CLASSES OF EQUATIONS OF THE TYPE $y^2 = x^3 + k$ HAVING NO RATIONAL SOLUTIONS

HUGH M. EDGAR

The equation $y^2 = x^3 + k$, k an integer, has been discussed by many authors. Mordell [1] has found many classes of k values for which the equation has no integral solutions. Fueter [2], Mordell [3] and Chang [4] have found classes of k values for which the equation has no rational solutions. The following two theorems exhibit two more sets of conditions which give rise to classes of k values for which the corresponding equations have no rational solutions.

THEOREM 1. The equation $y^2 = x^3 + k$ has no rational solutions if k is a square free positive integer and

- (1) $k \equiv 2 \text{ or } 3 \pmod{4}, \ k \equiv -3 \pmod{9},$ *i.e.*, $k \equiv 6 \text{ or } 15 \pmod{36},$
- (2) $3 \neq H$, H the class number of $R(\sqrt{k})$,
- (3) $U \equiv 3 \text{ or } 6 \pmod{9}$ where (T, U) is the fundamental solution of the Pellian equation

 $Y^2 - kX^2 = 1,$

- (4) 3+h, h the class number of $R\left(\sqrt{-\frac{1}{3}k}\right)$.
- (5) the integer solutions of $p^2 + \frac{k}{3}q^2 = 3^{2h}$ when $h \equiv 1 \pmod{3}$, do not satisfy $q \equiv \pm 1 \pmod{9}$, and when $h \equiv -1 \pmod{3}$, do not satisfy $q \equiv \pm 2 \left(\frac{k}{3}\right)^2 \pmod{9}$.

THEOREM 2. The equation $y^3 = x^3 + k$ has no rational solutions if k is a square free positive integer and

(1') $k \equiv 5 \pmod{8}$ and $k \equiv -3 \pmod{9}$,

i.e., $k \equiv -3 \pmod{72}$,

- (2') 3+H, H the class number of $R(\sqrt{k})$,
- (3') $U \equiv 3 \text{ or } 6 \pmod{9}$, U the least positive value of q satisfying the Pellian equation

Received November 24, 1965.

 $p^{2} - kq^{2} = +4,$ (4') 3+h, h the class number of $R\left(\sqrt{-\frac{1}{3}k}\right)$. (5') α , β and γ , δ the respective integer solutions of the equations $\frac{1}{4}\left(\alpha^{2} + \frac{1}{3}k\beta^{2}\right) = 2^{h}$, $\frac{1}{4}\left(\gamma^{2} + \frac{1}{3}k\delta^{2}\right) = 3^{2h}$ satisfy the conditions: (a) (i) $\alpha \pm 0 \pmod{9}$ when h is odd, (ii) $\beta \pm 0 \pmod{9}$ when h is even; (b) when h = 3n + 1, $\left\{\alpha \pm \beta \frac{1}{3}k^{2}\right\}\delta \pm \pm 2 \pmod{9}$ and $\delta \pm \pm 2 \pmod{9}$, when h = 3n - 1, $\left\{\alpha \left(\frac{1}{3}k\right) \pm \beta\right\}\delta \pm \pm 2 \pmod{9}$ and $\delta \pm \pm 4 \left(\frac{k}{3}\right)^{2} \pmod{9}$ were the signs are all independent of each other.

Proof of Theorem 1. The set of conditions used in Theorem 1 arises from a theorem proved by Mordell [3] upon replacing his condition (3), in which he assumes that $U \equiv 0$, $\pm 1 \pmod{9}$, by the condition (3) as shown in the statement of Theorem 1. Hence it suffices to prove that at that point of the argument where Mordell [3] obtains a contradiction by imposing the conditions $U \equiv 0$, $\pm 1 \pmod{9}$ it is possible to obtain a contradiction by imposing instead the conditions $U \equiv 0 \pmod{3}$ and $U \equiv 0 \pmod{9}$ (i.e., $U \equiv 3$ or $6 \pmod{9}$). Upon referring to the paper of Mordell [3] one sees that it is enough to show that the equation

(6)
$$Y + \sqrt{k}Z^3 = (T \pm U\sqrt{k})(A + B\sqrt{k})^3$$

cannot be solved in rational integers Y, Z, A and B if (Y, k) = 1 and $U \equiv 3$ or $6 \pmod{9}$.

