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Human clinical trials have shown that fish oils reduce the risk of a variety of disorders including
CVD. Despite this, results have been inconsistent. Fish oils are easily oxidised and some fish oils
contain higher than recommended levels of oxidised products, but their effects have not been
investigated. Recent evidence indicates that dietary oxidised fats can contribute to the
development of atherosclerosis and thrombosis. This review summarises findings from cellular,
animal and human trials that have examined the effects of oxidised lipids and their potential to
affect health outcomes, and proposes that oxidised products in fish oils may attenuate their
beneficial effects. More research is required to determine the magnitude of negative effects of fish
oil on health outcomes in clinical trials.
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Introduction

The consumption of fish oils is beneficial for a variety of
health outcomes. The major benefit demonstrated to date
has been a reduction in the risk of CVD (Burr et al. 1989;
Valagussa et al. 1999; Bucher et al. 2002; Calder, 2004a;
Okuda et al. 2005; Schmidt et al. 2005b). Fish oils also have
anti-inflammatory properties (Calder, 2004b). These are
thought to improve tenderness and stiffness in the treatment
of rheumatoid arthritis, although relatively high doses
(4–5 g/d) of fish oil are required for an effect (Cleland et al.
2003). The role of fish oils in brain function and mental
health has also been investigated with studies showing
beneficial effects on pre- and postnatal brain development
(Jorgensen et al. 1999; Helland et al. 2003). Other studies
have found that low fish consumption is associated with
depression and other mental conditions (Adams et al. 1996;
Hibbeln, 1998; Silvers & Scott, 2002; Heude et al. 2003).

Fish oil composition varies markedly depending on a
variety of factors including fish species, sex and season. Fish
oils tend to contain relatively high concentrations of long-
chain n-3 PUFA of which EPA and DHA are the most
prominent (Fig. 1). They also contain relatively high levels
of tocopherol. Fish oils are available to consumers either in
free form or in capsules.

Epidemiological evidence suggests that the intake of high
levels of n-3 PUFA found in the flesh of oily fish or the livers
of lean fish, such as, cod-liver oil, is associated with a
reduced risk of CHD (Hu &Willett, 2002; De Caterina et al.
2003; Lee & Lip, 2003; Harrison & Abhyankar, 2005). This
is further supported by the results of randomised controlled

trials in the treatment of patients with heart disease (Burr
et al. 1989; Valagussa et al. 1999). After supplementation
with fish oil capsules, these patients had a longer life
expectancy with a greater reduction in the risk of fatal
myocardial infarctions.

However, randomised controlled trials investigating the
potential effects of fish oils on markers of heart disease have
produced inconsistent results. A meta-analysis of randomised
controlled trials involvingpatientswith heart disease indicated
that the relative risk of sudden death for those taking fish oil
capsules (containing 0·9–9 gEPAandDHA/d, combined)was
0·7 (95% CI 0·6, 0·8) compared with placebo (Bucher et al.
2002). Another meta-analysis, investigating the effects of fish
oil supplementation (1–7 g EPA and DHA/d) on serum lipids
and lipoproteins (Harris, 1997), indicated that the major
beneficial effect of fish oil supplementation was a 25%
reduction in triacylglycerol levels in human subjects.

While both meta-analyses aimed to determine the
effects of consuming moderately high levels of EPA and
DHA, the effects of the same dose on cholesterol and
triacylglycerols varied considerably between the studies
included in the meta-analyses, some finding a reduction in
cholesterol levels whilst others found small increases. The
degree of triacylglycerol reduction also varied by over
100% but this may have been related to the original
sample population. However, there appeared to be little or
no correlation between the quantity of fish oil consumed
and the degree of triacylglycerol reduction or effect on
cholesterol levels. In addition, the consumption of low
levels of fish oil did not appear to reduce triacylglycerols
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but did increase total and LDL-cholesterol. For instance,
an intake of 0·7 g DHA/d had no significant effects on
triacylglycerol levels compared with placebo, but did
increase LDL-cholesterol by a net 7% (Theobald
et al. 2004).

