# ABEL TRANSFORMATIONS INTO $l^{1}$ 

BY<br>J. A. FRIDY


#### Abstract

Let $t$ be a sequence in $(0,1)$ that converges to 0 , and define the Abel matrix $A_{t}$ by $a_{n k}=t_{n}\left(1-t_{n}\right)^{k}$. The matrix $A_{t}$ determines a sequence-to-sequence variant of the classical Abel summability method. The purpose of this paper is to study these transformations as $l-l$ summability methods: e.g., $A_{t}$ maps $l^{1}$ into $l^{1}$ if and only if $t$ is in $l^{1}$. The Abel matrices are shown to be stronger $l-l$ methods than the Euler-Knopp means and the Nörlund means. Indeed, if $t$ is in $l^{1}$ and $\sum x_{k}$ has bounded partial sums, then $A_{t} x$ is in $l^{1}$. Also, the Abel matrix is shown to be translative in an $l-l$ sense, and an $l-l$ Tauberian theorem is proved for $A_{t}$.


1. Introduction. The well-known Abel summability method is a sequence-to-function transformation which can be described as follows: if $x$ is a complex number sequence such that

$$
\lim _{r \rightarrow 1-}(1-r) \sum_{k=0}^{\infty} r^{k} x_{k}=L
$$

then $x$ is Abel summable to $L$. This can be modified into a sequence-tosequence transformation by replacing the continuous parameter $r$ with a sequence $\left\{1-t_{n}\right\}_{n=0}^{\infty}$ that converges to 1 (cf. [3, Theorem 4]). Thus the sequence $x$ is transformed into the sequence $A_{t} x$ whose $n$th term is given by

$$
\left(A_{t} x\right)=t_{n} \sum_{k=0}^{\infty}\left(1-t_{n}\right)^{k} x_{k} .
$$

In order to ensure that $1-t_{n}$ approaches 1 from the left (as in $r \rightarrow 1^{-}$), we shall assume throughout that $0<t_{n}<1$ for all $n$ and $\lim _{n} t_{n}=0$. This transformation is determined by the matrix $A_{t}$ whose $n k$ th term is given by

$$
a_{n k}=t_{n}\left(1-t_{n}\right)^{k} .
$$

The matrix $A_{t}$ is called an Abel matrix.
The summability matrix $A$ is said to be an $l-l$ method provided that $A x$ is in $l^{1}$ whenever $x$ is in $l^{1}$. The summability field $A^{-1}\left[l^{1}\right]$ is denoted by $l_{A}$. In [6] Knopp and Lorentz characterized $l-l$ matrices by the property $\sup _{k} \sum_{n=0}^{\infty}\left|a_{n k}\right|<\infty$. Since the appearance of [6], there have been numerous
studies of general properties of $l-l$ methods, but there are relatively few results about specific $l-l$ methods. This shortage of examples of $l-l$ methods has motivated the present study.

The purpose of this paper is to study the above Abel matrices as $l-l$ matrices. In the next section we determine when $A_{t}$ is an $l-l$ matrix, and then examine the strength of this method by comparing its summability field $l_{A_{t}}$ with some general sequence spaces as well as the summability fields of the methods of Euler-Knopp and Nörlund. In the third section we prove that $A_{t}$ is translative in the $l-l$ setting and also prove an $l-l$ Tauberian theorem for the Abel matrices.
2. The strength of the $A_{t}$ method. If $s$ is a subsequence of $t$, then the matrix $A_{s}$ is obtained by deleting certain rows from $A_{t}$. Therefore, $A_{s} x$ will be a subsequence of $A_{t} x$ provided that $x$ is in the domain of $A_{t}$. Thus the following observation is an immediate consequence of the definition.

Proposition 1. If $s$ is a subsequence of $t$, then $l_{\mathrm{A}_{\mathrm{t}}} \subseteq l_{\mathrm{A}_{s}}$.
We can also observe that in the setting of ordinary convergence, $A_{s}$ includes $A_{t}$ whenever $s$ is a subsequence of $t$. Similarly, every Abel matrix includes the classical Abel summability method.

