CLASSES OF EQUATIONS OF THE TYPE $y^{2}=x^{3}+k$ HAVING NO RATIONAL SOLUTIONS

HUGH M. EDGAR

The equation $y^{2}=x^{3}+k, k$ an integer, has been discussed by many authors. Mordell [1] has found many classes of k values for which the equation has no integral solutions. Fueter [2], Mordell [3] and Chang [4] have found classes of k values for which the equation has no rational solutions. The following two theorems exhibit two more sets of conditions which give rise to classes of k values for which the corresponding equations have no rational solutions.

Theorem 1. The equation $y^{2}=x^{3}+k$ has no rational solutions if k is a square free positive integer and
(1) $k \equiv 2$ or $3(\bmod 4), k \equiv-3(\bmod 9)$, i.e., $k \equiv 6$ or $15(\bmod 36)$,
(2) $3+H$, H the class number of $R(\sqrt{k})$,
(3) $U \equiv 3$ or $6(\bmod 9)$ where (T, U) is the fundamental solution of the Pellian equation $Y^{2}-k X^{2}=1$,
(4) $3+h$, h the class number of $R\left(\sqrt{-\frac{1}{3}} k\right)$.
(5) the integer solutions of $p^{2}+\frac{k}{3} q^{2}=3^{2 h}$ when $h \equiv 1(\bmod 3)$, do not satisfy $q \equiv \pm 1(\bmod 9)$, and when $h \equiv-1(\bmod 3)$, do not satisfy $q \equiv \pm 2\left(\frac{k}{3}\right)^{2}$ $(\bmod 9)$.

Theorem 2. The equation $y^{2}=x^{3}+k$ has no rational solutions if k is a square free positive integer and
(1') $k \equiv 5(\bmod 8)$ and $k \equiv-3(\bmod 9)$,
i.e., $k \equiv-3(\bmod 72)$,
(2') $3+H, H$ the class number of $R(\sqrt{ } k)$,
(3') $U \equiv 3$ or $6(\bmod 9), U$ the least positive value of q satisfying the Pellian equation

[^0]$$
p^{2}-k q^{2}=+4,
$$
(4) $3+h, h$ the class number of $R\left(\sqrt{-\frac{1}{3} k}\right)$,
(5') α, β and r, δ the respective integer solutions of the equations $\frac{1}{4}\left(\alpha^{2}+\right.$ $\left.3^{1} k \beta^{2}\right)=2^{h}, \quad \frac{1}{4}\left(\gamma^{2}+\frac{1}{3} k \delta^{2}\right)=3^{2 h}$ satisfy the conditions:
(a) (i) $\alpha \neq 0(\bmod 9)$ when h is odd,
(ii) $\beta \neq 0(\bmod 9)$ when h is even;
(b) when $h=3 n+1,\left\{\alpha \pm \beta \frac{1}{3} k^{2}\right\} \delta$ 丰 $\pm 2(\bmod 9)$
and δ 丰 $\pm 2(\bmod 9)$,
when $h=3 n-1,\left\{\alpha\left(\frac{1}{3} k\right) \pm \beta\right\} \delta \neq \pm 2(\bmod 9)$
and $\delta \neq \pm 4\left(\frac{k}{3}\right)^{2}(\bmod 9)$ were the signs are all independent of each other.

Proof of Theorem 1. The set of conditions used in Theorem 1 arises from a theorem proved by Mordell [3] upon replacing his condition (3), in which he assumes that $U \neq 0, \pm 1(\bmod 9)$, by the condition (3) as shown in the statement of Theorem 1. Hence it suffices to prove that at that point of the argument where Mordell [3] obtains a contradiction by imposing the conditions $U \neq 0, \pm 1(\bmod 9)$ it is possible to obtain a contradiction by imposing instead the conditions $U \equiv 0(\bmod 3)$ and $U \equiv 0(\bmod 9)$ (i.e., $U \equiv 3$ or $6(\bmod 9))$. Upon referring to the paper of Mordell [3] one sees that it is enough to show that the equation

$$
\begin{equation*}
Y+\sqrt{k} Z^{3}=(T \pm U \sqrt{k})(A+B \sqrt{k})^{3} \tag{6}
\end{equation*}
$$

cannot be solved in rational integers Y, Z, A and B if $(Y, k)=1$ and $U \equiv 3$ or $6(\bmod 9)$.