There are also inconsistencies in the literature regarding
the effect of fish oils and other preparations of n-3 PUFA on
LDL-cholesterol concentrations, with some showing an
increase and others a decline (Kaul et al. 1992). In some
studies, an increase in LDL-cholesterol was observed
(Leigh-Firbank et al. 2002; Wilkinson et al. 2005).
However, the amount of atherogenic LDL-3 cholesterol
decreased by more than 22% at the same time, thus
suggesting a reduction in atherogenic risk profile.

There are several possible explanations for the incon-
sistencies. These include the quantity and composition of
fish oil (Kris-Etherton et al. 2003; Buckley et al. 2004; Kew
et al. 2004), the CHD risk of participants (Marckmann &
Gronbaek, 1999) and the participant’s genotype (Minihane
et al. 2000). However, the degree of fish oil oxidation has
not been discussed previously.

Fish oils are oxidised during processing and after
encapsulation (Hamilton et al. 1998; Undeland et al. 1998;
Baik et al. 2004). Potential routes of lipid oxidation include
auto-oxidation, photo-oxidation and metal-catalysed oxi-
dation, as well as ionically catalysed oxidation (Frankel,
2005). EPA and DHA are more susceptible to lipid
oxidation than other fatty acids under identical conditions
because they have a relatively high number of double
bonds (unsaturation) and readily form hydroperoxides
(HPODE; the initial degradation product in free radical-
catalysed lipid oxidation). This paper reviews the influence
that lipid oxidation products in fish oils may have on health
outcomes.

Fish oils

Oil extracted from marine animals is a valuable source of n-
3 PUFA but is also an extremely unstable product. Fish oil is
obtained primarily from fish rendering plants during the
processing of whole or filleted fish bodies into fishmeal.
These products are mainly used in the agriculture and
aquaculture sectors as fertiliser and fish feed, with only
about 2% of the resulting fish oil used in products for
human consumption in 2000 (Barlow, 2000).
As the demand for human consumption has risen, fish oil

is increasingly being packaged as a high-value niche
product. However, the processing and handling of the raw
material has changed little. As a result, the quality of fish oil
products on the market has been generally poor, due to the
instability and rapid oxidation of the very-long-chain n-3
PUFA (Hamilton et al. 1998). To counter this, some crude
oil from fishmeal plants is refined to improve its
organoleptic properties for human consumption (Venugopal
& Shahidi, 1998).

Oxidation of fish oils

Oil degradation through oxidation occurs when unsaturated
fats come into contact with atmospheric O2. This oxidative
process may be accelerated by the presence of metals and by
exposure to light and heat. Fish oils are more vulnerable to
oxidative degradation because they contain higher quan-
tities of very-long-chain n-3 PUFA (Fig. 1) than vegetable or
other animal fats (Khayat & Schwall, 1983).
Auto-oxidation (Fig. 2 (a)) is the major oxidative

reaction in oils, and involves the formation of free radicals
in the presence of ‘initiators’. Initiators catalyse the
removal of a hydrogen ion from an unsaturated fatty acid
bond. Examples of these include HPODE and transition
metals, both of which are common in foods (Frankel,
2005).
The other common oxidation reaction in oils is photo-

oxidation (Fig. 2 (b)). With light exposure (UV radiation)

COOH

COOH
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Fig. 1. Very-long-chain n-3 PUFA commonly found in fish oils: (a)
EPA (20 : 5n-3); (b) DHA (22 : 6n-3).

LH (lipid)
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Fig. 2. (a) The auto-oxidation and free radical formation of
hydroperoxides. (b) The photosensitised formation of hydroperoxides.
L, lipid.
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and a sensitiser (chemicals that can be excited by UV
radiation) present, triplet oxygen (3O2) is converted to
singlet oxygen (1O2), which then interacts with fatty acid
double bonds to form lipid HPODE. This type of reaction
occurs at a more rapid rate than auto-oxidative reactions
owing to the low activation energy required (Min & Boff,
2002). The products of photo-oxidation can often initiate
further auto-oxidation reactions (Frankel, 1991).

The primary products of lipid oxidation are known as
HPODE. Over time, these compounds break down into
secondary oxidation products (aldehydes and ketones)
which cause the unpleasant odours associated with rancid
oils. These may eventually break down into short-chain
tertiary products (Fig. 3).