The sequence $x$ is in the domain of $A_{t}$ if and only if the series $\sum_{k}\left(1-t_{n}\right)^{k} x_{k}$ is convergent for each $n$. Since $\lim _{n} t_{n}=0$, this is equivalent to the assertion that $\sum_{k} x_{k} z^{k}$ is convergent for $|z|<1$. Therefore, we can state a simple description of the domain of $A_{t}$.

Proposition 2. The sequence $x$ is in the domain of the Abel matrix $A_{t}$ if and only if $\lim _{k}\left|x_{k}\right|^{1 / k} \leq 1$.

The first of the main results gives a simple way of determining if $A_{t}$ is an $l-l$ matrix.

Theorem 1. The Abel matrix $A_{t}$ is an $l-l$ matrix if and only if $t$ is in $l^{1}$.
Proof. Since $0<t_{n}<1$, we have

$$
\sum_{n=0}^{\infty}\left|a_{n k}\right|=\sum_{n=0}^{\infty} t_{n}\left(1-t_{n}\right)^{k} \leq \sum_{n=0}^{\infty} t_{n},
$$

for every $k$. Thus if $t$ is in $l^{1}$, the Knopp-Lorentz Theorem guarantees that $A_{t}$ is an $l-l$ matrix. Conversely, if $t$ is not in $l^{1}$, then we consider the sum of the first column of $A_{t}$ :

$$
\sum_{n=0}^{\infty}\left|a_{n, 0}\right|=\sum_{n=0}^{\infty} t_{n}=\infty,
$$

which shows that $A_{t}$ is not an $l-l$ matrix.

The classical Abel summability method is a rather strong method, and the Abel matrices are similarly strong in the $l-l$ setting. The next result gives an indication of how large $l_{A_{t}}$ must be.

Theorem 2. If $A_{t}$ is an l-l matrix and the series $\sum_{k} x_{k}$ has bounded partial sums, then $x$ is in $l_{A_{i}}$.
Proof. In order to apply Abel's summation by parts technique, we define $s_{k}=\sum_{j=0}^{k} x_{j}, s_{-1}=0$, and $\tau_{n}=1-t_{n}$. Then

$$
\begin{aligned}
\left|\sum_{k=0}^{\infty}\left(1-t_{n}\right)^{k} x_{k}\right| & =\left|\sum_{k=0}^{\infty}\left(s_{k}-s_{k-1}\right) \tau_{n}^{k}\right| \\
& =\left|\sum_{k=0}^{\infty} s_{k}\left(\tau_{n}^{k}-\tau_{n}^{k+1}\right)\right| \\
& \leq \sup _{k}\left|s_{k}\right| .
\end{aligned}
$$

Hence,

$$
\left|\left(A_{t} x\right)_{n}\right| \leq t_{n} \sup _{k}\left|s_{k}\right|
$$

so $A_{t} x$ is in $l^{1}$ whenever $t$ is in $l^{1}$.
Corollary. If $A_{t}$ is an l-l matrix, then $l_{A_{t}}$ contains all sequences $x$ such that $\sum x_{k}$ is conditionally convergent.

We can give a further indication of the size of $l_{A_{t}}$ by showing that if $A_{t}$ is an $l-l$ matrix then $l_{A_{1}}$ contains an unbounded sequence. Consider the sequence $x$ given by $x_{k}=(-1)^{k}(k+1)$. Differentiation of the power series $\sum_{k}(-z)^{k}$ yields

$$
\sum_{k=0}^{\infty}(-1)^{k}(k+1) z^{k}=(1+z)^{-2}, \quad \text { if } \quad|z|<1
$$