Upon equating coefficients in (6) one obtains the two equations

$$
\begin{gather*}
Z^{3}= \pm A U\left(A^{2}+3 k B^{2}\right)+T B\left(3 A^{2}+k B^{2}\right), \text { and } \tag{7}\\
Y=T A\left(A^{2}+3 k B^{2}\right) \pm U k B\left(3 A^{2}+k B^{2}\right) \tag{8}
\end{gather*}
$$

Upon taking residues modulo 3 in equation (7) one obtains $Z \equiv \pm U A(\bmod 3)$. Since it is being assumed that $U \equiv 0(\bmod 3)$ it follows that $Z \equiv 0(\bmod 3)$. Again, taking residues modulo 3 in equation (8) one obtains $Y \equiv T A(\bmod 3)$. Since $(Y, k)=1$ it follows that $A \neq 0(\bmod 3)$ and $T \equiv 0(\bmod 3)$. Hence $A^{3} \equiv \pm 1$ $(\bmod 9)$. Next, taking residues modulo 9 in equation (7) one obtains

$$
\begin{equation*}
0 \equiv \pm U+3 T B\left(A^{2}+\frac{k}{3} B^{2}\right)(\bmod 9) \tag{9}
\end{equation*}
$$

If $B \equiv 0(\bmod 3)$ then $3 T B\left(A^{2}+\frac{k}{3} B^{2}\right) \equiv 0(\bmod 9)$
which implies $U \equiv 0(\bmod 9)$ contrary to the assumption on U. If $B \neq 0(\bmod$ 3) then $B^{2} \equiv 1(\bmod 3)$. Since $k \equiv-3(\bmod 9)$ it follows that $\frac{k}{3} \equiv-1(\bmod 3)$. Since $A \neq 0(\bmod 3)$ it follows that $A^{2} \equiv 1(\bmod 3)$. Hence upon assuming $B \equiv 0$ $(\bmod 3)$ one finds that $A^{2}+\frac{k}{3} B^{2} \equiv 0(\bmod 3)$ so that once again $3 T B\left(A^{2}+\frac{k}{3} B^{2}\right)$ $\equiv 0(\bmod 9)$. Thus one obtains the contradiction $U \equiv 0(\bmod 9)$ also in this case.

Proof of Theorem 2. The set of conditions used in Theorem 2 arises from a theorem proved by Chang [4] upon replacing his condition (3), in which he assumes that $U \neq 0(\bmod 3)$ and $U \neq \pm 2(\bmod 9)$ by the condition ($\left.3^{\prime}\right)$ as shown in the statement of Theorem 2. The Pellian equation $p^{2}-k q^{2}=-4$ need not enter the discussion of the theorem proved by Chang [4] or Theorem 2 since this equation is insoluble whenever $k \equiv 0(\bmod 3)$. It suffices to prove that at that point of the argument where Chang [4] obtains a contradiction by imposing the conditions $U \neq 0(\bmod 3)$ and $U \neq \pm 2(\bmod 9)$ it is possible to obtain a contradiction by imposing instead the conditions

$$
U \equiv 0(\bmod 3) \text { and } U \not \equiv 0(\bmod 9) \text { (i.e., } U \equiv 3 \text { or } 6(\bmod 9)) .
$$

Upon referring to the paper of Chang [4] one sees that it is enough to show that the equation

$$
\begin{equation*}
Y+Z^{3} \sqrt{k}=\left(\frac{1}{2} T \pm \frac{1}{2} U \sqrt{k}\right)\left(\frac{1}{2} A+\frac{1}{2} B \sqrt{k}\right)^{3} \tag{10}
\end{equation*}
$$

cannot be solved in rational integers Y, Z, A and B if $(Y, k)=1$ and $U \equiv 3$ or $6(\bmod 9)$. Here (T, U) is the fundamental solution of the Pellian equation $p^{2}-k q^{2}=+4$.

