in the Rξ gauges.
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k1

q

k2

a,α

cnc̄m

q

k1

k2

m,μ

n, νa,α

gf amn (k1 + k2)α

c̄m
k2

cn

k3a,α r, ρ

q

k1

−ig2gαρ (fmaef ern + fmref ean)

s, σ

k3

r, ρ

k2m,μ n, ν

k1

k4

c̄m
k2

cn

k3a,α r, ρ

q

k1

−ig2gαρf
maef ern

gf amn gμν(k1 − k2)α + gαν(k2 − q + 1
ξQ
k1)μ

+gαμ(q − k1 − 1
ξQ
k2)ν

−ig2 fmsef ern gμρgνσ − gμνgρσ + 1
ξQ
gμσgνρ

+fmnef esr gμσgνρ − gμρgνσ − 1
ξQ
gμνgρσ

+fmref esn (gμσgνρ − gμνgρσ)

Figure A.2. Feynman rules for QCD in the background field gauge. We include
only those rules that are different from the Rξ rules to lowest order. As usual, a
shaded circle on a gluon line indicates a background field.
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cn A∗m
μ

k1

k2

q

n, ν

A∗m
μca

igf amngμν

p

p

k2

ψ̄j
f

caψ∗i
f

gtaji

p

k

q

ca

ψ̄∗j
fψi

f

−gtaji

k1

k2

q

cn

c∗mca

−igf amn

k1

k2

q

n, ν

A∗m
μca

igf amngμν

δmnqμ

q

Figure A.3. Feynman rules for QCD antifields.
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Faddeev–Popov equation, 93
Feynman gauge, 2

background fields, 62
gauge, ghost, and Goldstone masses, 61

finite-temperature gauge theory, 31
magnetic mass, and, 148

form factors
gauge independent, 256
neutrino charge radius, 259

functional Schrödinger equation, 201
d = 4 coupling, and, 208
effective action, 202
gauge technique, and, 203

gauge fixing, 5–6
background gauge fields, 67
FLS gauge, 55
’t Hooft–Feynman, 55
unitary gauge, 61

gauge technique, 50
Abelian, 105–109
general properties, 104
massless longitudinal poles, in, 108–109,

112
non-Abelian, 109–112

gauged nonlinear sigma model, 51
massless scalars, and, 54

Gauss link number, 160
Hopf fibration, and, 222
Wilson loop, and, 160

generalized pinch technique, 71
Georgi–Glashow model, 55, 56, 167, 168, 181
gluon mass, 1, 46
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gluon mass (cont.)
generation in QCD, 49–55
hybrids, and, 164
lattice evidence for, 115–117
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PT Schwinger–Dyson equations, and, 139
quantum solitons, and, 145–146
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Green’s functions, 88
one-particle irreducible, 88

generating functional, 88
Gribov ambiguity, 53
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Chern–Simons number, and, 222
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210–213, 273

Kugo–Ojima function, 99

Landau gauge
background formulation, 99

light-cone gauge, 31–34
pinch technique, 54

pinch technique, 1, 45
all-order, 75
background-Feynman correspondence, 69
in the background-field method, 71
Batalin–Vilkovisky formulation, 100
equal-time commutators, and, 59
finite temperature, 270

full thermal field theory, 274
zero-Matsubara-frequency sector, 272

four-gluon vertex, 30
gauge boson mass, and, 47
one-loop propagator, 6–17
one-loop three-gluon vertex, 20–30
resummation of resonant transition amplitudes, 263
Schwinger–Dyson equations, 126

algorithm, 119
construction, 120
solution, 131
truncation, 130

spontaneous symmetry breaking, with, 226
absorptive construction, 237
all-order construction, 246
conserved currents case, 229
differences with the symmetric case,

227
nonconserved current case, 242
physical thresholds, 240
unitary gauge case, 236

pinch technique, properties
absorptive parts

unitarity, and, 2, 34–36
intrinsic construction, 19
process independence, 17
propagator transversality, 127
and SUSY, 276

propagator positivity, 42–43

quantum solitons, 145–147

Slavnov–Taylor identities
for 1PI functions, 93
functional, 90
for Schwinger–Dyson kernels, 77, 95

s-t cancellation
all-order, 75
tree-level, 39

string theory, 3
supersymmetry (SUSY), 250, 276
symmetry breaking, Higgs–Kibble, 48

gauge boson mass, and, 55

three-dimensional gauge theories, 190
chromomagnetic field, and, 195
effective action, of, 193–195
magnetic mass, and, 191
one-loop gap equations, 197–201

Ward identities, 2
fermion propagator, 10
four-gluon vertex, 31
quark-gluon vertex, 20–23
three-gluon vertex, 8–10, 26, 34
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