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Abstract

By a theorem of Suslin, a Tor-unital (not necessarily unital) ring satisfies excision in
algebraic K-theory. We give a new and direct proof of Suslin’s result based on an exact
sequence of categories of perfect modules. In fact, we prove a more general descent result
for a pullback square of ring spectra and any localizing invariant. Our descent theorem
contains not only Suslin’s result, but also Nisnevich descent of algebraic K-theory for
affine schemes as special cases. Moreover, the role of the Tor-unitality condition becomes
very transparent.

Introduction

One of the main achievements in the algebraic K-theory of rings is the solution of the excision
problem, first rationally by Suslin and Wodzicki [SW92] and later integrally by Suslin [Sus95]:
for a two-sided ideal I in a unital ring A one defines the relative K-theory spectrum K(A, I)
as the homotopy fibre of the map of K-theory spectra K(A)→ K(A/I), so that its homotopy
groups K∗(A, I) fit in a long exact sequence

· · ·→ Ki(A, I)→ Ki(A)→ Ki(A/I)→ Ki−1(A, I)→ · · · .
If I is a not necessarily unital ring, one defines K∗(I) := K∗(Z n I, I) where Z n I is the
unitalization of I. For every unital ring A containing I as a two-sided ideal there is a canonical
map Z n I → A. It induces a map K∗(I)→ K∗(A, I) and one says that I satisfies excision in
algebraic K-theory if this map is an isomorphism for all such A.

Equivalently, I satisfies excision in algebraic K-theory if, for every ring A containing I as a
two-sided ideal and any ring homomorphism A→ B sending I isomorphically onto an ideal of
B, the pullback square of rings

A //

��

A′

��

B // B′
(1)

where A′ = A/I, B′ = B/I induces a homotopy cartesian square of non-connective K-theory
spectra.

K(A) //

��

K(A′)

��

K(B) // K(B′)

(2)

A ring I is called Tor-unital if TorZnIi (Z,Z) = 0 for all i > 0. Every unital ring is Tor-unital,
since if I is unital, then Zn I ∼= Z× I and the projection to Z is flat.
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Theorem 1 (Suslin). If I is Tor-unital, then I satisfies excision in algebraic K-theory.

In fact, both statements are equivalent [Sus95, Theorem A]. For Q-algebras, this was proven
before by Suslin and Wodzicki [SW92, Theorem A]. Wodzicki [Wod89] gives many examples of
Tor-unital Q-algebras, for instance all C∗-algebras. These results are the main ingredients in the
proof of Karoubi’s conjecture about algebraic and topological K-theory of stable C∗-algebras in
[SW92, Theorem 10.9]. On the other hand, by work of Morrow [Mor18] ideals I in commutative
noetherian rings are pro-Tor-unital in the sense that the pro-groups {TorZnI

n

i (Z,Z)}n vanish for
all i > 0.

Suslin’s proof of Theorem 1 uses the description of algebraic K-theory in terms of Quillen’s
plus-construction and relies on a careful study of the homology of affine groups. By completely
different methods we prove the following generalization of Theorem 1.

Theorem 2. Assume that (1) is a homotopy pullback square of ring spectra such that the
multiplication map A′ ⊗A A′ → A′ is an equivalence. Then the square (2) of non-connective
K-theory spectra is homotopy cartesian.

Here the tensor denotes the derived tensor product, and K-theory is the non-connective
K-theory of perfect modules.

Example 3. Assume that (1) is a diagram of discrete rings. When viewed as a diagram of ring
spectra, this is a homotopy pullback square if and only if the induced sequence of abelian groups

0→ A→ A′ ⊕B→ B′→ 0

is exact. The multiplication map A′⊗AA′→ A′ is an equivalence if and only if TorAi (A′, A′) = 0
for all i > 0 and the ordinary tensor product of A′ with itself over A is isomorphic to A′ via the
multiplication.

There are two basic cases where both conditions are satisfied: the first one is that A′ = A/I for
a Tor-unital two-sided ideal I in A (see Example 24). This gives Suslin’s result. The second one
is that (1) is an elementary affine Nisnevich square, i.e. all rings are commutative, A′ = A[f−1]
is a localization of A, A → B is an étale map inducing an isomorphism A/(f) ∼= B/(f), and
B′ = B[f−1] (see Example 25). Note that by [AHW17, Proposition 2.3.2] the family of coverings
of the form {Spec(A[f−1]) → Spec(A), Spec(B) → Spec(A)} generate the Nisnevich topology
on the category of affine schemes (of finite presentation over some base). Thus Theorem 2 also
implies Nisnevich descent for the algebraic K-theory of affine schemes.

