Covering the integers with

ARITHMETIC PROGRESSIONS

R.J. Simpson

A regular covering system is a collection of arithmetic progressions such that every integer belongs to at least one arithmetic progression in the collection, and no proper subcollection has this property.

An exact covering system is a regular covering system with the property that every integer belongs to exactly one of the arithmetic progressions.

The thesis contains three principal results.

1. Let P be the lowest common multiple of the common differences of the arithmetic progressions in a regular covering system and suppose P has prime factorisation

$$
P=\prod_{i=1}^{t} p_{i}^{\alpha_{i}}
$$

Then the number of arithmetic progressions in the collection is at least

$$
\sum_{i=1}^{t} \alpha_{i}\left(p_{i}-1\right)+1
$$

A similar result has been proved by Korec [4] applied to exact covering systems. In both cases the results are the best possible.
2. An exact covering system in which each common difference occurs at most M times is called an ECS(M). I prove the following result. If

[^0]$p_{1}<p_{2} \cdots<p_{t}$ are the distinct prime divisors of the lowest common multiple of the common differences of the arithmetic progressions in an ECS (M) then
$$
M \prod_{i=1}^{t-1} p_{i} /\left(p_{i}-1\right) \geqslant p_{t}
$$

Burshtein [1] showed that a similar inequality applied in the case of a special type of exact covering system called a naturally exact covering system. Our result has several consequences. For instance it follows that in any $\operatorname{ECS}(M)$ we have $p_{1} \leqslant M$ and that there exists a number $B(M)$ such that any ECS (M) contains an arithmetic progression with common difference less than $B(M)$.
3. The last part of this thesis concerns the following conjecture due to Crittenden and Vanden Eynden [3].

Let S be the union of n arithmetic progressions, each with common difference not less than k where $k \leqslant n$. It is conjectured that if S contains the closed interval $\left[1, k 2^{n-k+1}\right]$ then S contains all integers.

Crittenden and Vanden Eynden [2] proved the conjecture in the (equivalent) cases corxesponding to $k=1$ and $k=2$. I prove the conjecture in the case $k=3$ and show that if a counterexample exists for a given k then a counterexample exists for that k with the following properties:
(a) Each common difference in the counterexample is either a prime $\geqslant k$ or a product of primes $<k$.
(b) If p is a prime, $p \geqslant k$, then the number of arithmetic progressions with common difference p is less than $\log p / \log 2$.
(c) The cardinality of the collection is less than an explicit function of k, that function being asymptotically equal to $3 k(1+1 / \log 2)$ as $k \rightarrow \infty$.

References

[1] N. Burshtein, "On natural exactly covering systems of congruences having moduli occurring at most N times", Discrete Math. 14 (1976), 205-214.
[2] R.B. Crittenden and C.L. Vanden Eynden, "Any n arithmetic progressions covering the first 2^{n} integers cover all the integers", Proc. Amer. Math. Soc. 24 (1970), 475-481.
[3] R.B. Crittenden and C.L. Vanden Eynden, "The union of arithmetic progressions with differences not less than $k^{\prime \prime}$, Am. Math. Monthly 79 (1972), 630.
[4] I. Korec, "On a generalisation of Mycielski's and Znam's conjectures about coset decomposition of Abelian Groups", Fund. Math. 85 (1974), 41-48.

South Australian Institute of Technology,
Whyalla Campus,
Nicholson Avenue,
Whyalla Norrie. S.A. 5608.

[^0]: Received 3 May 1985. Thesis submitted to the University of Adelaide, January 1985. Degree approved April 1985. Supervisor: Dr E.J. Pitman.

 Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/85 $\$ \mathrm{~A} 2.00+0.00$.