Upon equating coefficients in (6) one obtains the two equations

(7)
$$Z^3 = \pm AU(A^2 + 3kB^2) + TB(3A^2 + kB^2)$$
, and

(8)
$$Y = TA(A^2 + 3 kB^2) \pm UkB(3 A^2 + kB^2).$$

Upon taking residues modulo 3 in equation (7) one obtains $Z \equiv \pm UA \pmod{3}$. Since it is being assumed that $U \equiv 0 \pmod{3}$ it follows that $Z \equiv 0 \pmod{3}$. Again, taking residues modulo 3 in equation (8) one obtains $Y \equiv TA \pmod{3}$. Since (Y, k) = 1 it follows that $A \equiv 0 \pmod{3}$ and $T \equiv 0 \pmod{3}$. Hence $A^3 \equiv \pm 1 \pmod{9}$. Next, taking residues modulo 9 in equation (7) one obtains CLASSES OF EQUATIONS OF THE TYPE $y^2 = x^3 + k$

(9)
$$0 \equiv \pm U + 3TB\left(A^2 + \frac{k}{3}B^2\right) \pmod{9}.$$

If $B \equiv 0 \pmod{3}$ then $3TB\left(A^2 + \frac{k}{3}B^2\right) \equiv 0 \pmod{9}$

which implies $U \equiv 0 \pmod{9}$ contrary to the assumption on U. If $B \equiv 0 \pmod{3}$ 3) then $B^2 \equiv 1 \pmod{3}$. Since $k \equiv -3 \pmod{9}$ it follows that $\frac{k}{3} \equiv -1 \pmod{3}$. Since $A \equiv 0 \pmod{3}$ it follows that $A^2 \equiv 1 \pmod{3}$. Hence upon assuming $B \equiv 0 \pmod{3}$ one finds that $A^2 + \frac{k}{3}B^2 \equiv 0 \pmod{3}$ so that once again $3TB\left(A^2 + \frac{k}{3}B^2\right) \equiv 0 \pmod{9}$. Thus one obtains the contradiction $U \equiv 0 \pmod{9}$ also in this case.

Proof of Theorem 2. The set of conditions used in Theorem 2 arises from a theorem proved by Chang [4] upon replacing his condition (3), in which he assumes that $U \equiv 0 \pmod{3}$ and $U \equiv \pm 2 \pmod{9}$ by the condition (3') as shown in the statement of Theorem 2. The Pellian equation $p^2 - kq^2 = -4$ need not enter the discussion of the theorem proved by Chang [4] or Theorem 2 since this equation is insoluble whenever $k \equiv 0 \pmod{3}$. It suffices to prove that at that point of the argument where Chang [4] obtains a contradiction by imposing the conditions $U \equiv 0 \pmod{3}$ and $U \equiv \pm 2 \pmod{9}$ it is possible to obtain a contradiction by imposing instead the conditions

 $U \equiv 0 \pmod{3}$ and $U \equiv 0 \pmod{9}$ (i.e., $U \equiv 3 \text{ or } 6 \pmod{9}$).

Upon referring to the paper of Chang [4] one sees that it is enough to show that the equation

(10)
$$Y + Z^{3}\sqrt{k} = \left(\frac{1}{2}T \pm \frac{1}{2}U\sqrt{k}\right)\left(\frac{1}{2}A + \frac{1}{2}B\sqrt{k}\right)^{3}$$

cannot be solved in rational integers Y, Z, A and B if (Y, k) = 1 and $U \equiv 3$ or $6 \pmod{9}$. Here (T, U) is the fundamental solution of the Pellian equation $p^2 - kq^2 = +4$.

Upon equating coefficients in (10) one obtains the two equations

(11)
$$16 Z^3 = \pm AU(A^2 + 3 kB^2) + TB(3 A^2 + kB^2)$$
, and

(12)
$$16 Y = TA(A^2 + 3 kB^2) \pm UkB(3 A^2 + kB^2).$$

Upon taking residues modulo 3 in equation (11) one obtains $Z \equiv \pm UA \pmod{3}$. Since it is being assumed that $U \equiv 0 \pmod{3}$ it follows that $Z \equiv 0 \pmod{3}$.

51

HUGH M. EDGAR

Again, taking residues modulo 3 in equation (12) one obtains $Y \equiv TA \pmod{3}$. Since (Y, k) = 1 it follows that $A \equiv 0 \pmod{3}$ and $T \equiv 0 \pmod{3}$. Hence $A^3 \equiv \pm 1 \pmod{9}$. Next, taking residues modulo 9 in equation (11) one obtains a contradiction in the form $U \equiv 0 \pmod{9}$, just as in the proof of Theorem 1.