Antioxidants are usually added to fish oils to prolong their
shelf life and preserve their organoleptic properties. Radical
scavenging is the main mechanism by which antioxidants
protect foodstuffs (Pokorny et al. 2001). However,
antioxidants vary in their ability to prevent auto-oxidation
and photo-oxidation. For example, free radical scavengers,
such as vitamin C, anthocyanins and phenolics, are most
effective against auto-oxidation, whereas singlet oxygen
quenchers, such as flavonoids, b-carotene, and tocopherols,
are most effective against photo-oxidation (Gunstone,
1999). Antioxidants can also work by inhibiting oxidation
enzymes, for example, flavonoids, or by chelating pro-
oxidant metals, such as, citric acid.

Oxidative degradation of fish oils begins while the fish is
still alive, induced by the stress of ageing and then capture
(Passi et al. 2004). The rate of n-3 PUFA degradation
rapidly increases when the fish is processed, as tissue lipids
are subsequently exposed to pro-oxidants such as atmos-
pheric O2 (Undeland et al. 1998) and to endogenous metals
and enzymes (Richards & Li, 2004). As a result, amounts of
EPA and DHA tend to decrease, while the peroxide value
(PV), an indicator of the degree of primary oxidation
product, increases (Fritsche & Johnston, 1987).

During the common ‘wet-reduction’ method of
commercial fish oil production, the fish is cooked (about
1008C) to facilitate tissue protein coagulation and promote
oil expression. The product is then pressed and
centrifuged, during which the oil is exposed to both O2

and heat for several hours (Bimbo, 1987). Oil produced
from typical fishmeal production processes is likely to
have a PV ranging from 6 to 22mEq O2/kg, depending on
processing and handling conditions, and will oxidise
further in the absence of antioxidants (Fritsche &
Johnston, 1987). Once the oil is extracted and clarified,
it is generally stored in large drums. The PV may be
temporarily retarded at this stage if antioxidants are added
and there is no headspace in storage containers. However,

oxidation will continue once the containers are opened
and the oil is further processed.

Our research shows that currently available commercial
fish oil supplements contain varying levels of primary and
secondary oxidation products (CH McLean, unpublished
results). Table 1 shows the results of testing commercial fish
oil supplements for PV and p-anisidine value. p-Anisidine
value is an indicator of levels of secondary oxidation
products, i.e. aldehydes and ketones (Aidos et al. 2001). It is
important to measure both p-anisidine values and PV when
looking at oil quality, as together they give a more accurate
profile of the condition of the oil. Specifications for food-
grade oils usually indicate a maximum PV of 2mEq O2/kg
and a p-anisidine value of 10, but the values in Table 1 show
that most commercially available fish oils do not meet these
specifications.

Effects of oxidised lipids on health

Cellular, animal and human studies have investigated the
effects of dietary oxidised lipids on a range of biomarkers of
disease, including lipid metabolism, oxidative stress and
inflammation. The effects on each biomarker are discussed
in turn. Although none of the products of oxidation have
been derived from fish oils, it is envisaged that the outcomes
would be similar.

Lipid and chylomicron metabolism

Lipid and chylomicron metabolism are factors used to
determine the risk of CVD (Roche & Gibney, 2000;
Rivellese et al. 2003). This risk can be assessed in both the
fasted and postprandial states.

Cellular studies. To date, most research on the effects of
HPODE and hydroxy derivatives (hydroxides; HODE) in
animal and human cells has focused on vascular smooth
muscle cells. Cellular studies have indicated that oxidised
linoleic acid modifies cholesterol metabolism. 13-HPODE
and 13-HODE were found to compete with linoleic acid for
absorption across the cell monolayer when 13-HPODE,
13-HODE and linoleic acid were incubated together with a
human colon cancer cell line (CaCo-2 cells; Muller et al.
2002). This competition led to a decrease in the amount of
linoleic acid and an increase in hydroxy fatty acids in
released triacylglycerols. The resulting increase in hydroxy
fatty acids was then incorporated into lipoproteins, thus
increasing their susceptibility to oxidation (Muller et al.
2002).

