A LOCALIZATION PRINCIPLE FOR A CLASS OF ANALYTIC FUNCTIONS

D. A. STORVICK

It has been shown by Kiyoshi Noshiro [8; p. 35] that a bounded analytic function $w=f(z)$ in $|z|<1$ having radial limit values of modulus one almost everywhere satisfies a localization principle of the following type. Let (c) be any circular disk: $|w-\alpha|<\rho$ lying inside $|w|<1$ whose periphery may be tangent to the circumference $|w|=1$. Denote by Δ any component of the inverse image of (c) under $w=f(z)$ and by $z=z(\xi)$ a function which maps $|\xi|<1$ onto the simply connected domain Δ in a one-to-one conformal manner. Then, the function

$$
W=F(\xi)=\frac{1}{\rho}[f(z(\xi))-\alpha]
$$

is also a bounded analytic function in $|\xi|<1$ with radial limits of modulus one almost everywhere.

Maurice Heins [2; p. 455], [3] has established a localization principle for conformal mappings of type- $B l$ between Riemann surfaces.

The object of this note is to prove an extension of Noshiro's theorem.

Definition 1.

A function $w=f(z)$ which is bounded and analytic in $|z|<1$ and whose radial limit values $\lim _{r \rightarrow 1} f\left(r e^{i \theta}\right)=f^{*}\left(e^{i \theta}\right)$ exist and are of modulus one for all points $e^{i \theta}$ on $|z|=1$ except for at most a set S of points $e^{i \theta}$ of linear measure zero will be called of class (U) in $|z|<1$. If the possible exceptional set S is of logarithmic capacity zero, cap $(S)=0, w=f(z)$ will be said to be of class (U^{*}) in $|z|<1$.

For the sake of completeness we prove the following lemma.

[^0]
Lemma 1.

If $w=f(z)$ is an analytic function in $|z|<1$, then every component $G(\alpha, \rho, k)$ of the open set $G(\alpha, \rho)=\{z| | z|<1,|f(z)-\alpha|<\rho\}$ is a simply connected domain. Proof: If $G(\alpha, \rho, k)$ is not simply connected, there exists a point z_{0} in the complement of $G(\alpha, \rho, k)$ and a simple closed polygonal path Γ contained in $G(\alpha, \rho, k)$ for which the winding number of Γ with respect to z_{0} is one, $n\left(\Gamma, z_{0}\right)$ $=+1$. Now $|f(z)-\alpha|$ has a maximum value on I, and $\max _{z \in \Gamma}|f(z)-\alpha|=M<\rho$ since $\Gamma \subset G(\alpha, \rho, k)$. Therefore by the maximum modulus theorem, for all z in the interior of Γ, the relation $|f(z)-\alpha| \leq M<\rho$ is satisfied. This contradicts the assumption that $z_{0} \notin G(\alpha, \rho, k)$ so that $\left|f\left(z_{0}\right)-\alpha\right| \geq \rho$.

Definition 2.

An analytic function $w=f(z)$ defined in $|z|<1$ is said to be of class (U^{*}) at a point α if there exists a disk $|w-\alpha|<\rho$ such that for each component $G(\alpha, \rho, k)$ of $G(\alpha, \rho)=\{z| | z|<1,|f(z)-\alpha|<\rho\}$ the function

$$
W=F(\xi)=\frac{1}{\rho}[f(z(\xi))-\alpha]
$$

is of class $\left(U^{*}\right)$ in $|\xi|<1$ where $z=z(\xi)$ is any one-to-one conformal mapping of $|\xi|<1$ onto the simply connected domain $G(\alpha, \rho, k)$. If $w=f(z)$ is of class (U^{*}) for every α in a domain G, then $w=f(z)$ is said to be locally of class $\left(U^{*}\right)$ in G.

The structure of domains of the type of $G(\alpha, \rho, k)$ and of their frontiers $\operatorname{Fr}(G(\alpha, \rho, k))$ for various classes of functions has been the object of extensive study by many authors. See for example the work of Lohwater [4], [5], [6], Noshiro [7], [8], Tsuji [11] and the author [10]. We now prove a lemma concerning the structure of $G(\alpha, \rho, k)$ for functions of class (U^{*}). The proof is a modification of a technique used in [5] and [10].

Lemma 2.

Let $w=f(z)$ be a non-constant function of class $\left(U^{*}\right)$. Assume that for each $e^{i \beta}, \operatorname{cap}\left\{e^{i \theta} \mid f^{*}\left(e^{i \theta}\right)=e^{i \beta}\right\}=0$. Then for any $\alpha,|\alpha|<1$ and any $\rho, 0<\rho \leq$ $1-|\alpha|$ the frontier $\Gamma=\operatorname{Fr}(G(\alpha, \rho, k))$ is a Jordan curve whose intersection with $|z|=1$ is of logarithmic capacity zero.