Therefore

$$
\left(A_{t} x\right)_{n}=t_{n}\left(2-t_{n}\right)^{-2} \leq t_{n} .
$$

Hence, if $A_{t}$ is an $l-l$ matrix, then $t$ is in $l^{1}$, so $x$ is in $l_{\mathrm{A}_{t}}$.
The Euler-Knopp mean of order $r$ (see [5, pp. 56-60]) is given by the matrix $E_{r}$ whose $n k$ th entry is

$$
E_{r}[n, k]= \begin{cases}\binom{n}{k}(1-r)^{n-k} r^{k}, & \text { if } \quad k \leq n \\ 0, & \text { if } \quad k>n\end{cases}
$$

In [2, Theorem 4] it was shown that $E_{r}$ is an $l-l$ matrix if and only if $0<r \leq 1$. The next result compares the $l-l$ strength of $E_{r}$ with that of $A_{t}$.

Theorem 3. If $A_{t}$ is an l-l matrix, then $l_{\mathrm{E}_{r}} \subset l_{\mathrm{A}_{t}}$ if and only if $r \geq 1 / 2$.

Proof. The asserted inclusion is equivalent to the statement that $A_{t} E_{r}^{-1}$ is an $l-l$ matrix. In order to simplify typography, let $s=1 / r$ and consider $A_{t} E_{s}=$ $A_{t} E_{r}^{-1}$; the $n k$ th entry is given by

$$
\begin{align*}
\left(A_{t} E_{s}\right)[n, k] & =t_{n} \sum_{j=k}^{\infty}\left(1-t_{n}\right)^{i}\left(\frac{j}{k}\right)(1-s)^{j-k} s^{k}  \tag{*}\\
& =t_{n} s^{k}\left(1-t_{n}\right)^{k}\left[1-\left(1-t_{n}\right)(1-s)\right]^{-k-1}
\end{align*}
$$

provided that $\left|\left(1-t_{n}\right)(1-s)\right|<1$. This proviso is equivalent to

$$
1+\frac{-1}{1-t_{n}}<s<1+\frac{1}{1-t_{n}} .
$$

Since $\lim _{n} t_{n}=0$, we conclude that $A_{t} E_{s}$ exists if and only if $0<s \leq 2$, i.e., $r \geq 1 / 2$. Once it is guaranteed that $A_{t} E_{s}$ exists, we prove that it is an $l-l$ matrix by showing that the coefficient of $t_{n}$ in $(*)$ is bounded; thus $A_{t} E_{s}$ will satisfy the Knopp-Lorentz property. Consider the following:

$$
\begin{aligned}
s^{k}\left(1-t_{n}\right)^{k}\left[1-\left(1-t_{n}\right)(1-s)\right]^{-k-1} & =\left[\frac{s\left(1-t_{n}\right)}{t_{n}+s\left(1-t_{n}\right)}\right]^{k} \frac{1}{t_{n}+s\left(1-t_{n}\right)} \\
& <\frac{1}{t_{n}+s\left(1-t_{n}\right)}
\end{aligned}
$$

because $0<t_{n}<1$ and $s>0$. Hence, $l_{\mathrm{E}_{r}} \subseteq l_{\mathrm{A}_{1}}$ if and only if $r \geq 1 / 2$. To show that $l_{E_{r}} \neq l_{A_{t}}$, we show the existence of a sequence $x$ such that $\sum x_{k}$ is conditionally convergent and $\sum_{k=0}^{\infty}\left|(\Delta x)_{k}\right| \sqrt{ } k<\infty$. Then Theorem 2 ensures that $A_{t} x$ is in $l^{1}$, and the Tauberian result in [4, Theorem 4] implies that $E_{r} x$ cannot be in $l^{1}$ since $x$ is not in $l^{1}$. We wish to have $x_{k}$ positive throughout a block $B_{i}$ of consecutive terms and then alternate to negative values in the next block. Also, $\left|(\Delta x)_{k}\right|$ is constant throughout the $i$ th block and $\Delta x_{k}$ changes sign only at the "middle term" of the block, say $k=m(i)$. Therefore in the $i$ th block, $\left|x_{k}\right|$ increases from 0 to $\left|x_{m(i)}\right|$, then decreases to 0 . If the block contains $2 l_{i}$ terms, it follows that

$$
A_{i}=\sum_{k \in B_{i}}\left|x_{k}\right|=l_{i}^{2}\left|(\Delta x)_{m(i)}\right| .
$$