In addition, oxidised linoleic acid is potentially athero-
sclerotic, as it increases the solubility of cholesterol in

Fatty acid
with double

bonds
LH

Oxidation
reactions

Degradation
reactions

Primary oxidation
products

(hydroperoxides)
LOOH

Secondary oxidation
products

(aldehydes, ketones)

Fig. 3. General process of lipid oxidation. L, lipid.
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micelles, thereby increasing cholesterol uptake in CaCo-2
cells. This effect has been attributed to the fact that oxidised
linoleic acid (13-hydroxy linoleic acid) and lithocholic acid,
a bile acid used in the solubilisation of cholesterol in
micelles, have similar chemical structures (Penumetcha
et al. 2002). In contrast, Eder et al. (2003) found no
difference in the uptake of labelled LDL in rats fed either
unoxidised or oxidised fats, by J774 mouse macrophages.

Animal studies. Results of studies in rats show that dietary
peroxides were the major source of peroxides found in
serum lipoproteins, and that these were correlated with
peroxides in plasma chylomicrons (Staprans et al. 1993b).
Very low levels of peroxides were found in serum
lipoproteins when rats were fed a fat-free diet. However,
after the addition of 1ml oxidised maize oil (1008C for 1 h;
high PV) to the diet, there was a 5-fold increase in peroxide
levels in the serum lipoprotein of healthy rats, and a 16-fold
increase in diabetic rats compared with those on a control
diet. A similar effect could increase oxidative stress in
human consumers and could therefore have adverse
cardiovascular effects (Esterbauer et al. 1993; Staprans
et al. 1994).

Sulzle et al. (2004) showed that the intake of oxidised
lipids altered lipid metabolism in rats. Rats were fed a diet
containing 10% fat or a control diet. The fat was a mixture
of sunflower-seed oil and lard that was either oxidised (38 d
at 508C) or unoxidised. Various genes were upregulated
after consumption of the diet containing oxidised oil, but not
by the control diet. The upregulated genes were related to
cytochrome P450, b-oxidation, lipid metabolism and
protein metabolism. For instance, there was a 14-fold
upregulation of cytochrome P450A. Similarly, Chao and co-
workers observed a 5-fold upregulation in P450A
expression in rats fed a 20% oxidised soyabean-oil diet
(Chao et al. 2004).

Such cytochrome P450A activation is believed to increase
oxidative stress in rats, man and rabbits, and may therefore
lead to an increase in the risk of CVD (Fleming, 2004; Thum
& Borlak, 2004; Zangar et al. 2004). Some have suggested
that the induction of cytochrome P450A was caused by the
activation of PPARa expression in rats (Sulzle et al. 2004).
However, if this is the case, it is less likely to be an issue in
humans, as they have significantly less PPARa than rats
(Holden & Tugwood, 1999).

Chylomicron metabolism is an important factor in
postprandial lipid metabolism. A delay in chylomicron
remnant clearance has been linked to premature coronary
sclerosis and thrombosis (Patsch et al. 1992;Weintraub et al.
1996; Roche & Gibney, 2000; Karpe et al. 2001).
Chylomicron uptake of cholesterol by the liver was
inhibited by 33% in rats fed a diet containing 1ml
thermally oxidised maize oil (1 h at 1008C). This was
thought to be due to a 30% reduction in hydrolysis of
chylomicrons containing oxidised lipids by endothelial
lipoprotein lipase (Staprans et al. 1993a). There was also a
40% increase in chylomicron binding to the heart
endothelium in rats fed thermally oxidised maize oil
compared with unheated maize oil.
LDL-receptor-deficient mice fed a high-fat diet with or

without oxidised linoleic acid have also been used in several
studies (Khan-Merchant et al. 2002; Penumetcha et al.
2002). Mice fed a diet containing 21% enzymatically
oxidised (using lipoxygenase) linoleic acid were found to
have cholesterol levels that were 33% higher than those fed
an equicaloric diet containing non-oxidised fat (Penumetcha
et al. 2002). As with CaCo-2 cells, this effect was thought to
be due to the increased solubility of oxidised lipids,
resulting in increased uptake of cholesterol in the presence
of oxidised linoleic acid (Penumetcha et al. 2002). Levels of
plasma LDL-cholesterol increased by 26% in mice fed a
21% fat diet containing 13-HODE compared with those fed
the same diet without oxidised fat (Khan-Merchant et al.
2002). In another study, cholesterol levels in both LDL and
HDL fractions were found to be approximately 35% lower
in pigs fed a diet containing 15% thermally oxidised
sunflower-seed oil (48 h at 1108C) and lard (94:6; w/w)
(Eder & Stangl, 2000).