Upon equating coefficients in (10) one obtains the two equations

$$
\begin{align*}
& 16 Z^{3}= \pm A U\left(A^{2}+3 k B^{2}\right)+T B\left(3 A^{2}+k B^{2}\right), \text { and } \tag{11}\\
& 16 Y=T A\left(A^{2}+3 k B^{2}\right) \pm U k B\left(3 A^{2}+k B^{2}\right) \tag{12}
\end{align*}
$$

Upon taking residues modulo 3 in equation (11) one obtains $Z \equiv \pm U A(\bmod 3)$. Since it is being assumed that $U \equiv 0(\bmod 3)$ it follows that $Z \equiv 0(\bmod 3)$.

Again, taking residues modulo 3 in equation (12) one obtains $Y \equiv T A(\bmod 3)$. Since $(Y, k)=1$ it follows that $A \neq 0(\bmod 3)$ and $T \equiv 0(\bmod 3)$. Hence $A^{3} \equiv \pm 1$ (mod 9). Next, taking residues modulo 9 in equation (11) one obtains a contradiction in the form $U \equiv 0(\bmod 9)$, just as in the proof of Theorem 1.

It seems natural to ask whether it is possible to make any progress when one assumes $k \equiv 1(\bmod 8)$ and simultaneously $k \equiv-3(\bmod 9)$ i.e., $k \equiv 33(\bmod$ 72). If one parallels the work of Chang [4] it is found that the equation

$$
\begin{equation*}
Y^{2}-k Z^{6}=X^{3} \tag{11}
\end{equation*}
$$

can be obtained. The symbols X, Y and Z have the meanings ascribed to them by Chang [4] and the conditions $(Y, Z)=(X, Z)=1$ obtain. Upon assuming k to be square free one also obtains $(Y, k)=1 . \quad$ Since $k \equiv 1(\bmod 8)$ both odd and even values for X are conceivable. If $X \equiv 1(\bmod 2)$ then the argument proceeds exactly as in Chang [4], provided (2) through (5) of Chang [4] (or (2') through (5') of Theorem 2) are assumed. Hence in these two cases one can conclude that there are no solutions of equation (13) with $X \equiv 1$ $(\bmod 2)$. It may therefore now be assumed that $X \equiv 0(\bmod 2)$. Upon factorizing the lefthand side of equation (13) one obtains the ideal equation

$$
\begin{equation*}
\left[Y+Z^{3} \sqrt{k}\right]\left[Y-Z^{3} \sqrt{k}\right]=[X]^{3} . \tag{14}
\end{equation*}
$$

Let A be the greatest common divisor of the two ideals $\left[Y+Z^{3} \sqrt{k}\right]$ and $\left[Y-Z^{3} \sqrt{k}\right]$. Then it can be shown that $A \mid[2]$. To prove this fact it is enough to show that $2 \in A$, since $A \mid[2]$ can equivalently be expressed by saying that A includes (as a set of algebraic integers from the field $R(\sqrt{k})$) [2]. By the definition of A one has

$$
\begin{align*}
A & =\left(\left[Y+Z^{3} \sqrt{k}\right],\left[Y-Z^{3} \sqrt{k}\right]\right) \tag{15}\\
& =\left[Y+Z^{3} \sqrt{k} k, Y-Z^{3} \sqrt{k}\right] .
\end{align*}
$$

It will suffice to prove the existence of rational integers a, b, c and d having the properties

$$
\begin{gather*}
2=\left(\frac{a+b \sqrt{k}}{2}\right)\left(\frac{Y+Z^{3} \sqrt{k}}{2}\right)+\left(\frac{c+d \sqrt{k}}{2}\right)\left(\frac{Y-Z^{3} \sqrt{ } k}{2}\right), \tag{16}\\
a \equiv b(\bmod 2), c \equiv d(\bmod 2) . \tag{17}
\end{gather*}
$$

The form for the general integer of $R(\sqrt{ } k)$ follows from the assumption $k \equiv 1$ (mod 4). Upon equating coefficients on both sides of equation (16) and sim-
plifying, one obtains

$$
\begin{align*}
& (a+c) Y+(b-d) k Z^{3}=4, \text { and } \tag{18}\\
& (b+d) Y+(a-c) Z^{3}=0 . \tag{18}
\end{align*}
$$