It seems natural to ask whether it is possible to make any progress when one assumes $k \equiv 1 \pmod{8}$ and simultaneously $k \equiv -3 \pmod{9}$ i.e., $k \equiv 33 \pmod{72}$. If one parallels the work of Chang [4] it is found that the equation

(13)
$$Y^2 - kZ^6 = X^3$$

can be obtained. The symbols X, Y and Z have the meanings ascribed to them by Chang [4] and the conditions (Y, Z) = (X, Z) = 1 obtain. Upon assuming k to be square free one also obtains (Y, k) = 1. Since $k \equiv 1 \pmod{8}$ both odd and even values for X are conceivable. If $X \equiv 1 \pmod{2}$ then the argument proceeds exactly as in Chang [4], provided (2) through (5) of Chang [4] (or (2') through (5') of Theorem 2) are assumed. Hence in these two cases one can conclude that there are no solutions of equation (13) with $X \equiv 1 \pmod{2}$. It may therefore now be assumed that $X \equiv 0 \pmod{2}$. Upon factorizing the lefthand side of equation (13) one obtains the ideal equation

(14)
$$[Y+Z^3\sqrt{k}][Y-Z^3\sqrt{k}] = [X]^3.$$

Let A be the greatest common divisor of the two ideals $[Y + Z^3\sqrt{k}]$ and $[Y - Z^3\sqrt{k}]$. Then it can be shown that A|[2]. To prove this fact it is enough to show that $2 \in A$, since A|[2] can equivalently be expressed by saying that A includes (as a set of algebraic integers from the field $R(\sqrt{k})$) [2]. By the definition of A one has

(15)
$$A = \left(\begin{bmatrix} Y + Z^3 \sqrt{k} \end{bmatrix}, \begin{bmatrix} Y - Z^3 \sqrt{k} \end{bmatrix} \right)$$
$$= \begin{bmatrix} Y + Z^3 \sqrt{k} k, \quad Y - Z^3 \sqrt{k} \end{bmatrix}.$$

It will suffice to prove the existence of rational integers a, b, c and d having the properties

(16)
$$2 = \left(\frac{a+b\sqrt{k}}{2}\right)\left(\frac{Y+Z^3\sqrt{k}}{2}\right) + \left(\frac{c+d\sqrt{k}}{2}\right)\left(\frac{Y-Z^3\sqrt{k}}{2}\right),$$

(17)
$$a \equiv b \pmod{2}, \ c \equiv d \pmod{2}.$$

The form for the general integer of $R(\sqrt{k})$ follows from the assumption $k \equiv 1 \pmod{4}$. Upon equating coefficients on both sides of equation (16) and simi-

plifying, one obtains

(18)
$$(a+c)Y + (b-d)kZ^3 = 4$$
, and

(19) $(b+d) Y + (a-c)Z^3 = 0.$

Equation (19) can be satisfied by putting a = c and b = -d. Then equation (18) becomes

$$aY + bkZ^3 = 2.$$

Now since $X \equiv 0 \pmod{2}$ by assumption, it is necessary to have $Y \equiv Z \equiv 1 \pmod{2}$. Then it follows that $Y \equiv kZ^3 \equiv 1 \pmod{2}$ from which it follows that if (a, b) is to be a solution of equation (20) then $a \equiv b \pmod{2}$ is necessary. This last condition is in accord with equation (17). Equation (20) is a linear diophantine equation in the two quantities a and b and has solutions in a and b since $(Y, kZ^3) = 1 | 2$. Finally, since $a \equiv b \pmod{2}$ is required by equation (20) the previously imposed conditions a = c and b = -d imply that $b \equiv d \pmod{2}$. Hence it follows that it is possible to find rational integers a, b, c and d satisfying equations (16) and (17) and so A | [2] as stipulated.