Human studies. In one study (Naruszewicz et al. 1987),
five human subjects were fed a meal containing 100 g
untreated soyabean oil followed the next day by an identical
meal containing the same quantity of oxidised soyabean oil
(heat-treated for 7 h at 2208C). On each occasion, blood
samples were taken just before the test meal and then 4 h
afterwards. On both days, plasma chylomicrons were
isolated and incubated with mouse peritoneal macrophages
for 48 h. There was a 10-fold increase in the concentration
of cholesteryl esters in macrophages incubated with
chylomicrons from participants who had consumed the
thermally oxidised soyabean oil meal. In addition, the
chylomicrons containing oxidised lipids were more quickly
degraded by the macrophages. This suggested that there had
been a substantial alteration in the composition of
triacylglycerol-rich lipoproteins following consumption of
oxidised soyabean oil, but not with fresh soyabean oil.

Summary of effects of oxidised lipids on lipid and
chylomicron metabolism. Evidence indicates that dietary
oxidised lipids are both absorbed and metabolised, and also
alter the metabolism of cholesterol in all three models. In
most studies, oxidised lipids were shown to increase the
uptake of cholesterol and levels of total cholesterol. This is
likely to be a result of an increase in the solubility of
lipoproteins in micelles. These effects, along with the

Table 1. Measure of oxidation products in commer-
cial fish oil supplements

Brand
Peroxide

value (mEq O2/kg)*
p -Anisidine

value†

Brand A 4·1 11
Brand B 5·4 9
Brand C 3·5 15
Brand D 4·6 17
Brand E 3·2 16
Brand F 5·5 20

* ‘Peroxide ‘Value of Oils and Fats’, AOAC official method
965·33 (Association of Official Analytical Chemists, 1990).

† AOCS official method CD 18–90 (American Oil Chemists
Society, 1998).
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inhibition of cholesterol re-uptake by the liver, have the
potential to increase the risk of atherosclerosis.

Effects on oxidative stress

Oxidative stress is considered to be an important factor in
the development of CVD. Oxidative stress is indicated by
increases in oxidised products, increased activity of
enzymes involved in reducing oxidative stress or a reduction
in tissue levels of antioxidants. The intake of oxidised lipids
is known to affect several of these oxidative stress markers.

Cellular studies. 13-HPODE has been shown to increase
the production of H2O2 (a free radical generator) in
endothelial and smooth muscle cells (Santanam et al. 1999).
As a result, the expression of catalase (an antioxidant
enzyme) is increased in various cell types when incubated
with 13-HPODE. Catalase expression increased 2·7-fold, 7-
fold and 1·5-fold in rabbit smooth muscle cells, mouse
macrophages (RAW 264·1) and human umbilical vascular
endothelial cells respectively (Meilhac et al. 2000). Such
increases indicate that 13-HPODE is able to increase
oxidative stress in cells. In addition, Wang et al. (2000)
found that incubation of CaCo-2 cells with HPODE led to a
redox imbalance, as demonstrated by an 8-fold increase in
apoptotic cell deaths and a dose-dependent increase in DNA
fragmentation.

Animal studies. Several studies in rats have found an
increase in oxidation products in both serum and liver
lipoproteins when the rats were fed diets containing
oxidised oils. When rats were fed oxidised (508C for 16 d)
sunflower-seed and linseed oils (80:20, w/w), there was a
significant doubling in lipid HPODE and thiobarbituric
acid-reactive substances (a secondary marker of lipid
oxidation) found in the liver compared with the control diet
containing non-oxidised oil (Brandsch & Eder, 2004). In
line with these findings, liver a-tocopherol levels decreased
by 50% in rats fed a 10% fat-based diet containing
thermally oxidised oils (508C for 16 d; Brandsch et al.
2004).