Equation (19) can be satisfied by putting $a=c$ and $b=-d$. Then equation (18) becomes

$$
\begin{equation*}
a Y+b k Z^{3}=2 . \tag{20}
\end{equation*}
$$

Now since $X \equiv 0(\bmod 2)$ by assumption, it is necessary to have $Y \equiv Z \equiv 1(\bmod$ 2). Then it follows that $Y \equiv k Z^{3} \equiv 1(\bmod 2)$ from which it follows that if $(a$, $b)$ is to be a solution of equation (20) then $a \equiv b(\bmod 2)$ is necessary. This last condition is in accord with equation (17). Equation (20) is a linear diophantine equation in the two quantities a and b and has solutions in a and b since $\left(Y, k Z^{3}\right)=1 \mid 2$. Finally, since $a \equiv b(\bmod 2)$ is required by equation (20) the previously imposed conditions $a=c$ and $b=-d$ imply that $b \equiv d$ (mod 2). Hence it follows that it is possible to find rational integers a, b, c and d satisfying equations (16) and (17) and so $A \mid[2]$ as stipulated.

It will be of use in the sequel to know the canonical decomposition of the ideal [2] in the field $R(\sqrt{k})$. Since it is being assumed that $k \equiv 1(\bmod 4)$ it follows (Theorem 872, page 172, Landau [5]) that the discriminant Δ of $R(\sqrt{ } k)$ is given by $\Delta=k \equiv 1(\bmod 8)$. Hence Δ is a quadratic residue modulo 8 . From Theorem 879, page 178, Landau [6] with $p=2$ it follows that [2] $=P Q$ where $P=[2, R+\omega]$ and $Q=\left[2, R+\omega^{\prime}\right]$ for a suitable rational integer R. Here $\omega=\frac{1+\sqrt{k}}{2}$ and $\omega^{\prime}=\frac{1-\sqrt{k}}{2}$. Also since $2+\Delta$ it follows from Theorem 880, page 180, Landau [7] that $P \neq Q . \quad P$ and Q are prime ideals.

It can be shown that one can choose the prime ideal factors of [2] as $P=[2, \omega]$ and $Q=\left[2, \omega^{\prime}\right]$. Upon writing $P Q=[2, \omega]\left[2, \omega^{\prime}\right]=\left[4,2 \omega, 2 \omega^{\prime}, \omega \omega^{\prime}\right]$ one sees that $4,2 \omega, 2 \omega^{\prime}$ and $\omega \omega^{\prime}$ are integral (algebraic) multiples of 2 and so $[2] \mid P Q$. The element $\omega \omega^{\prime}$ has the value $\frac{1-k}{4}$ and since $k \equiv 1(\bmod 8)$ it follows that $\omega \omega^{\prime}$ is an even rational integer. Also $2=2 \omega+2 \omega^{\prime}$ so that $P Q \mid[2]$. Hence $P Q=[2]$.

The next step is to determine under what conditions P and Q are principal ideals. In order that P and Q be principal ideals it is necessary and sufficient that the number 2 have a non-trivial representation of the form

$$
\begin{equation*}
2=\left(\frac{a+b \sqrt{k}}{2}\right)\left(\frac{u+v \sqrt{ } k}{2}\right) \tag{21}
\end{equation*}
$$

where a, b, u and v are rational integers satisfying the conditions $a \equiv b(\bmod 2)$, $u \equiv v(\bmod 2)$. The term non-trivial refers to the requirement that

$$
\frac{a+b \sqrt{k}}{2} \text { and } \frac{u+v \sqrt{k}}{2} \text { not be units of } R(\sqrt{k})
$$