It will be of use in the sequel to know the canonical decomposition of the ideal [2] in the field $R(\sqrt{k})$. Since it is being assumed that $k \equiv 1 \pmod{4}$ it follows (Theorem 872, page 172, Landau [5]) that the discriminant \varDelta of $R(\sqrt{k})$ is given by $\varDelta = k \equiv 1 \pmod{8}$. Hence \varDelta is a quadratic residue modulo 8. From Theorem 879, page 178, Landau [6] with p = 2 it follows that [2] = PQ where $P = [2, R + \omega]$ and $Q = [2, R + \omega']$ for a suitable rational integer R. Here $\omega = \frac{1 + \sqrt{k}}{2}$ and $\omega' = \frac{1 - \sqrt{k}}{2}$. Also since $2 \neq \varDelta$ it follows from Theorem 880, page 180, Landau [7] that $P \neq Q$. P and Q are prime ideals.

It can be shown that one can choose the prime ideal factors of [2] as $P = [2, \omega]$ and $Q = [2, \omega']$. Upon writing $PQ = [2, \omega][2, \omega'] = [4, 2, \omega, 2\omega', \omega\omega']$ one sees that 4, 2, ω , 2, ω' and $\omega\omega'$ are integral (algebraic) multiples of 2 and so [2] PQ. The element $\omega\omega'$ has the value $\frac{1-k}{4}$ and since $k \equiv 1 \pmod{8}$ it follows that $\omega\omega'$ is an even rational integer. Also $2 = 2 \omega + 2 \omega'$ so that PQ|[2]. Hence PQ = [2].

The next step is to determine under what conditions P and Q are principal ideals. In order that P and Q be principal ideals it is necessary and sufficient that the number 2 have a non-trivial representation of the form

HUGH M. EDGAR

(21)
$$2 = \left(\frac{a+b\sqrt{k}}{2}\right) \left(\frac{u+v\sqrt{k}}{2}\right)$$

where a, b, u and v are rational integers satisfying the conditions $a \equiv b \pmod{2}$, $u \equiv v \pmod{2}$. The term non-trivial refers to the requirement that

$$\frac{a+b\sqrt{k}}{2}$$
 and $\frac{u+v\sqrt{k}}{2}$ not be units of $R(\sqrt{k})$.

From the ideal equation corresponding to equation (21) it follows that one can identify P with $\left[\frac{a+b\sqrt{k}}{2}\right]$ and Q with $\left[\frac{u+v\sqrt{k}}{2}\right]$. Now it is known that N(P) = N(Q) = 2, and so, using the fact that $N(\lfloor\beta\rfloor) = |N(\beta)|$ where β is any integer of $R(\sqrt{k})$, one sees that the two equations

(22)
$$|a^2 - kb^2| = 8$$

$$|u^2 - kv^2| = 8$$

must be satisfied. Since $x^2 - ky^2 = +8$ is insoluble whenever $k \equiv 0 \pmod{3}$, equations (22) and (23) become

(24)
$$a^2 - kb^2 = -8$$

(25)
$$u^2 - kv^2 = -8$$

Upon equating coefficients on both sides of equation (21) one obtains the two equations

$$(26) au + bvk = 8$$

$$av + bu = 0$$

If one multiplies equation (26) by v and substitutes for av from equation (27) it is found, using equation (25), that b = v. Hence also u = -a and thus equation (21) becomes

(28)
$$2 = \left(\frac{a+b\sqrt{k}}{2}\right)\left(\frac{-a+b\sqrt{k}}{2}\right).$$

It is seen that, since $k \equiv 1 \pmod{4}$, the parity restrictions on *a*, *b*, *u* and *v* must be met if equations (24) and (25) are to be satisfied.

Since $k \equiv 1 \pmod{4}$ and since $Y \equiv Z^3 \equiv 1 \pmod{2}$ it follows that $\frac{Y + Z^3 \sqrt{k}}{2}$ and $\frac{Y - Z^3 \sqrt{k}}{2}$ are integers of $R(\sqrt{k})$. In other words $[2] | [Y + Z^3 \sqrt{k}]$ and $[2] | [Y - Z^3 \sqrt{k}]$. Putting this fact together with the previous result that A | [2]shows that A = [2]. From equation (14), using the fact that $X \equiv 0 \pmod{2}$ one obtains the equation

(29)
$$\left[\frac{Y+Z^{3}\sqrt{k}}{2}\right]\left[\frac{Y-Z^{3}\sqrt{k}}{2}\right] = [2]\left[\frac{X}{2}\right]^{3}$$

where the two ideals on the left-hand side of equation (29) are relatively prime. Upon using the unique factorization of ideals in an algebraic number field, one obtains the two equations

