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Yetter—Drinfeld resolutions of the counit
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ABSTRACT

We show that if A and H are Hopf algebras that have equivalent tensor categories of
comodules, then one can transport what we call a free Yetter—Drinfeld resolution of the
counit of A to the same kind of resolution for the counit of H, exhibiting in this way
strong links between the Hochschild homologies of A and H. This enables us to obtain
a finite free resolution of the counit of B(E), the Hopf algebra of the bilinear form
associated with an invertible matrix F, generalizing an earlier construction of Collins,
Hértel and Thom in the orthogonal case E =I,,. It follows that B(FE) is smooth of
dimension 3 and satisfies Poincaré duality. Combining this with results of Vergnioux,
it also follows that when E is an antisymmetric matrix, the L?-Betti numbers of the
associated discrete quantum group all vanish. We also use our resolution to compute
the bialgebra cohomology of B(F) in the cosemisimple case.

1. Introduction

Let n € N* and let A,(n) be the algebra (over the field of complex numbers) presented by
generators (u;j)i<ij<n and relations making the matrix u = (u;;) orthogonal. This is a Hopf
algebra, introduced by Dubois-Violette and Launer [DL90] and independently by Wang [Wan95]
in the compact quantum group setting. The Hopf algebras A,(n) play an important role in
quantum group theory, since any finitely generated Hopf algebra of Kac type (the square of
the antipode is the identity), and in particular any semisimple Hopf algebra, is a quotient
of one of these. They have been studied from several perspectives, in particular from the
(co)representation theory viewpoint [Ban96, Bic03a, BDV06] and the probabilistic and operator
algebraic viewpoint [BC07, BCZ09, VV07, VV08, Voill].

The homological study of A,(n) begins in [CHT09], where Collins et al. define an exact
sequence of A,(n)-modules

0 — Ao(n) — Mnp(Ao(n)) — My(As(n)) — Ao(n) —C—0 (*)

thus yielding a resolution of the counit of A4,(n) by free A,(n)-modules. From this exact sequence,
they deduce some important homological information on A,(n):
(i) Ao(n) is smooth of dimension 3;
(ii) Ao(n) satisfies Poincaré duality;
(iii) the L?-Betti numbers of A,(n) all vanish.
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An inconvenient feature of [CHT09] is that the verification of the exactness of * is a very long
computation involving tedious Grobner basis computations. It is the aim of the present paper to
propose a simpler and more conceptual proof of the exactness of the sequence x, together with
a generalization to a larger class of Hopf algebras.

Our starting point is the combination of the following two known facts.

(i) For g € C*, there exists a resolution of the counit of O(SL4(2)) having the same length
as that of the sequence x (see e.g. [HK05]).

(ii) For ¢ satisfying ¢+ ¢ ' = —n, there exists an equivalence of tensor categories of

comodules MOBLa(2) ~@ AfAo(?) (see [BicO3al).

Therefore, although one cannot expect that a tensor equivalence between categories of comodules
induces isomorphisms between Hochschild homologies, it is tempting to believe that it is possible
to use the above monoidal equivalence to transport a resolution of the counit of O(SL4(2)) by
free modules having appropriate additional structures (in particular, a comodule structure) to
get a resolution of the counit of A,(n) having the same length.

The appropriate structure we find is that of a free Yetter—Drinfeld module, see §3 for the
definition. These are Yetter—Drinfeld modules that are, in particular, free as modules. We show
that if A and H are Hopf algebras that have equivalent tensor categories of comodules, then one
can transport a free Yetter—Drinfeld resolution of the counit of A to the same kind of resolution
for the counit of H (with preservation of the length of the resolution).