Proof. By Lemma 1, $G(\alpha, \rho, k)$ is a simply connected domain and we now show that Γ is locally connected at each of its points; i.e. every neighborhood U of
a point $p \in \Gamma$ contains a neighborhood V of p such that every point of $V \cap \Gamma$ lies in that component of $U \cap \Gamma$ which contains p. As a consequence, each point of Γ is then [12, p. 111] arcwise accessible from $G(\alpha, \rho, k)$. Now, at each point of Γ lying interior to $|z|<1, \Gamma$ is locally connected, since it is part of a piecewise analytic arc, namely a level curve of $\log |f(z)-\alpha|$. Let $E=\Gamma \cap\{|z|$ $=1\}$. If $p \in E$ and if Γ is not locally connected at p, then, by an elementary theorem [12; p. 18], there exists a non-degenerate subcontinuum N of Γ containing p and such that Γ is not locally connected at any point of N. Since N must lie on $|z|=1$, it is clear that N is an arc of $|z|=1$. Furthermore, there must exist [12; p. 18] a circular neighborhood V of p and a sequence of mutually disjoint components N_{1}, N_{2}, \ldots of $\bar{V} \cap \Gamma$ converging to a non-degenerate limiting arc $N_{0} \subset N$ containing p. Thus if q is any interior point of N_{0}, every radius of $|z|<1$ drawn to q must cross infinitely many of the components N_{j} arbitrarily close to q. Along such a radius of $|z|<1$, if $f\left(r e^{i \theta}\right)$ tends to a limit of modulus one, this limit must be $\frac{\alpha}{|\alpha|}$, since $|f(z)-\alpha|=\rho \leq 1-|\alpha|$ at all points of N_{j}. Since this occurs at every interior point of N_{0} with at most the exception of a set of logarithmic capacity zero, we violate the hypothesis that for every $e^{i \beta}$, cap $\left\{e^{i \theta} \mid f^{*}\left(e^{i \theta}\right)=e^{i \beta}\right\}=0$. Therefore $\Gamma=\operatorname{Fr}(G(\alpha \rho, k))$ must be locally connected.

We show next that the set $E=\Gamma \cap\{|z|=1\}$ is of logarithmic capacity zero. Let M be the set of points on $|z|=1$ for which the radial limit values are of modulus one. We let $M=\{|z|=1\}-\tilde{M}$ and observe that cap $(\hat{M})=0$. Because of the decomposition $E=(E \cap M) \cup(E \cap \tilde{M})$ it will suffice to prove that $E \cap M$ is of logarithmic capacity zero.

We divide M into two sets M_{1} and M_{2} in the following manner. Let $M_{1}=$ $\left\{e^{i \theta} \left\lvert\, f^{*}\left(e^{i \theta}\right)=\frac{\alpha}{|\alpha|}\right.\right\}$ and $M_{2}=M-M_{1}$. The set M_{1} is by hypothesis of logarithmic capacity zero and at each point $e^{i \theta} \in M_{2} \cap E$, the radial cluster set $C_{\rho}\left(f, e^{i \theta}\right)$ is a single point $f^{*}\left(e^{i 0}\right) \neq \frac{\alpha}{|\alpha|}$. Each point $e^{i \theta} \in M_{2}$ is arcwise accessible from $G(\alpha, \rho, k)$ and the curvilinear cluster set $C_{\lambda \theta}\left(f, e^{i \theta}\right)$ along any path $\lambda \theta$ lying in $G(\alpha, \rho, k)$ and terminating at $e^{i \theta}$ is contained in $\{|w-\alpha| \leq \rho\}$. The intersection $C_{\rho}\left(f, e^{i \theta}\right) \cap C_{\lambda \theta}\left(f, e^{i \theta}\right)=\phi$ for every point $e^{i \theta} \in E \cap M_{2}$. By a result of Bagemihl [1], $E \cap M_{2}$ is at most a denumerable set and so $E \cap M$ is of logarithmic capacity zero.

Finally, to prove that $\Gamma=\operatorname{Fr}(G(\alpha, \rho, k))$ is a Jordan curve, we must show that the complement of Γ consists of two components G_{1} and G_{2} and that every point of Γ is arcwise accessible from each of G_{1} and G_{2}. Since we may identify $G(\alpha, \rho, k)$ with G_{1}, it is sufficient to show that the complement G of the closure of $G(\alpha, \rho, k)$ is connected and that each point of Γ is arcwise accessible from G. Now E is a closed set of logarithmic capacity zero, so that between any two points of E exists at least one arc of $|z|=1$ belonging to G. Thus if there exists a point of G interior to $|z|<1$ which cannot be joined to a point of $|z|>1$ by an arc lying in G, there must exist a simple closed curve r which lies, except for one point q of E, entirely inside $G(\alpha, \rho, k)$ and which encloses points of G.