In general, the condition that A′⊗AA′→ A′ be an equivalence is equivalent to LMod(A)→
LMod(A′) being a localization, where LMod denotes the∞-category of left modules in spectra. In
particular, under this condition LMod(A′) is a Verdier quotient of LMod(A). The usual method
that is used, for example, to produce localization sequences in K-theory (see [Sch11, § 3] for an
overview, [NR04, Theorem 0.5] for the case of a non-commutative localization where a similar
condition on Tor-groups appears), would be to apply Neeman’s generalization of Thomason’s
localization theorem [Nee92, Theorem 2.1] in order to deduce that also the induced functor on the
subcategories of compact objects, which are precisely the perfect modules, Perf(A)→ Perf(A′)
is a Verdier quotient. However, Neeman’s theorem does not apply here, since the kernel of
LMod(A)→ LMod(A′) need not be compactly generated. Indeed, there is an example by Keller
[Kel94, § 2] of a ring map A→ A′ satisfying the hypotheses of Theorem 2, where this kernel has
no non-zero compact objects at all and Perf(A′) is not a Verdier quotient of Perf(A).
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Instead, under the conditions of Theorem 2 we prove a derived version of Milnor patching
(Theorem 26) saying that (1) induces a pullback diagram of ∞-categories of left modules, i.e.

LMod(A) ' LMod(A′)×LMod(B′) LMod(B).

Its proof is inspired by a similar patching result for connective modules over connective ring
spectra due to Lurie [Lur17b, Theorem 16.2.0.2]. We use this to show that LMod(A) can be
embedded as a full subcategory in the lax pullback LMod(A′)×→LMod(B′) LMod(B) (see § 1) and
to identify the Verdier quotient with LMod(B′). Now the Thomason–Neeman theorem applies
and gives an exact sequence of small stable ∞-categories

Perf(A)
i−→ Perf(A′)×→Perf(B′) Perf(B)

π−→ Perf(B′), (3)

i.e. the composite π ◦ i is zero and the induced functor from the Verdier quotient of the middle
term by Perf(A) to Perf(B′) is an equivalence up to idempotent completion. This implies the
assertion of Theorem 2 not only for algebraic K-theory, but for any invariant which can be
defined for small stable∞-categories and which sends exact sequences of such to fibre sequences.
In fact, in § 1 we prove the existence of the analog of the exact sequence (3) for any so-called
excisive square of small stable ∞-categories (Theorem 15). In § 2 we then prove that any square
of ring spectra satisfying the hypotheses of Theorem 2 yields an excisive square of ∞-categories
of perfect modules (see Theorem 28). These are the two main results of the paper.

Remark 4. The failure of excision in K-theory is measured in (topological) cyclic homology:
Cortiñas [Cor06] proved that the fibre of the rational Goodwillie–Jones Chern character from
rational algebraic K-theory to negative cyclic homology satisfies excision, i.e. sends the pullback
square of rings (1) with B → B′ surjective to a homotopy pullback square of spectra without
any further condition. Geisser and Hesselholt [GH06] proved the analogous result with finite
coefficients, replacing the Goodwillie–Jones Chern character by the cyclotomic trace map from
K-theory to topological cyclic homology. Both use pro versions of the results of Suslin and
Wodzicki. Building on these results, Dundas and Kittang [DK08, DK13] prove that the fibre of the
cyclotomic trace satisfies excision also for connective ring spectra, and with integral coefficients
(under the technical assumption that both, π0(B)→ π0(B′) and π0(A′)→ π0(B′) are surjective).

In this general situation, i.e. without assuming any Tor-unitality condition, one still has the
sequence (3), but the induced functor f from the Verdier quotient to Perf(B′) need not be an
equivalence up to idempotent completion. It would therefore be interesting to find conditions
on an invariant E that guarantee that E(f) is still an equivalence. From the results mentioned
above we know that E(f) is an equivalence for E the fibre of the cyclotomic trace.

We use∞-categorical language. More concretely, we use the model of quasi-categories, which
are the fibrant objects for the Joyal model structure on simplicial sets, as developed by Joyal
[Joy08] and Lurie in his books [Lur09, Lur17a, Lur17b].

1. Pullbacks and exact sequences of stable ∞-categories

In this section, we discuss the pullback and the lax pullback of a diagram A → C ← B of
∞-categories. In the stable case, we relate these by exact sequences. We further prove our first
main result (Theorem 18) saying that any excisive square of small stable ∞-categories (see
Definition 14) yields a pullback square upon applying any localizing invariant.
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Let I = ∆[1] ∈ sSet be the standard simplicial 1-simplex. For any ∞-category C, we denote
by CI = Fun(I, C) the arrow category of C. The inclusion {0, 1} ⊆ I induces the source and
target maps s, t : CI → C.