A diet containing 10% thermally oxidised oils (508C for
16 d) significantly decreased levels of reduced glutathione
(the main intracellular non-enzymatic antioxidant), gluta-
thione peroxidase (an antioxidant enzyme) and catalase
activity in rat erythrocytes (Keller et al. 2004). In another
study, the lag phase of LDL oxidation was significantly
reduced (10–25% depending on the degree of oxidation)
when rats were fed a mixture of sunflower-seed oil and lard
(31:69, w/w) that had been oxidised to various degrees by
varying heating times and temperatures (Eder et al. 2003).
This increased susceptibility of LDL to oxidation has been
associated with a higher risk of atherosclerosis (Berliner &
Heinecke, 1996; Steinberg, 1997; Chisolm & Steinberg,
2000).

Garrido-Polonio et al. (2004) found that feeding rats a
diet containing highly oxidised sunflower-seed oil as a result
of repeated deep-fat frying, increased serum thiobarbituric
acid-reactive substances by 80% compared with rats fed an
identical diet containing non-oxidised fat. Again, these
observed changes suggest that oxidised lipids increase the

likelihood of atherosclerosis. Furthermore, a significant
decrease in reduced erythrocyte glutathione and a-
tocopherol levels was observed in guinea-pigs fed 10%
oxidised (508C for 16 d) oil (Keller et al. 2004).

Eder & Stangl (2000) showed that levels of plasma
tocopherol were reduced by 60% and LDL by 30% in pigs
fed an oxidised fat (48 h at 1108C) diet. These decreases
were accompanied by a significant reduction in the
tocopherol:lipids ratio. However, in contrast to other
findings, there was no significant difference observed in
the LDL lag phase, suggesting that lipoproteins were
similarly susceptible to oxidation regardless of diet. This
unexpected finding may have been due to the relatively high
levels of Cu used to initiate the LDL oxidation (50mM),
which would have led to an immediate oxidation of LDL (no
lag phase) regardless of diet. Had a lower level of Cu (for
example, 5mM) been used, as is usually the case, then
differences between diets may have been observed.

Human studies. The oxidised lipids consumed by six
human subjects fed a meal containing thermally oxidised
(1008C for 3 h) maize oil (1 g/kg body weight) were found to
be the major source of oxidised products found in each
participant’s plasma (Staprans et al. 1994). There was a 4·7-
fold increase in the concentration of conjugated dienes (a
marker of lipid HPODE) in the postprandial chylomicron
fraction of those fed the oxidised oil. In other studies,
consumption of the oxidised oil caused a significant increase
in the level of oxidative products (as shown by thiobarbituric
acid-reactive substances) in the chylomicron fraction of
plasma (Naruszewicz et al. 1987; Staprans et al. 1994).

The oxidative lag time of plasma LDL-cholesterol
obtained from volunteers fed oxidised (exposed to air for
6–8 weeks) maize oil (1 g/kg body weight) was also
reduced by approximately 25% compared with control
(Staprans et al. 1994). This reduction in lag phase again
indicates that LDL is more susceptible to oxidation, and is
thus conducive to the development of atherosclerosis
(Witztum & Steinberg, 1991; Parks et al. 1998). An even
larger reduction in the LDL lag phase (50%) was observed
when human subjects were fed a meal containing 400mg
oxidised cholesterol (a-epoxy cholesterol) compared with a
control meal (Staprans et al. 2003).

Oxidised lipids also affect the activity of paraoxonase.
Low paraoxonase activity is seen in individuals at high risk
of CHD (Mackness et al. 2003). In fact, the inhibitory effect
of HDL-cholesterol on LDL-cholesterol oxidation has been
partially attributed to paraoxonase in HDL-cholesterol
(Mackness et al. 1993). In addition, mice with reduced
paraoxonase activity have been found to be more
susceptible to atherosclerosis (Durrington et al. 2001).