From the ideal equation corresponding to equation (21) it follows that one can identify P with $\left[\frac{a+b \sqrt{k}}{2}\right]$ and Q with $\left[\frac{u+v \sqrt{k}}{2}\right]$. Now it is known that $N(P)=N(Q)=2$, and so, using the fact that $N([\beta])=|N(\beta)|$ where β is any integer of $R(\sqrt{k})$, one sees that the two equations

$$
\begin{align*}
& \left|a^{2}-k b^{2}\right|=8 \tag{22}\\
& \left|u^{2}-k v^{2}\right|=8 \tag{23}
\end{align*}
$$

must be satisfied. Since $x^{2}-k y^{2}=+8$ is insoluble whenever $k \equiv 0(\bmod 3)$, equations (22) and (23) become

$$
\begin{align*}
& a^{2}-k b^{2}=-8 \tag{24}\\
& u^{2}-k v^{2}=-8 \tag{25}
\end{align*}
$$

Upon equating coefficients on both sides of equation (21) one obtains the two equations

$$
\begin{align*}
& a u+b v k=8 \tag{26}\\
& a v+b u=0 \tag{27}
\end{align*}
$$

If one multiplies equation (26) by v and substitutes for $a v$ from equation (27) it is found, using equation (25), that $b=v$. Hence also $u=-a$ and thus equation (21) becomes

$$
\begin{equation*}
2=\left(\frac{a+b \sqrt{k}}{2}\right)\left(\frac{-a+b \sqrt{k}}{2}\right) \tag{28}
\end{equation*}
$$

It is seen that, since $k \equiv 1(\bmod 4)$, the parity restrictions on a, b, u and v must be met if equations (24) and (25) are to be satisfied.

Since $k \equiv 1(\bmod 4)$ and since $Y \equiv Z^{3} \equiv 1(\bmod 2)$ it follows that $\frac{Y+Z^{3} \sqrt{k}}{2}$ and $\frac{Y-Z^{3} \sqrt{k}}{2}$ are integers of $R(\sqrt{k})$. In other words $[2] \mid\left[Y+Z^{3} \sqrt{k}\right]$ and $[2] \mid[Y-Z \sqrt[3]{k}]$. Putting this fact together with the previous result that $A \mid[2]$ shows that $A=[2]$. From equation (14), using the fact that $X \equiv 0(\bmod 2)$
one obtains the equation

$$
\begin{equation*}
\left[\frac{Y+Z^{3} \sqrt{k}}{2}\right]\left[\frac{Y-Z^{3} \sqrt{k}}{2}\right]=[2]\left[\frac{X}{2}\right]^{3} \tag{29}
\end{equation*}
$$

where the two ideals on the left-hand side of equation (29) are relatively prime. Upon using the unique factorization of ideals in an algebraic number field, one obtains the two equations

$$
\begin{align*}
& {\left[\frac{Y+Z^{3} \sqrt{k}}{2}\right]=I_{1} D_{1}^{3},} \tag{30}\\
& {\left[\frac{Y-Z^{3} \sqrt{k}}{2}\right]=I_{2} D_{2}^{3},} \tag{31}
\end{align*}
$$

Where I_{1}, I_{2}, D_{1} and D_{2} are ideals in $R(\sqrt{k})$ which satisfy the conditions $\left(I_{1}, I_{2}\right)=[1]$.

$$
I_{1} I_{2}=[2],\left(D_{1}, D_{2}\right)=[1] \text { and } D_{1} D_{2}=\left[\frac{X}{2}\right] .
$$

If it is now assumed that the Pellian equation $a^{2}-k b^{2}=-8$ can be solved, it follows that the ideals I_{1} and I_{2} are principal ideals in every case, according to remarks made previously. Then from equations (30) and (31) it follows that D_{1}^{3} and D_{2}^{3} are also principal ideals. Finally, the assumption $3+H$ leads one to conclude that D_{1} and D_{2} are principal ideals. Thus, in particular, one can write $I_{1}=\left\lfloor\frac{a+b \sqrt{k}}{2}\right\rfloor$ and $D_{1}=\left\lfloor\frac{c+d \sqrt{k}}{2}\right\rfloor$. From equation (30) one obtains the equation

$$
\begin{equation*}
\left[\frac{Y+Z^{3} \sqrt{k}}{2}\right]=\left[\frac{a+b \sqrt{k}}{2}\right]\left[\frac{c+d \sqrt{k}}{2}\right]^{3} \tag{32}
\end{equation*}
$$