Consider a diagram of ∞-categories as follows.

B

q

��

A
p
// C

(4)

Definition 5. The lax pullback A×→C B of (4) is defined via the pullback diagram

A×→C B

(pr1,pr2)

��

pr3 // CI

(s,t)

��

A×B p×q
// C × C

(5)

in simplicial sets.

By [Joy08, ch. 5, Theorem A] the map CI
(s,t)
−−→ C ×C is a categorical fibration, i.e. a fibration

in the Joyal model structure. Since the lower and upper right corners in (5) are∞-categories, this
implies that A×→C B is indeed an ∞-category, and that (5) is homotopy cartesian with respect
to the Joyal model structure.

Remark 6. The objects of A×→C B are triples of the form (a, b, g : p(a)→ q(b)), where a, b are
objects of A, B respectively and g is a morphism p(a)→ q(b) in C. If (a, b, g) and (a′, b′, g′) are
two objects of A×→C B, the mapping space between these sits in a homotopy cartesian diagram
of spaces.

Map((a, b, g), (a′, b′, g′)) //

��

MapCI (g, g′)

��

MapA(a, a′)×MapB(b, b′) //MapC(p(a), p(a′))×MapC(q(b), q(b′))

Indeed, using Lurie’s HomR-model for the mapping spaces [Lur09, § 1.2.2] gives a cartesian
diagram of simplicial sets in which the right vertical map is a Kan fibration by [Lur09, Lemma
2.4.4.1].

Remark 7. Denote by C(I) ⊆ CI the full subcategory spanned by the equivalences in C. It follows
from [Joy08, Proposition 5.17] that the pullback of the diagram

C(I)

(s,t)
��

A×B p×q
// C × C

in simplicial sets models the homotopy pullback of ∞-categories A×C B. In particular, we can
identify A×C B with the full subcategory of A×→C B spanned by those objects (a, b, g) where g
is an equivalence in C.
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Lemma 8. (i) Let K be a simplicial set and δ : K → A×→C B a diagram. If the compositions of
δ with the projections to A and B admit colimits and these colimits are preserved by p and q
respectively, then δ admits a colimit, which is preserved by the projections to A and B. The
same statement holds for diagrams in A×C B.

(ii) If A and B are idempotent complete, then A×→C B and A×CB are idempotent complete.
(iii) If A, B, and C are presentable and p and q commute with colimits, then both ∞-

categories A×→C B and A ×C B are presentable. Moreover, a functor from a presentable
∞-category D to A ×C B or A×→C B preserves colimits if and only if the compositions with
the projections to A and B do.

(iv) If A, B, and C are stable, and p and q are exact, then both ∞-categories A×→C B and
A×C B are stable.

For the definition of a presentable ∞-category see [Lur09, Definition 5.5.0.1], for that of an
idempotent complete ∞-category [Lur09, § 4.4.5], and for that of a stable ∞-category [Lur17a,
Definition 1.1.1.9].

Proof. (i) The assumptions and [Lur09, Proposition 5.1.2.2] (applied to the projection C×I→ I)
imply that the composition of δ with the projection to CI also admits a colimit. Now the claim
follows from [Lur09, Lemmas 5.4.5.4, 5.4.5.2].

(ii) Let Idem be the nerve of the 1-category with a single objectX and Hom(X,X) = {idX , e},
where e ◦ e = e. An ∞-category D is idempotent complete if and only if any diagram Idem→ D
admits a colimit.1 It follows from [Lur09, Proposition 4.4.5.12, Lemma 4.3.2.13] that every functor
between ∞-categories D→ D′ preserves colimits of diagrams indexed by Idem. Hence the claim
follows from part (i).

By construction of the lax pullback, it suffices to check the remaining assertions for pullbacks
and functor categories.

(iii) For the functor category see [Lur09, Proposition 5.5.3.6, Corollary 5.1.2.3] and for the
pullback [Lur09, Proposition 5.5.3.12].

(iv) See [Lur17a, Proposition 1.1.3.1] for the functor category, [Lur17a, Proposition 1.1.4.2]
for the pullback. 2

From now on, we will mainly be concerned with stable∞-categories. Recall that by [Lur17a,
Theorem 1.1.2.14] the homotopy category Ho(A) of a stable ∞-category A is a triangulated
category.