Sutherland et al. (1999) found that postprandial serum
paraoxonase activity was 17% lower than baseline 4 h after
the consumption of a meal containing 46 g thermally
oxidised fat. This fat had been obtained from a fast-food
restaurant just before its replacement with fresh fat and was
equivalent to the fat content of an average fish-and-chip
meal. As might be expected, this decrease in paraoxonase
activity was accompanied by an increase in the peroxide
concentration found in the LDL-cholesterol of participants
fed the oxidised fat (Sutherland et al. 1999).
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Conversely, paraoxonase activity increased by 14% when
an identical meal containing previously unused fat was
consumed (Sutherland et al. 1999). In contrast, individuals
with diabetes showed no reduction in paraoxonase activity
after consuming 60 g thermally oxidised fat (Wallace et al.
2001), but this may have been due to the already high
oxidative load in individuals with diabetes (Bucala et al.
1994; Basta et al. 2004).

Summary of effects of dietary oxidised lipids on oxidative
stress. Various markers of oxidative stress and redox
balance are affected by oxidised lipids. These include
increases in markers of oxidisability (LDL oxidation lag
phase; thiobarbituric acid-reactive substances and lipid
HPODE), a reduction in plasma levels of dietary
antioxidants (a-tocopherol) and modification of antioxidant
enzyme activities (catalase and glutathione peroxidase).

Effects on inflammation and vascular function

Inflammation is widely recognised as a contributor to the
atherosclerotic process (Ross, 1999; Glass & Witztum,
2001). Fish oils are beneficial for anti-inflammatory,
endothelial and other vascular functions (Khan et al.
2003; Schmidt et al. 2005a), but products of lipid oxidation
may nullify these beneficial effects.

Cellular studies. Cell studies have indicated that oxidised
linoleic acid inflames smooth muscle cells. 13-HPODE
induces cell-surface expression of vascular and intracellular
adhesion molecules in human umbilical vascular endothelial
cells (Khan et al. 1995). Such expression of cell adhesion
molecules is thought to be an early event in the development
of inflammation and atherosclerotic plaques (Davies et al.
1993; Li et al. 1993). In addition, 13-HPODE increases the
vascular cellular adhesion molecule expression both in
porcine and human vascular smooth muscle cells, thus
promoting an inflammatory response, whereas 13-HODE
does not (Natarajan et al. 2001).

13-HPODE also activates kinase 3-fold in porcine aortic
cells (Natarajan et al. 2001) and 4-fold in rat aortic cells
(Rao et al. 1995). Such increased kinase expression is pro-
inflammatory, and therefore 13-HPODE can be considered
both pro-inflammatory and atherosclerotic (Natarajan &
Nadler, 2004). In addition, a significant increase in caspase-
3 activity was observed when intestinal epithelial CaCo-2
cells were incubated with HPODE, providing further
evidence of pro-inflammatory activation (Cohen, 1997;
Fuentes-Prior & Salvesen, 2004).

13-HPODE also activates monocyte chemoattractant
protein-1, an inflammatory marker for increased risk of
CVD, in human vascular smooth muscle cells (Dwarakanath
et al. 2004). 9- and 13-HPODE both induce cytotoxicity in
rat vascular smooth muscle cells via production of the
superoxide anion following activation of NAD(P)H oxidase.
However, Dwarakanath et al. (2004) found that the
corresponding HODE do not have this effect.

Sethi (2002) suggested that oxidised EPAmay underlie the
anti-inflammatory effects of n-3 PUFA in fish oil. This
conclusion was based on a single experiment in human
endothelial cells andmice. Results showed that oxidisedEPA

was better than EPA at inhibiting the adhesion of leucocytes
to endothelial cells. These results can be explained because
oxidised EPA is a better activator of PPARa than EPA inmice
(Sethi, 2002). However, the finding is not likely to be relevant
in humans, as rodents have much higher levels of PPARa
(Auboeuf et al. 1997; Holden & Tugwood, 1999).

Animal studies. Animals fed oxidised lipids are at
increased risk of developing atherosclerosis (Schwartz
et al. 1991). Atherosclerotic lesions in the aorta of mice fed
13-HODE (8mg/d), were twice the size of those fed
unoxidised linoleic acid (Penumetcha et al. 2002). Inclusion
of 13-HODE in the diet increased the total:HDL-cholesterol
ratio by 15–25% depending on levels of fat and cholesterol
in the background diet. Similar effects on atherosclerotic
lesions and oxidised cholesterol products were observed in
both LDL receptor- and apo E-deficient mice when they
were fed 5–10% oxidised cholesterol (1% of diet, w/w)
compared with a diet containing unoxidised cholesterol
(Staprans et al. 2000).
Similarly, in rabbits fed a diet containing thermally

oxidised maize oil (2 h at 1008C) containing 120mg
oxidised fatty acids/d, aortic lesions doubled in size, and a
2·5-fold increase in total cholesterol and a 4-fold increase in
cholesteryl esters were observed in their pulmonary arteries
(Staprans et al. 1996).