(30)
$$\left[\frac{Y+Z^3\sqrt{k}}{2}\right] = I_1 D_1^3,$$

(31)
$$\left[\frac{Y-Z^3\sqrt{k}}{2}\right] = I_2 D_2^3,$$

Where I_1 , I_2 , D_1 and D_2 are ideals in $R(\sqrt{k})$ which satisfy the conditions $(I_1, I_2) = [1]$,

$$I_1I_2 = [2], (D_1, D_2) = [1] \text{ and } D_1D_2 = \left[\frac{X}{2}\right].$$

If it is now assumed that the Pellian equation $a^2 - kb^2 = -8$ can be solved, it follows that the ideals I_1 and I_2 are principal ideals in every case, according to remarks made previously. Then from equations (30) and (31) it follows that D_1^3 and D_2^3 are also principal ideals. Finally, the assumption 3 + H leads one to conclude that D_1 and D_2 are principal ideals. Thus, in particular, one can write $I_1 = \left\lfloor \frac{a+b\sqrt{k}}{2} \right\rfloor$ and $D_1 = \left\lfloor \frac{c+d\sqrt{k}}{2} \right\rfloor$. From equation (30) one obtains the equation

(32)
$$\left[\frac{Y+Z^{3}\sqrt{k}}{2}\right] = \left[\frac{a+b\sqrt{k}}{2}\right] \left[\frac{c+d\sqrt{k}}{2}\right]^{3}.$$

From equation (32) one obtains the equation

(33)
$$\frac{Y+Z^3\sqrt{k}}{2} = \varepsilon \left(\frac{a+b\sqrt{k}}{2}\right) \left(\frac{c+d\sqrt{k}}{2}\right)^3$$

where ε is a unit of the field $R(\sqrt{k})$. It follows that one can write $\frac{Y-Z^3\sqrt{k}}{2}$ in the form

(34)
$$\frac{Y-Z^{3}\sqrt{k}}{2} = \varepsilon \left(\frac{a-b\sqrt{k}}{2}\right) \left(\frac{c-d\sqrt{k}}{2}\right)^{3}$$

and a corresponding equation in ideals would be

(35)
$$\left[\frac{Y-Z^3\sqrt{k}}{2}\right] = \left[\frac{a-b\sqrt{k}}{2}\right] \left[\frac{c-d\sqrt{k}}{2}\right]^3.$$

https://doi.org/10.1017/S0027763000023916 Published online by Cambridge University Press

From equations (31) and (35) one obtains the equation

(36)
$$I_2 D_2^3 = \left[\frac{a-b\sqrt{k}}{2}\right] \left[\frac{c-d\sqrt{k}}{2}\right]^3.$$

From equation (36) one has $\left[\frac{c-d\sqrt{k}}{2}\right]|D_2$ for if there were a prime ideal R with the properties $R|\left[\frac{c-d\sqrt{k}}{2}\right]$ and $R+D_2$ then one would necessarily have $R^3|I_2$, which is impossible since $I_2|[2]$. In the same way, one finds that $D_2|\left[\frac{c-d\sqrt{k}}{2}\right]$ since the conditions on $\left[\frac{a-b\sqrt{k}}{2}\right]$ make it impossible to have the cube of a prime ideal dividing $\left[\frac{a-b\sqrt{k}}{2}\right]$. Hence $D_2 = \left[\frac{c-d\sqrt{k}}{2}\right]$ and $I_2 = \left[\frac{a-b\sqrt{k}}{2}\right]$. Since one now has $I_1I_2 = \left[\frac{a+b\sqrt{k}}{2}\right]\left[\frac{a-b\sqrt{k}}{2}\right] = [2]$, the two possibilities $I_1 = [1]$ and $I_1 = [2]$ cannot arise.

If one parallels the treatment of Mordell [3] the following equations result in those cases where the unit cannot be totally absorbed

(37)
$$\frac{Y+Z^3\sqrt{k}}{2} = \left(\frac{T\pm U\sqrt{k}}{2}\right)\left(\frac{a+b\sqrt{k}}{2}\right)\left(\frac{C+D\sqrt{k}}{2}\right)^3,$$

(38)
$$C^2 - kD^2 = -2 X.$$

In those situations where total absorption of the unit factor is possible, equation (38) still applies but equation (37) is replaced by the equation

(39)
$$\frac{X+Z^3\sqrt{k}}{2} = \left(\frac{a+b\sqrt{k}}{2}\right) \left(\frac{C+D\sqrt{k}}{2}\right)^3.$$