Recollection 9. We recall the∞-categorical version of Verdier quotients. For a detailed discussion
see [BGT13, § 5]. Let PrL

st denote the ∞-category of presentable stable ∞-categories and left
adjoint (equivalently, colimit preserving) functors, and let Catex

∞ be the ∞-category of small
stable∞-categories and exact functors. Both admit small colimits. Given a fully faithful functor
A→ B in either of these, B/A denotes its cofibre. By [BGT13, Proposition 5.9, 5.14] the functor
B→ B/A induces an equivalence of the Verdier quotient Ho(B)/Ho(A) with Ho(B/A).

A sequence A → B → C in PrL
st or Catex

∞ is called exact if the composite is zero, A → B
is fully faithful, and the induced map B/A→ C is an equivalence after idempotent completion.
It follows from [BGT13, Proposition 5.10] and the above that A→ B → C is exact if and only
Ho(A)→ Ho(B)→ Ho(C) is exact (up to factors) in the sense of triangulated categories (see
e.g. [Sch11, Definition 3.1.10]).

1 This is Corollary 4.4.5.15 in the 2017 version of the book Higher topos theory by Lurie, available at the author’s
homepage http://www.math.harvard.edu/∼lurie/.
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If C is a localization of B, i.e. the functor B → C has a fully faithful right adjoint, and
A → B induces an equivalence of A with the kernel of B → C, i.e. the full subcategory of
objects of B that map to a zero object in C, then A→ B→ C is exact.

For the remainder of this section, we assume that (4) is a diagram of stable ∞-categories
and exact functors.

The pair of functors B→ A×B, b 7→ (0, b), and B→ CI , b 7→ (0→ q(b)), induces a functor
r : B→ A×→C B. Similarly, the functors A→ A×B, a 7→ (a, 0), and A→ CI , a 7→ (p(a)→ 0),
induce a functor s : A→ A×→C B.

Proposition 10. Assume that (4) is a diagram of stable ∞-categories and exact functors. We
have a split exact sequence

B r
//A×→C B pr1

//

pr2

{{
A,

s
yy

i.e. the sequence is exact, pr2 and s are right adjoints of r, pr1, respectively, and idB ' pr2 ◦ r,
pr1 ◦ s ' idA via unit and counit, respectively.

Proof. By construction, we have idB = pr2 ◦r and we claim that this is a unit transformation for
the desired adjunction (see [Lur09, Proposition 5.2.2.8]). That is, we have to show that for any
object b in B and (a′, b′, g′) in A×→C B the map Map(r(b), (a′, b′, g′)) → Map(b, b′) induced by
pr2 is an equivalence. This map is the second component of the left vertical map in the following
diagram.

Map(r(b), (a′, b′, g′)) //

��

Map((0→ q(b)), g′)

��

Map(0, a′)×Map(b, b′) //Map(0, p(a′))×Map(q(b), q(b′))

By Remark 6 this diagram is homotopy cartesian. Since the functor C → CI , c 7→ (0→ c), is a
left adjoint of t : CI → C, the right vertical map is an equivalence. Hence the left vertical map
is an equivalence (use that Map(0, a′) and Map(0, p(a′)) are contractible).

Similarly, one shows that s is a right adjoint of pr1. Since the counit pr1 ◦ s → idA is an
equivalence, s is fully faithful. Since moreover r induces an equivalence of B with the kernel of
pr1, the sequence in the statement of the lemma is exact by Recollection 9. 2

We let π be the composition of functors A×→C B
pr3−−→ CI

Cone−−−→ C, where Cone: CI → C sends
a morphism in C to its cofibre.

Proposition 11. Assume that (4) is a diagram of stable ∞-categories and exact functors.
Assume furthermore that q : B → C admits a fully faithful right adjoint v : C → B. Then
the composite

ρ : C
v−→ B

r−→ A×→C B

is a fully faithful right adjoint of π.

Proof. Since v is fully faithful by assumption, and r is fully faithful by Proposition 10, the
functor ρ is fully faithful. The functor Cone: CI → C has the right adjoint β mapping c to
(0 → c) [Lur17a, Remark 1.1.1.8]. By the construction of r we have a canonical equivalence
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pr3 ◦ r ' β ◦ q. Hence the counit of the adjoint pair (Cone, β) induces a natural transformation
π ◦ r = Cone ◦ pr3 ◦ r ' Cone ◦ β ◦ q→ q and hence π ◦ r ◦ v→ q ◦ v. Composing with the counit
of the adjoint pair (q, v) we get a natural transformation η : π ◦ ρ = π ◦ r ◦ v → idC . We claim
that η is a counit transformation for the desired adjunction. This will imply the claim by [Lur09,
Proposition 5.2.2.8]. We thus have to show that the composition

Map((a, b, g), ρ(c))
π−→ Map(π((a, b, g)), π(ρ(c)))

η−→ Map(π((a, b, g)), c) (6)

is an equivalence for every object (a, b, g) in A×→C B and any object c in C.
From Remark 6 we have the following homotopy pullback square of spaces.