Human studies. Endothelium-dependent dilation in
human subjects was adversely affected by the consumption
of thermally oxidised fat obtained from a fast-food
restaurant (Williams et al. 1999). Indeed, endothelium-
dependent dilation decreased more than 7-fold after the
consumption of a meal containing thermally oxidised fat
(46 g oxidised fat obtained from the deep-fat fryer of a
restaurant) compared with either equicaloric low-fat meal or
a meal containing previously unused fat. This decrease in
dilation would be detrimental to the function of the
endothelium and is thought to be an important initial event
in atherogenesis (Ross, 1993; Sader & Celermajer, 2002).
Twenty-five volunteers were fed a meal containing

walnut oil (30ml) that contained 26mg hydroxy fatty acids
(Wilson et al. 2003). After 6 h, HODE levels in the
volunteers’ plasma had doubled, indicating that oxidised
lipids in the diet could be absorbed. Following stepwise
regression analysis, the intake of plasma hydroxy fatty acids
was also found to be a significant predictor of postprandial
factor VIIa levels (r 2 0·56; P ¼ 0·007). Plasma factor VIIa
is the activated form of factor VII (Roche et al. 1998;
Sanders et al. 2000; Miller et al. 2002) and higher levels of
plasma factor VII are an indicator of increased risk of
thrombosis, and therefore CHD, in middle-aged men
(Meade et al. 1986; Golino, 2002; Lefevre et al. 2004).

Summary of the effects of dietary oxidised lipids on
inflammation and vascular function. The results of
cellular studies provide a strong basis for the pro-
inflammatory effects of oxidised lipids, and animal and
human studies indicate that vascular function is compro-
mised by the consumption of oxidised lipids. However,
vascular function is a complex area and the studies
mentioned have various limitations.
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Potential limitations

Most cellular studies have focused on the 13-HPODE of
linoleic acid but others have also looked at the 9-HPODE
and HODE of linoleic acid. It is important to note that while
other fatty acids such as, DHA and EPA are known to yield
different HPODE as their initial breakdown products, these
have not been studied.

The concentration of oxidation products will also vary
significantly depending on the method and conditions of
oxidation (Frankel, 2005). In the animal and human studies
mentioned, the source of oxidised lipid used and the degree
of oxidation varied substantially between trials, meaning
that the concentration and identity of the oxidised lipid
species also varied.

Only a few human trials have been done, the sample sizes
have been small, and most have been in individuals with
medical conditions. Until larger studies are done it is
difficult to draw firm conclusions about the likely impact of
oxidised lipids in human subjects. Despite this, animal and
human studies have consistently shown that consumption of
oxidised lipids has a significant effect on a range of
biomarkers, including lipid metabolism, oxidative stress and
vascular function that are known to adversely affect health.

Conclusions and recommendations

Oxidised lipids have numerous harmful effects on health,
including the potential to increase the risk of atherosclerosis
and thrombosis. These effects have been seen with relatively
low levels of oxidised product, similar to those that could be
obtained from the regular consumption of fish oil capsules.
While products of oxidation in fish oils have not been
considered previously, one would have to assume that they
too are likely to affect health based on the evidence
presented in this review. Indeed, oxidation products could
account for the varying degrees of effectiveness and other
inconsistencies associated with fish oil supplementation that
have been reported in the literature.

To enable an accurate evaluation of the effects of oxidised
fish oils, it is important that levels of oxidised product in fish
oil are taken into account when designing studies involving
fish oil supplementation. Reports of relevant studies should
state (1) levels of HPODE and/or other oxidation products in
the capsules at the start and completion of recruitment; (2)
which antioxidants, if any, and at what concentrations, have
been added to the oil to inhibit lipid oxidation; (3) the
complete fatty acid composition of the oil used, because
different fatty acids have different rates of oxidation.
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