From equation (32) one obtains the equation

$$
\begin{equation*}
\frac{Y+Z^{3} \sqrt{k}}{2}=\varepsilon\left(\frac{a+b \sqrt{k}}{2}\right)\left(\frac{c+d \sqrt{k}}{2}\right)^{3} \tag{33}
\end{equation*}
$$

where ε is a unit of the field $R(\sqrt{k})$. It follows that one can write $\frac{Y-Z^{3} \sqrt{k}}{2}$ in the form

$$
\begin{equation*}
\frac{Y-Z^{3} \sqrt{k}}{2}=\varepsilon\left(\frac{a-b \sqrt{k}}{2}\right)\left(\frac{c-d \sqrt{k}}{2}\right)^{3} \tag{34}
\end{equation*}
$$

and a corresponding equation in ideals would be

$$
\begin{equation*}
\left[\frac{Y-Z^{3} \sqrt{k}}{2}\right]=\left[\frac{a-b \sqrt{k}}{2}\right]\left[\frac{c-d \sqrt{k}}{2}\right]^{3} \tag{35}
\end{equation*}
$$

From equations (31) and (35) one obtains the equation

$$
\begin{equation*}
I_{2} D_{2}^{3}=\left[\frac{a-b \sqrt{k}}{2}\right]\left[\frac{c-d \sqrt{k}}{2}\right]^{3} . \tag{36}
\end{equation*}
$$

From equation (36) one has $\left.\left[\frac{c-d \sqrt{k}}{2}\right] \right\rvert\, D_{2}$ for if there were a prime ideal R with the properties $R \left\lvert\,\left[\frac{c-d \sqrt{k}}{2}\right]\right.$ and $R+D_{2}$ then one would necessarily have $R^{3} \mid I_{2}$, which is impossible since $I_{2} \mid[2]$. In the same way, one finds that $D_{2}\left[\begin{array}{c}c-d \sqrt{k} \\ 2\end{array}\right]$ since the conditions on $\left[\frac{a-b \sqrt{k}}{2}\right]$ make it impossible to have the cube of a prime ideal dividing $\left\lfloor\frac{a-b \sqrt{k}}{2}\right\rfloor$. Hence $D_{2}=\left[\frac{c-d \sqrt{k}}{2}\right]$ and $I_{2}=\left[\frac{a-b \sqrt{k}}{2}\right]$. Since one now has $I_{1} I_{2}=\left[\frac{a+b \sqrt{k}}{2}\right\rfloor\left[\frac{a-b \sqrt{k}}{2}\right]=[2]$, the two possibilities $I_{1}=[1]$ and $I_{1}=[2]$ cannot arise.

If one parallels the treatment of Mordell [3] the following equations result in those cases where the unit cannot be totally absorbed

$$
\begin{gather*}
\frac{Y+Z^{3} \sqrt{k}}{2}=\left(\frac{T \pm U \sqrt{k}}{2}\right)\left(\frac{a+b \sqrt{k}}{2}\right)\left(\frac{C+D \sqrt{k}}{2}\right)^{3} \tag{37}\\
C^{2}-k D^{2}=-2 X . \tag{38}
\end{gather*}
$$

In those situations where total absorption of the unit factor is possible, equation (38) still applies but equation (37) is replaced by the equation

$$
\begin{equation*}
\frac{X+Z^{3} \sqrt{k}}{2}=\left(\frac{a+b \sqrt{k}}{2}\right)\left(\frac{C+D \sqrt{k}}{2}\right)^{3} . \tag{39}
\end{equation*}
$$

From equation (39) one obtains, upon equating coefficients, the equation

$$
\begin{equation*}
8 Y=a C\left(C^{2}+3 k D^{2}\right)+b k D\left(3 C^{2}+k D^{2}\right) \tag{40}
\end{equation*}
$$