Map((a, b, g), ρ(c))
pr3 //

��

Map(g, (0→ q(v(c))))

��

Map(a, 0)×Map(b, v(c)) //Map(p(a), 0)×Map(q(b), q(v(c)))

(7)

Since v is fully faithful, q(v(c)) ' c and the lower horizontal map is an equivalence by adjunction.
Hence the upper horizontal map pr3 is an equivalence, too. The (Cone, β)-adjunction yields an
equivalence

Map(g, (0→ q(v(c))))
'−→ Map(Cone(g), q(v(c))). (8)

By construction, (6) is the composition of the equivalences pr3 in (7) and (8) and the map
induced by the counit q(v(c))→ c, which is an equivalence by fully faithfulness of v. Hence (6)
is an equivalence, as desired. 2

Corollary 12. Assume that (4) is a diagram in PrL
st. If the right adjoint of B → C is fully

faithful, then the sequence

A×C B→ A×→C B
π−→ C

is exact.

Proof. An object (a, b, g) of A×→C B belongs to A×CB if and only if g is an equivalence, if and only
if Cone(g) ' 0. This shows that the composite is trivial and that A×C B is precisely the kernel
of π. The claim now follows, since π admits a fully faithful right adjoint by Proposition 11. 2

Let A′ be a small stable ∞-category. Then the ∞-category Ind(A′) of Ind-objects of
A′ [Lur09, Definition 5.3.5.1] is presentable [Lur09, Theorem 5.5.1.1] and stable [Lur17a,
Proposition 1.1.3.6]. A stable ∞-category A is called compactly generated if there exists a small
stable ∞-category A′ and an equivalence Ind(A′) ' A (see [Lur09, Definition 5.5.7.1] and the
text following it). If this is the case, then A′ → A induces an equivalence of the idempotent
completion of A′ [Lur09, § 5.1.4] with the full stable subcategory Aω of the compact objects in
A [Lur09, Lemma 5.4.2.4]. In particular, if A is compactly generated, Aω is (essentially) small
and Ind(Aω) ' A. Whether a stable∞-category is idempotent complete or compactly generated
only depends on its homotopy category [Lur17a, Lemma 1.2.4.6, Remark 1.4.4.3].

Proposition 13. Assume that (4) is a diagram in PrL
st in which A and B are compactly

generated and the functors p : A→ C and q : B→ C map compact objects to compact objects.
Then A×→C B is compactly generated as well and (A×→C B)ω ' Aω×→CωBω.
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Proof. By Lemma 8(iii) the ∞-category A×→C B is presentable and hence admits all small
colimits. Let D′ := Aω×→CωBω. This is an (essentially) small full stable subcategory of A×→C B.
It follows from [Lur09, Lemmas 5.4.5.7, 5.3.4.9] that D′ consists of compact objects in A×→C B.
Hence the induced functor Ind(D′)→ A×→C B is fully faithful. Since the functors r : B→ A×→C B
and s : A → A×→C B preserve colimits by Lemma 8(iii) and since A and B are compactly
generated, it follows that the essential image of Ind(D′) in A×→C B contains A and B.
Proposition 10 implies that every object X of A×→C B sits in a fibre sequence X ′ → X → X ′′

with X ′ ∈ B and X ′′ ∈ A. Hence the essential image of Ind(D′) must be all of A×→C B, and
hence the latter is compactly generated. Since Aω and Bω are idempotent complete, so is D′ by
Lemma 8(ii). Hence D′ ' (A×→C B)ω. 2

Definition 14. An excisive square of small stable ∞-categories is a commutative square

D //

��

B
q
��

A
p
// C

(9)

in Catex
∞ such that the induced square

Ind(D) //

��

Ind(B)

��

Ind(A) // Ind(C)

(10)

in PrL
st is a pullback square and Ind(B)→ Ind(C) is a localization, i.e. its right adjoint is fully

faithful.

The following is the categorical version of our first main result.

Theorem 15. Assume that (9) is an excisive square of small stable ∞-categories. Then there is
an exact sequence

D
i−→ A×→C B

π−→ C. (11)

Proof. If we apply Corollary 12 to the pullback diagram (10), we get the exact sequence

Ind(D)→ Ind(A)×→Ind(C) Ind(B)→ Ind(C)

in PrL
st. Clearly, the first and the third term in this sequence are compactly generated.