Since $f(z)$ is a bounded analytic function in the domain Ω bounded by γ and since except for the one point $q \in r, \limsup _{z \rightarrow 5}|f(z)-\alpha|<\rho$ for all points $\xi \in \gamma=\operatorname{Fr}(\Omega)$, we see by the extended maximum principle [8; p. 14] that $|f(z)-\alpha|<\rho$ for all points in Ω which contradicts the statement that there exists a point of G interior to $|z|<1$ which cannot be joined to a point of $|z|>1$ by an arc lying in G. Hence all points of G which lie in $|z|<1$ can be joined by some arc of G to $|z|>1$, so that the complement of Γ consists of two components G_{1} and G_{2}. The accessibility of each point of Γ from G_{2} is trivial however since E lies on $|z|=1$ and that part of Γ inside $|z|<1$ consists of smooth level curves. Hence Lemma 2 is proved.

Theorem.
Let $w=f(z)$ be a non-constant function of class (U^{*}) and let (c) be any circular disk $|w-a|<\rho$ lying inside $|w|<1$ whose periphery may be tangent to the circumference $|w|=1$. Denote by $G(\alpha, \rho, k)$ any component of the open set $G(\alpha, \rho)=\{z| | f(z)-a \mid<\rho\}$. Let $z=z(\xi)$ be a function which maps $|\xi|<1$ in a one-to-one conformal way onto the simply connected domain $G(\alpha, \rho, k)$. Then, if for every $e^{i \beta}$ on $|w|=1$, cap $\left\{e^{i \theta} \mid f^{*}\left(e^{i \theta}\right)=e^{i \beta}\right\}=0$, the function

$$
W=F(\xi)=\frac{1}{\rho}[f(z(\xi))-\alpha]
$$

is also of class $\left(U^{*}\right)$ and for every $e^{i r}$ on $|W|=1, \operatorname{cap}\left\{e^{i \theta} \mid F^{*}\left(e^{i \theta}\right)=e^{i r}\right\}=0$.
Proof. If the closure of $G(\alpha, \rho, k)$ lies in $D:|z|<1$, the theorem is clearly valid since by a well-known theorem of Carathéodory on the conformal mapping
of Jordan domains $W=F(\xi)$ is continuous on the closed disk $|\xi| \leqq 1$.
We shall now consider the case where $G(\alpha, \rho, k)$ has at least one boundary point on $|z|=1$. We define $E(\alpha, \rho, k)=\operatorname{Fr}(G(\alpha, \rho, k) \cap\{|z|=1\})$ and observe that Lemma 2 states that $\operatorname{cap}(E(\alpha, \rho, k))=0$.

The functions $z=z(\xi)$ and $W=F(\xi)$ are bounded analytic functions in $|\xi|<1$. Let us denote by E_{ξ} the set of points $e^{i \theta}$ on $|\xi|=1$ for which the radial limit $z\left(e^{i \theta}\right)$ exists and the radial limit $\lim _{r \rightarrow 1} F\left(r e^{i \theta}\right)$ either fails to exist or if it does exist is of modulus less than one. Let E_{z} denote the image of $E \xi$ under $z=z(\xi)$ i.e. $\quad E_{z}=\left\{z\left(e^{i \theta}\right) \mid e^{i \theta} \in E_{\xi}\right\}$. The set E_{z} lies on $\Gamma:|z|=1$. Because $E_{z} \subset E(\alpha, \rho$, k) we can conclude that $\operatorname{cap} E_{z}=0$. We shall now prove that the logarithmic capacity of E_{5} is zero.

Let Γ_{ξ} denote the circle $|\xi|=\frac{1}{4}$ and Γ_{z} its image under $z=z(\xi)$. Since $\operatorname{cap}\left(E_{z}\right)=0$, by Pfluger's theorem [9; p. 122] it follows that the extremal length of the totality of paths \hat{J} joining E_{z} to I_{z} is infinite, $\lambda(\hat{J})=\infty$. Now as we observed above, the frontier of $G(\alpha, \rho, k)$ is locally connected and if we consider the subfamily J_{z} of paths joining E_{z} to Γ_{z} and lying in $G(\alpha, \rho, k)$ then, since $J_{z} \subset \hat{J}$, it follows that $\lambda\left(J_{z}\right) \geq \lambda(\hat{J})=\infty$. Because the extremal length is a conformal invariant, we obtain $\lambda\left(J_{5}\right)=\infty$ where J_{5} is the family of preimages of J_{z} in $|\xi|<1$ under the transformation $z=z(\xi)$. It now follows from another application of Pfluger's theorem cited above that $\operatorname{cap}\left(E_{5}\right)=0$. Since E_{5} the set of points $e^{i \theta}$ on $|\xi|=1$ such that the radial limits $\lim _{r \rightarrow 1} F\left(r e^{i \theta}\right)$ either fails to exist or is of modulus less than one, is of logarithmic capacity zero we conclude that $W=F(\xi) \in\left(U^{*}\right)$ and hence $w=f(z)$ is locally of class $\left(U^{*}\right)$ in $|z|<1$.