Upon taking residues modulo 9 in equation (40) it is found, using the fact that $C \equiv 0(\bmod 3)$, that $Y \equiv \pm a(\bmod 9)$. Now if it is assumed that $b \equiv 0(\bmod 3)$ then the equation $a^{2}-k b^{2}=-8$ forces the condition $a^{2} \equiv 1(\bmod 9)$. Thus Y^{2} $\equiv 1(\bmod 9)$ and upon referring back to equation (13) it can be seen that $Z \equiv 0$ (mod 3) is necessary. Upon equating coefficients of \sqrt{k} in equation (39) one obtains the equation

$$
\begin{equation*}
8 Z^{3}=a D\left(3 C^{2}+k D^{2}\right)+b C\left(C^{2}+3 k D^{2}\right) \tag{41}
\end{equation*}
$$

Upon taking residues modulo 9 in equation (41) it is found that $b \equiv 0(\bmod 9)$ is required. Thus one cannot find rational integers Y, Z, C and D which
satisfy equation (39) if it is assumed that $b \equiv 0(\bmod 3)$ and simultaneously $b \neq 0(\bmod 9)$.

From equation (37) one obtains, upon equating coefficients of k, the equation

$$
\begin{align*}
16 Z^{3}=(T a & \pm U b k)\left(3 C^{2}+k D^{2}\right) D \tag{42}\\
& +(T b \pm U a)\left(C^{2}+3 k D^{2}\right) C .
\end{align*}
$$

In equation (42) it is enough to consider the positive sign, upon replacing b by $-b, D$ by $-D$ and leaving a and C unchanged. This replacement has the effect of changing Y to $-Y$. Hence one can replace equation (42) by the equation

$$
\begin{align*}
16 Z^{3}=(T a & +U b k)\left(3 C^{3}+k D^{2}\right) D \tag{43}\\
& +(T b+U a)\left(C^{2}+3 k D^{2}\right) C .
\end{align*}
$$

Upon taking residues modulo 9 in equation (43) one obtains the relation

$$
\begin{equation*}
-2 Z^{3} \equiv \pm(T b+U a)(\bmod 9) \tag{44}
\end{equation*}
$$

With the assumptions on U and b it follows that $Z \equiv 0(\bmod 3)$ so that one would require $T b+U a \equiv 0(\bmod 9)$.

The following result has been established:
Theorem 3. The equation $y^{2}=x^{3}+k$ has no rational solutions if k is a square free positive integer and if the following conditions obtain:
(a) $k \equiv 1(\bmod 8)$ and $k \equiv-3(\bmod 9)$,
i.e., $k \equiv 33(\bmod 72)$,
(b) the conditions (2') through (5') of Theorem 2,
(c) the Pellian equation $X^{2}-k Y^{2}=-8$ is soluble and possesses a solution (a, b) for which $b \equiv 0(\bmod 3)$ and $b \neq 0(\bmod 9)$, i.e., $b \equiv 3$ or $6(\bmod 9)$.
(d) $T b+U a \neq 0(\bmod 9)$.

References

[1] Mordell, L. J., Proc. London Math. Soc., Hodgson, London, 1914, Volume 13, The Diophantine equation $y^{2}-k=x^{3}$, Pages $60-80$.
[2] Fueter, R., Commentarii Mathematici Helvetici, Societate Mathematica Helvetica, Zurich, 1930, Volume 2, Ueber kubische diophantische Gleichungen, Pages 69-89.
[3] Mordell, L. J., Archiv fur Mathematik og Naturvidenskab B.I.L., NR 6, Oslo, 1947, On some diophantine equations $y^{2}=x^{3}+k$ with no rational solutions, Pages 143-150.
[4] Chang, K. L., The Quarterly Journal of Mathematics, Oxford University Press, Oxford,

1948, Volume 19. On some diophantine equations $y^{2}=x^{3}+k$ with no rational solutions, Pages 181-188.
[5] Landau, E. G. H., Vorlesungen über Zahlentheorie, Chelsea Publishing Company, New York, 1947, Page 172, Theorem 872.
[6] Landau, E. G. H., Vorlesungen über Zahlentheorie, Cbelsea Publishing Company, New York, 1947, Page 178, Theorem 879.
[7] Landau, E. G. H., Vorlesungen über Zahlentheorie, Chelsea Publishing Company, New York, 1947, Page 180, Theorem 880.

San Jose State College, San Jose 14, Calif., U.S.A.

[^0]: Received November 24, 1965.