Now let F € GL,,(C) with n>2 and consider the algebra B(FE) presented by generators
(uij)lgingn and relations

E~WEu=1I,=uFE "W'E,
where u is the matrix (u;5)1<i j<n- The Hopf algebra B(E) was defined in [DL90], and corresponds
to the quantum symmetry group of the bilinear form associated with E. We have B(I,,) = A,(n)

and O(SL,(2)) = B(E,), where
0 1

We construct, for any E € GL,(C), an exact sequence of B(FE)-modules

0 — B(E) — M,(B(E)) — M,(B(E)) — B(E) —C —0 (xg).
See §5. For E = I,,, the sequence is that of Collins-Hértel-Thom in [CHT09]. The verification
of exactness goes as follows.

(i) We endow each constituent of the sequence with a free Yetter-Drinfeld module structure.

(ii) We use the previous construction to transport sequences of free Yetter—Drinfeld modules
to show that for E € GL,(C), F € GL,,(C) with tr(E~1E?) = tr(F~'F') and m,n > 2 (so that
MBE) ~® MBF): see [Bic03a)), the sequence % is exact if and only if the sequence *p is exact.

(iii) We check that for any q € C*, the sequence xp, is exact (this is less than a one-page
computation). Now for any E € GL,(C) with n >2, we pick ¢ € C* such that tr(E~!E!) =

—q—q = tr(Eq_lEfI), and we conclude from the previous item that xg is exact.

Similarly as in [CHT09], the exactness of the sequence xg has several interesting consequences.
The first is that B(E) is smooth of dimension 3 for any E € GL,(C), n > 2 (recall [VdB98] that
an algebra A is said to be smooth of dimension d if the A-bimodule A has a finite resolution of
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length d by finitely generated projective A-bimodules, with d being the smallest possible length
for such a resolution).

The second consequence is that B(E) satisfies a Poincaré duality between its Hochschild
homology and cohomology. Since Van den Bergh’s seminal paper [VdB98], Poincaré duality
for algebras has been the subject of many papers, in which the authors propose axioms that
will have Poincaré duality as a corollary, see e.g. [KK10] for a recent general and powerful
framework. Let us emphasize that the exact sequence xg enables us to establish Poincaré duality
in a straightforward manner, without having to check any condition such as those proposed
in [BZ08] (where, moreover, noetherianity assumptions were done, while B(F) is not noetherian
if n > 3).

A third consequence concerns bialgebra cohomology (also known as Gerstenhaber—Schack
cohomology [GS90, GS92]), for which only very few full computations are known for non-
cocommutative and non-commutative Hopf algebras (see [Tai07]). The fact that the exact
sequence g consists of free Yetter—Drinfeld modules enables us to compute the bialgebra
cohomology of B(E) (and hence, in particular, of O(SL,(2))) in the cosemisimple case.

The last consequence concerns L2-Betti numbers. Recall that the definition of L?-Betti
numbers for groups [Luc02] can be generalized to discrete quantum groups (compact
Hopf algebras of Kac type) [Kye08]. Combining the results in [CHTO09] with a result of
Vergnioux [Ver12] (vanishing of the first Betti number of A,(n)), Collins et al. have shown that
the L2-Betti numbers of A,(n) all vanish. Using similar arguments we show that the L?-Betti
numbers of A,(J,,) all vanish, where J,,, is any antisymmetric invertible matrix. This completes
the computation of the L2-Betti numbers of all universal orthogonal discrete quantum groups of
Kac type.

The paper is organized as follows. Section 2 is devoted to preliminaries. In §3 we introduce
free Yetter—Drinfeld modules and remark that the standard resolution of the counit of a Hopf
algebra is a free Yetter—Drinfeld resolution. In §4 we show how to transport free Yetter—Drinfeld
resolutions for Hopf algebras having equivalent tensor categories of comodules. In §5 we define
and prove the exactness of the announced resolution of the counit of B(E). Section 6 is devoted
to the several applications we have already announced, and §7 consists of concluding remarks.