Proposition 13 implies that also the middle term is compactly generated, and that the functors
preserve compact objects. Recall from Recollection 9 that we can test exactness on the level of
homotopy categories. Thus we may apply the Thomason–Neeman localization theorem [Nee92,
Theorem 2.1] to conclude that the induced sequence of compact objects is exact. But up to
idempotent completion this is exactly (11). 2

We now apply this to localizing invariants.

Definition 16. A weakly localizing invariant is a functor

E : Catex
∞→ T

from Catex
∞ to some stable∞-category T which sends exact sequences in Catex

∞ to fibre sequences
in T .
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Example 17. Any localizing invariant in the sense of [BGT13] is weakly localizing. Concrete
examples are non-connective algebraic K-theory à la Bass and Thomason [BGT13, § 9.1],
topological Hochschild homology THH [BGT13, § 10.1], or p-typical topological cyclic homology
TC for some prime p [BGT13, § 10.3], [BM12]. In all these examples T is the ∞-category of
spectra.

Theorem 18. Assume that (9) is an excisive square of small stable ∞-categories, and let
E : Catex

∞→ T be a weakly localizing invariant. Then the induced square in T

E(D) //

��

E(B)

��

E(A) // E(C)

(12)

is cartesian.

Proof. Applying E to the exact sequence (11) provided by Theorem 15 yields the fibre sequence

E(D)
E(i)
−−→ E(A×→C B)

E(π)
−−−→ E(C) (13)

in T . On the other hand, applying E to the split exact sequence of Proposition 10 gives an
equivalence

E(s)⊕ E(r) : E(A)⊕ E(B)
'−→ E(A×→C B) (14)

with inverse induced by the projections pr1, pr2. Combining (13) and (14), we get a fibre sequence

E(D)→ E(A)⊕ E(B)→ E(C), (15)

where the first map is induced by the given functors D→ A and D→ B. The map E(A)→ E(C)
is induced by the functor a 7→ Cone(p(a)→ 0)' Σp(a). Since the endofunctor Σ: C→ C induces
−id on E(C), the map E(A)→ E(C) in (15) is the negative of the map induced by the functor
p : A → C. Finally, the map E(B) → E(C) in (15) is induced by the functor b 7→ Cone(0 →
q(b)) ' q(b). Thus (15) being a fibre sequence in T implies that (12) is cartesian. 2

Remark 19. This theorem can also be used to prove the Mayer–Vietoris property of algebraic K-
theory for the Zariski topology [TT90, Theorem 8.1] for quasi-compact quasi-separated schemes
without using Thomason’s localization theorem [TT90, Theorem 7.4]. Together with Example 3
one may then deduce Nisnevich descent for noetherian schemes in general.

2. Application to ring spectra

In this section, we apply the constructions of § 1 to the ∞-categories of (perfect) modules over
an E1-ring spectrum, discuss Tor-unitality, and we prove our second main result (Theorem 28)
saying that a pullback square of ring spectra where one map is Tor-unital (Definition 21) yields
an excisive square upon applying Perf(−). From this we finally deduce Theorems 1 and 2 of the
Introduction.

The ∞-categories of E1-ring spectra and their modules are discussed in [Lur17a, ch. 7]. For
an E1-ring spectrum A, we write LMod(A) for the stable ∞-category of left A-module spectra,
which we will simply call left A-modules henceforth. A left A-module is called perfect if it belongs
to the smallest stable subcategory Perf(A) of LMod(A) which contains A and is closed under
retracts. By [Lur17a, Proposition 7.2.4.2], LMod(A) is compactly generated and the compact
objects are precisely the perfect A-modules.
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Example 20. Any discrete ring A can be considered as an E1-ring spectrum. Then Ho(LMod(A))
is equivalent to the unbounded derived category of A in the classical sense [Lur17a,
Remark 7.1.1.16].

Definition 21. A map f : A → A′ of E1-ring spectra is called Tor-unital if the following
equivalent conditions are satisfied.

(i) The map A′ ⊗A A′→ A′ given by multiplication is an equivalence.

(ii) The map A′→ A′ ⊗A A′ induced from A→ A′ by A′ ⊗A (−) is an equivalence.

(iii) If I is the fibre of A→ A′ in LMod(A), we have A′ ⊗A I ' 0.

We have the following easy but important further characterization of Tor-unitality.

Lemma 22. A morphism A → A′ of E1-ring spectra is Tor-unital if and only if the forgetful
functor LMod(A′)→ LMod(A) is fully faithful.