We now prove that for every $e^{i r}$ on $|W|=1$, if $S_{\mathrm{r}}\left\{e^{i \theta} \mid F^{*}\left(e^{i \theta}\right)=e^{i r}\right\}$ then $\operatorname{cap}(S r)=0$. Let Z_{r} denote the image of S_{r} under $z=z(\xi)$. The set Z_{r} must lie on $|z|=1$ except for at most a denumerable subset in $|z|<1$. Because for every $e^{i \theta} \in Z_{\top}$ the radial limit $f^{*}\left(e^{i \theta}\right)$ exists and equals $\rho e^{i \gamma}+\alpha$, we observe that $\operatorname{cap}\left(Z_{\mathrm{r}}\right)=0$ and thus by the previous argument $\operatorname{cap}\left(S_{\mathrm{r}}\right)=0$ and the proof of the theorem is complete.

For conformal mappings of Riemann surfaces, in addition to proving that one may localize the notion type- $B l$, Maurice Heins also proved that maps which are locally of type- $B l$ and have as range a Riemann surface with positive ideal boundary are also globally of type-Bl. This fact leads one to conjecture that if $w=f(z)$ is locally of class (U^{*}) in $|w|<1$, then it is of class $\left(U^{*}\right)$.

The following example, which Kiyoshi Noshiro has kindly shown to the author answers the conjecture in the negative. The example is based on a result of P. J. Myrberg (see also Noshiro [8, p. 26]). Consider a domain \mathscr{D} obtained by excluding two points α_{1}, α_{2} from the disk $|w|<1$. Let $\widetilde{\mathscr{D}}$ be the universal covering surface of \emptyset. Let $w=f(z)$ be a function which maps the unit disk $|z|<1$ conformally onto $\mathscr{\mathscr { D }}$ in a one-to-one manner. Then, the perfect set E, on $|z|=1$, of essential singularities of $w=f(z)$ must be of linear measure zero but the capacity of E must be positive. The radial cluster set $C_{\rho}\left(f, e^{i \theta}\right)$ does not lie on the circumference $|w|=1$ for every $e^{i 0} \in E$. Therefore, E is considered as the exceptional set in the definition of class (U). The function $w=f(z)$ is locally of class $\left(U^{*}\right)$ in $|w|<1$ because $\widetilde{\mathscr{D}}$ has only logarithmic singularities at $w=\alpha_{1}$ and $w=\alpha_{2}$.

Bibliography

[1] Bagemihl, F.: Curvilinear cluster sets of arbitrary functions, Proc. Nat. Acad. Sci. (U.S.A.), 41, No. 6 (1955), pp. 379-382.
[2] Heins, M.: On the Lindelöf principle, Ann. of Math., 61 (1955), pp. 440-473.
[3] Heins, M.: Lindelöfian maps, Ann. of Math., 62 (1955), pp. 418-446.
[4] Lohwater, A. J.: The boundary values of a class of meromorphic functions, Duke Math. J., 19 (1952), pp. 243-252.
[5] Lohwater, A. J.: The reflection principle and the distribution of values of functions defined in a circle, Ann. Acad. Scient. Fennicae, AI 229 (1956), pp. 1-18.
[6] Lohwater, A. J.: The boundary behavior of meromorphic functions, Ann. Acad. Scient. Fennicae, 250/22 (1958), pp. 1-6.
[7] Noshiro, K.: Contributions to the theory of the singularities of analytic functions, Jap. J. Math., 19 (1958), pp. 299-327.
[8] Noshiro, K.: Cluster sets, Springer-Verlag, Berlin (1960).
[9] Pfluger, A.: Extremallängen und Kapazität, Comment. Math. Helvet., 29 (1955), pp. 120-131.
[10] Storvick, D. A.: On pseudo-analytic functions, Nagoya Math. J., 12 (1957), pp. 131138.
[11] Tsuji, M.: Potential theory in modern function theory, Maruzen, Tokyo (1959).
[12] Whyburn, G. T.: Analytic topology, Amer. Math. Soc. Colloq. Pub., 28 (1942).

Mathematics Research Center

U.S. Army

University of Wisconsin

[^0]: Received June 20, 1963 and, in revised form, August 15, 1963.
 Sponsored by the Mathematics Research Center, U.S. Army, Madison, Wisconsin, under Contract No.: DA-11-022-ORD-2059.