From equation (39) one obtains, upon equating coefficients, the equation

(40)
$$8 Y = aC(C^2 + 3 kD^2) + bkD(3 C^2 + kD^2).$$

Upon taking residues modulo 9 in equation (40) it is found, using the fact that $C \equiv 0 \pmod{3}$, that $Y \equiv \pm a \pmod{9}$. Now if it is assumed that $b \equiv 0 \pmod{3}$ then the equation $a^2 - kb^2 = -8$ forces the condition $a^2 \equiv 1 \pmod{9}$. Thus $Y^2 \equiv 1 \pmod{9}$ and upon referring back to equation (13) it can be seen that $Z \equiv 0 \pmod{3}$ is necessary. Upon equating coefficients of \sqrt{k} in equation (39) one obtains the equation

(41)
$$8 Z^{3} = aD(3 C^{2} + kD^{2}) + bC(C^{2} + 3 kD^{2}).$$

Upon taking residues modulo 9 in equation (41) it is found that $b \equiv 0 \pmod{9}$ is required. Thus one cannot find rational integers Y, Z, C and D which

56

satisfy equation (39) if it is assumed that $b \equiv 0 \pmod{3}$ and simultaneously $b \equiv 0 \pmod{9}$.

From equation (37) one obtains, upon equating coefficients of k, the equation

(42)
$$16 Z^{3} = (Ta \pm Ubk) (3 C^{2} + kD^{2})D + (Tb \pm Ua) (C^{2} + 3kD^{2})C.$$

In equation (42) it is enough to consider the positive sign, upon replacing b by -b, D by -D and leaving a and C unchanged. This replacement has the effect of changing Y to -Y. Hence one can replace equation (42) by the equation

(43)
$$16 Z^{3} = (Ta + Ubk) (3 C^{2} + kD^{2})D + (Tb + Ua) (C^{2} + 3 kD^{2})C.$$

Upon taking residues modulo 9 in equation (43) one obtains the relation

(44)
$$-2Z^3 \equiv \pm (Tb + Ua) \pmod{9}.$$

With the assumptions on U and b it follows that $Z \equiv 0 \pmod{3}$ so that one would require $Tb + Ua \equiv 0 \pmod{9}$.

The following result has been established:

THEOREM 3. The equation $y^2 = x^3 + k$ has no rational solutions if k is a square free positive integer and if the following conditions obtain:

(a) $k \equiv 1 \pmod{8}$ and $k \equiv -3 \pmod{9}$,

i.e., $k \equiv 33 \pmod{72}$,

(b) the conditions (2') through (5') of Theorem 2,

(c) the Pellian equation $X^2 - kY^2 = -8$ is soluble and possesses a solution (a, b) for which $b \equiv 0 \pmod{3}$ and $b \equiv 0 \pmod{9}$,

i.e., $b \equiv 3 \text{ or } 6 \pmod{9}$,

(d) $Tb + Ua \equiv 0 \pmod{9}$.

References

- [1] Mordell, L. J., Proc. London Math. Soc., Hodgson, London, 1914, Volume 13, The Diophantine equation $y^2 k = x^3$, Pages 60-80.
- [2] Fueter, R., Commentarii Mathematici Helvetici, Societate Mathematica Helvetica, Zurich, 1930, Volume 2, Ueber kubische diophantische Gleichungen, Pages 69-89.
- [3] Mordell, L. J., Archiv fur Mathematik og Naturvidenskab B.I.L., NR 6, Oslo, 1947, On some diophantine equations $y^2 = x^3 + k$ with no rational solutions, Pages 143-150.
- [4] Chang, K. L., The Quarterly Journal of Mathematics, Oxford University Press, Oxford,

HUGH M. EDGAR

1948, Volume 19. On some diophantine equations $y^2 = x^3 + k$ with no rational solutions, Pages 181-188.

- [5] Landau, E. G. H., Vorlesungen über Zahlentheorie, Chelsea Publishing Company, New York, 1947, Page 172, Theorem 872.
- [6] Landau, E. G. H., Vorlesungen über Zahlentheorie, Chelsea Publishing Company, New York, 1947, Page 178, Theorem 879.
- [7] Landau, E. G. H., Vorlesungen über Zahlentheorie, Chelsea Publishing Company, New York, 1947, Page 180, Theorem 880.

San Jose State College, San Jose 14, Calif., U.S.A.