Proof. By [Lur17a, Proposition 4.6.2.17] the forgetful functor v is right adjoint to A′⊗A− :
LMod(A)→ LMod(A′). It is fully faithful if and only if the counit A′⊗AM →M is an equivalence
for every A′-module M . Taking M = A′, we see that fully faithfulness of v implies Tor-unitality
of A→ A′. The converse follows, since LMod(A′) is generated by A′ under small colimits and
finite limits, and the tensor product preserves both. 2

Now consider a pullback square of E1-ring spectra as follows.

A //

��

A′

��

B // B′
(16)

Lemma 23. Assume that (16) is a pullback square of E1-ring spectra in which A→ A′ is Tor-
unital. Then also B → B′ is Tor-unital. Moreover, the canonical map A′ ⊗A B → A′ ⊗A B′
induced from B→ B′ is an equivalence.

See Remark 27 for a partial converse.

Proof. Write I for the fibre of A→ A′. Since A→ A′ is Tor-unital, A′⊗AI ' 0. As by assumption
(16) is a pullback square, the fibre of B → B′ is equivalent (as left A-module) to I, hence
A′ ⊗A B → A′ ⊗A B′ is an equivalence, too. By Lemma 22 the counit A′ ⊗A M → M is an
equivalence for every A′-module M . In particular, A′ ⊗A B′ → B′ is an equivalence. Summing
up, the canonical map A′ ⊗A B→ B′ is an equivalence. Thus

B′ ⊗B B′ ' (A′ ⊗A B)⊗B B′ ' A′ ⊗A B′ ' B′

and B→ B′ is Tor-unital. 2

Example 24. Let A→ B be a morphism of discrete unital rings sending a two-sided ideal I of
A isomorphically onto an ideal of B. Then the Milnor square

A //

��

A/I

��

B // B/I
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is a pullback diagram in rings. Since B → B/I is surjective, this diagram is also a pullback
when considered as a diagram of E1-ring spectra. The map A→ A/I is Tor-unital if and only if
TorAi (A/I,A/I) = 0 for all i > 0.

In particular, if the discrete, not necessarily unital ring I is Tor-unital in the classical sense
that TorZnIi (Z,Z) = 0 for all i > 0, then Lemma 23 applied to the Milnor square

Zn I //

��

Z

��

A // A/I

implies that A→ A/I is Tor-unital for any ring A containing I as a two-sided ideal.

Example 25. Assume that A is a commutative, unital discrete ring, and let f ∈ A. Then
A → A[f−1] is Tor-unital. Assume further that A → B is an étale ring map which induces
an isomorphism A/(f)

∼−→ B/(f). Then the diagram

A //

��

A[f−1]

��

B // B[f−1]

viewed as a diagram of E1-ring spectra, is a pullback square. Indeed, this is equivalent to the
exactness of the sequence

0→ A→ A[f−1]⊕B→ B[f−1]→ 0,

which may be checked directly. Alternatively, one may use the Mayer–Vietoris exact sequence of
étale cohomology groups

0→ A→ A[f−1]⊕B→ B[f−1]→ H1
ét(Spec(A),OSpec(A)),

which may be deduced from [Mil80, Proposition III.1.27], together with the vanishing of the
higher étale cohomology of quasi-coherent sheaves on affine schemes.

The following is a derived version of Milnor patching.

Theorem 26. Assume that (16) is a pullback square of E1-ring spectra where the morphism
A→ A′ is Tor-unital. Then extension of scalars induces an equivalence

LMod(A) ' LMod(A′)×LMod(B′) LMod(B).

Proof. Let F be the functor LMod(A)→ LMod(A′) ×LMod(B′) LMod(B) induced by extension
of scalars. Since both ∞-categories are presentable and F preserves colimits by Lemma 8(iii), F
admits a right adjoint G. Explicitly, if (M,N, g) is an object of LMod(A′)×LMod(B′) LMod(B),
then G(M,N, g) is the pullback in left A-modules

G(M,N, g) 'M ×B′⊗BN N,

where the map M → B′ ⊗B N is the composition M → B′ ⊗A′ M
g−→ B′ ⊗B N . We claim that

the unit
P → (A′ ⊗A P )×B′⊗B(B⊗AP ) (B ⊗A P )
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of the adjunction is an equivalence for any A-module P . Since also G commutes with colimits,
it suffices to check this for P = A. In that case the claim follows from the assumption that (16)
is a pullback square. Hence F is fully faithful.