Also, the middle of the $i$ th block can be located by

$$
m(i)=2 \sum_{j=1}^{i} l_{j}-l_{i}
$$

Now choose $l_{i}$ and $(\Delta x)_{k}$ satisfying

$$
l_{i} \sim \frac{3}{2} i^{2} \quad \text { and } \quad\left|(\Delta x)_{k}\right| \sim k^{-5 / 3} .
$$

Then $m(i) \sim i^{3}$ and

$$
A_{i}=\left(\frac{3}{2} i^{2}\right)^{2}\left|\left(\Delta x_{i}\right)^{3}\right| \sim \frac{9}{4} i^{-1} .
$$

Also, $\left|(\Delta x)_{k} k^{1 / 2}\right| \sim k^{-7 / 6}$, so $\sum_{k=1}^{\infty}\left|(\Delta x)_{k}\right| \sqrt{ } k<\infty$ and $\sum x_{k}$ is conditionally convergent.

The strength of the Abel matrices can also be demonstrated by comparing them with the Nörlund matrices:
where $p$ is a non-negative number sequence with $p_{0}>0$. In [2, Theorem 2] it was proved that $N_{p}$ is an $l-l$ matrix if and only if $p$ is in $l^{1}$. Using techniques developed by J. DeFranza [1], one can show that if $A_{t}$ and $N_{p}$ are $l-l$ matrices, then $l_{N_{\mathrm{p}}} \subseteq l_{\mathrm{A}}$. The proof of this result will appear elsewhere with DeFranza's work.
3. Translativity and Tauberian Theorems. Following the concept of translativity in ordinary summability, we say that the matrix $A$ is $l$-translative provided that each of the sequences $T x$ and $S x$ is in $l_{A}$ whenever $x$ is $l_{A}$, where $T x=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ and $S x=\left\{0, x_{0}, x_{1}, \ldots\right\}$.

Theorem 4. Every l-l Abel matrix is l-translative.
Proof. Consider the calculation

$$
\begin{aligned}
\left(A_{t} T x\right)_{n} & =\sum_{k=0}^{\infty} t_{n}\left(1-t_{n}\right)^{k} x_{k+1} \\
& =\frac{1}{1-t_{n}}\left\{\sum_{i=0}^{\infty} t_{n}\left(1-t_{n}\right)^{i} x_{i}-t_{n} x_{0}\right\} \\
& =\frac{1}{1-t_{n}}\left\{\left(A_{t} x\right)_{n}-t_{n} x_{0}\right\} .
\end{aligned}
$$

It is clear that the last expression represents a sequence in $l^{1}$ whenever $t$ and $A_{t} x$ are in $l^{1}$. Therefore, $l_{\mathrm{A}_{t}} \subseteq l_{\mathrm{A}_{t} T}$. Similarly,

$$
\left(A_{t} S x\right)_{n}=\left(1-t_{n}\right)(A x)_{n}
$$

which shows that $l_{\mathrm{A}} \subseteq l_{\mathrm{A}_{\mathrm{t}} s}$. Hence, $A_{t}$ is $l$-translative.
The final result is an $l-l$ Tauberian theorem for the Abel matrices. The concept of an $l-l$ Tauberian theorem was introduced in [4], where such results were proved for Euler-Knopp and Borel matrices. The original Tauberian theorem [7] can be stated (in matrix form) as follows:
if $x$ is a sequence such that $A_{t} x$ is convergent and $\left\{j(\Delta x)_{j}\right\}_{j=0}^{\infty}$ is in $c_{0}$, then $x$ itself is convergent.