It now suffices to show that the right adjoint G of F is conservative. For this it is enough to
show that G detects zero objects. So let (M,N, g) be an object of the pullback and assume that
G(M,N, g) ' 0. There is a fibre sequence of left A-modules

G(M,N, g)→M ⊕N → B′ ⊗B N
and hence the map

M ⊕N '−→ B′ ⊗B N (17)

is an equivalence. Extending scalars from A to A′ we get an equivalence

A′ ⊗AM ⊕A′ ⊗A N
'−→ A′ ⊗A B′ ⊗B N. (18)

From Lemma 23 we know that A′ ⊗A B → A′ ⊗A B′ is an equivalence. Since LMod(B) is
generated by B under colimits and finite limits, we conclude that A′ ⊗A P → A′ ⊗A B′ ⊗B P
is an equivalence for every left B-module P . Applying this with P =N , we see that the restriction
of (18) to the second summand is an equivalence. Hence A′⊗AM ' 0. Since M is an A′-module,
Lemma 22 implies that the counit is an equivalence A′ ⊗A M ' M , i.e. M ' 0. But then also
B′ ⊗B N ' B′ ⊗A′ M ' 0, and hence N ' 0 by (17). 2

Remark 27. Without the Tor-unitality assumption Theorem 26 does not hold, see [Lur17b,
Warning 16.2.0.3] for a counter example.

However, if one assumes instead that (16) is a pullback square of connective ring spectra
with π0(B)→ π0(B′) surjective, then [Lur17b, Proposition 16.2.2.1] implies that restricting the
functors F and G from the proof of Theorem 26 to the subcategories of connective modules gives
inverse equivalences

LMod(A)>0 � LMod(A′)>0 ×LMod(B′)>0
LMod(B)>0.

One can use this to show that in this situation, Tor-unitality of B → B′ implies Tor-unitality
of A → A′ as follows. Let I be the fibre of B → B′. Since π0(B) → π0(B′) is surjective, I is
connective. Since B→ B′ is Tor-unital, B′⊗B I ' 0. Hence we may view (0, I, 0) as an object of
the pullback LMod(A′)>0×LMod(B′)>0

LMod(B)>0. The functor G sends (0, I, 0) to the A-module
0×0 I ' I. By the above the counit F (I) ' F (G(0, I, 0))→ (0, I, 0) is an equivalence. Looking
at the first component we deduce that A′ ⊗A I → 0 is an equivalence, i.e. A→ A′ is Tor-unital.

Theorem 28. Assume that (16) is a pullback square of E1-ring spectra where the morphism
A→ A′ is Tor-unital. Then the square

Perf(A) //

��

Perf(B)

��

Perf(A′) // Perf(B′)

(19)

is excisive. In particular, if E : Catex
∞ → T is a weakly localizing invariant, then the induced

square

E(Perf(A)) //

��

E(Perf(B))

��

E(Perf(A′)) // E(Perf(B′))

in T is cartesian.
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Proof. Applying Ind to diagram (19) yields the following diagram.

LMod(A) //

��

LMod(B)

��

LMod(A′) // LMod(B′)

This is a pullback diagram by Theorem 26. As A→ A′ is Tor-unital, so is B→ B′ by Lemma 23.
Hence the right adjoint of LMod(B)→ LMod(B′), which is the forgetful functor, is fully faithful
by Lemma 22. So the square (19) is excisive. Now the second assertion follows by applying
Theorem 18. 2

Proof of Theorems 1 and 2. If we apply Theorem 28 with E = K, we immediately get
Theorem 2.

Now let I be a ring which is Tor-unital in the classical sense, and let A be any unital ring
containing I as a two-sided ideal. Then the Milnor square

Zn I //

��

Z

��

A // A/I

(viewed as square of E1-ring spectra) is a pullback square (see Example 24). By assumption, the
top horizontal map is Tor-unital in our sense. Hence we may apply Theorem 2 to deduce that
the map on relative K-groups K∗(I) = K∗(Zn I, I)→ K∗(A, I) is an isomorphism. 2
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Boston, MA, 1990), 247–435.

Wod89 M. Wodzicki, Excision in cyclic homology and in rational algebraic K-theory, Ann. of Math.
(2) 129 (1989), 591–639.

Georg Tamme georg.tamme@ur.de

Fakultät für Mathematik, Universität Regensburg,
D-93040 Regensburg, Germany

1814

https://doi.org/10.1112/S0010437X18007236 Published online by Cambridge University Press

http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
https://doi.org/10.1112/S0010437X18007236

	1 Pullbacks and exact sequences of stable ∞-categories
	2 Application to ring spectra
	Acknowledgements
	References