We now prove that $l-l$ analogue of this statement.

Theorem 5. Let $A_{t}$ be an $l-l$ Abel matrix; if $x$ is a sequence such that $A_{t} x$ and $\left\{j(\Delta x)_{j} j_{j=0}^{\infty}\right.$ are in $l^{1}$, then $x$ itself is in $l^{1}$.

Proof. In order to show that $A_{t} x-x$ is in $l^{1}$ we write

$$
\left(A_{t} x\right)_{n}-x_{n}=\sum_{k=0}^{\infty} t_{n}\left(1-t_{n}\right)^{k}\left(x_{k}-x_{n}\right) .
$$

Letting $a_{n k}=t_{n}\left(1-t_{n}\right)^{k}$, we shall prove that

$$
\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} a_{n k}\left|x_{k}-x_{n}\right|<\infty
$$

Proceeding by exactly the same steps as in the proof of Theorem 3 of [4], we deal with this sum in two parts:

$$
C=\sum_{n=0}^{\infty} \sum_{k=0}^{n-1} a_{n k}\left|x_{k}-x_{n}\right|
$$

and

$$
D=\sum_{n=0}^{\infty} \sum_{k=n+1}^{\infty} a_{n k}\left|x_{k}-x_{n}\right| .
$$

This leads to

$$
C \leq \sum_{j=0}^{\infty}\left|(\Delta x)_{j}\right| C_{i} \quad \text { and } \quad D \leq \sum_{j=0}^{\infty}\left|(\Delta x)_{j}\right| D_{i}
$$

where

$$
C_{\mathrm{j}}=\sum_{n=j+1}^{\infty} \sum_{k=0}^{j} a_{n k} \quad \text { and } \quad D_{\mathrm{j}}=\sum_{n=0}^{j} \sum_{k=j+1}^{\infty} a_{n k} .
$$

By showing that $C_{j}=0(j)$ and $D_{j}=0(j)$, we will prove that $\sum_{j=0}^{\infty}\left|(\Delta x)_{i}\right| j<\infty$ implies that $A_{t} x-x$ is in $l^{1}$. These $0(j)$ assertions are easily verified since $A_{t}$ is both $l-l$ and regular; for

$$
C_{j}=\sum_{k=0}^{j} \sum_{n=j+1}^{\infty} a_{n k} \leq(j+1) \sup _{k} \sum_{n=1}^{\infty}\left|a_{n k}\right|=0(j),
$$

and

$$
\begin{aligned}
D_{i} & =\sum_{n=0}^{j} \sum_{k=j+1}^{\infty} a_{n k} \leq \sum_{n=0}^{j} \sup _{n} \sum_{k=0}^{\infty}\left|a_{n k}\right| \\
& =\sum_{n=0}^{j} 1=j+1=0(j) .
\end{aligned}
$$

Thus the proof is complete.

## References

1. J. DeFranza, Nörlund methods of summability that map the set of absolutely convergent series into itself, Ph.D. Dissertation, Kent State Univ., Kent, Ohio, 1979.
2. J. A. Fridy, Absolute summability matrices that are stronger than the identity mapping, Proc. Amer. Math. Soc. 47 (1975), pp. 112-118.
3. -, Tauberian theorems via block dominated matrices, Pacific J. Math. 81 (1979), pp. 81-91.
4. J. A. Fridy and K. L. Roberts, Some Tauberian theorems for Euler and Borel summability, Internat. J. Math. \& Math. Sci., 3 (1980) pp. 731-738.
5. R. L. Powell and S. M. Shah, Summability Theory and Its Applications. Van Nostrand Reinhold Co., London, 1972.
6. K. Knopp and G. G. Lorentz, Beiträge zur absoluten Limitierung, Arch Math. 2 (1949), pp. 10-16.
7. A. Tauber, Ein Satz aus der Theorie der Unendlichen Reihen, Monatash. Math. Phys. 8 (1897), pp. 273-277.

Kent State University Kent, Ohio