2. Preliminaries

2.1 Notation and conventions

We assume that the base field is C, the field of complex numbers (although our results, except
in §6.4, do not depend on the base field). All algebras are assumed to be unital. We assume that
the reader is familiar with the theory of Hopf algebras and their tensor categories of comodules,
as explained, e.g., in [Kas95, KS97, Mon93]|. If A is a Hopf algebra, as usual, A, € and S stand for
the comultiplication, counit and antipode of A, respectively. We use Sweedler’s notation in the
standard way. The category of right A-comodules is denoted M#A. If M is an A-bimodule, then
H,.(A, M) and H*(A, M) denote the respective Hochschild homology and cohomology groups of
A (with coefficients in M).

2.2 Hochschild homology of Hopf algebras and resolutions of the counit

In this section we recall how the Hochschild homology and cohomology of a Hopf algebra A can
be described by using suitable Tor and Ext groups on the category of left or right A-modules
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and resolutions of the counit. This has been discussed under various forms in several papers
(see [BZ08, CHTO09, FT91, GK93, HKO05]) and probably has its origins in [CE56, §6, ch. X].

ProposITION 2.1. Let A be a Hopf algebra and let M be an A-bimodule. Define a left A-module
structure on M and a right A-module structure on M by

a—z=agp)  v-Say), z—a=S(aq)) v ap)

and denote by M' and M" the respective corresponding left A-module and right A-module. Then
for all n € N there exist isomorphisms of vector spaces

H, (A, M)~ Tor{(C., M), H"(A, M) ~Ext%(C., M").
The previous Ext groups are those in the category of right A-modules. In lack of a reference
that would give exactly the isomorphisms of Proposition 2.1, we provide an explicit proof, which

is the object of the rest of the subsection. Writing down the proof also gives us the opportunity
to review the material involved in the statement of the proposition [Wei94].

Proof. Let (A, ) be an augmented algebra, i.e. A is an algebra and ¢: A — C is an algebra
map that we call the counit of A. We view C as a right A-module via ¢ and we denote by C.
this right A-module. Recall that the standard resolution of C. (the standard resolution of the
counit) is given by the complex of free right A-modules

e ABHL g8 AR A— A—0

where each differential is given by

A®n+1 _)A®n
n .
al®...®an+1»—>5(a1)a2®---®an+1+2(—1)1a1®---®ami+1®---®an+1-
i=1

Given a left A-module M’, the vector spaces Tord(C., M') are given by the homology of
the complex obtained by tensoring any projective resolution of C. by — ® 4 M’. Thus, using the
standard resolution of the counit, after suitable identifications, we see that the vector spaces
Tor2(C., M') are given by the homology of the following complex

-—>A®”®M’i>A®"_1®M'L---L>A®M’i>M’—>O
where the differential d : A®" @ M’ — A®"~1 @ M’ is given by
n—1 '
d(a1®'-'®an®x)zs(al)a2®-~-®an®x+2(—1)la1®...®aiai+1®...®an®$

i=1
+(-1)"a1® - ®ap—1 ®ay - .

Recall now that if A is an algebra and M is an A-bimodule, the Hochschild homology groups
H,(A, M) are the homology groups of the complex

e MeA® oA Y e A M0

where the differential b: M @ A®" — M ® A®"1 is given by

n—1
b(l“@(ll@"'@an)Zﬂf'al®"'®an+Z(—1)ix®a1®--~®aiai+1®.--®an
i—1

+(—D"ap - 2®a1 @ @ ap_1.
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Assume now that A is a Hopf algebra and let M be an A-bimodule. Consider the linear map
6: M@ A" — A®" @ M’

TR @ap a2 @ Dap2) @T - (ayy - Qn(1))-
It is straightforward to see that 6 is an isomorphism with inverse given by

071 A @ M — M ® A®"

@ ®ap @r—2-S(ayq) - y1)) @ (A1) @ -+ - @ -+ - ap(2))

and that dof=60ob. Hence, € induces an isomorphism between the complexes defining
H,(A, M) and Tor?(C., M") and we get the first isomorphism H, (A, M) ~ Tor(C., M").

For the second isomorphism in Proposition 2.1, let us come back to the situation of an
augmented algebra (A4, ¢). Given a right A-module M”, the vector spaces Ext* (C., M") are
given by the cohomology of the complex obtained by applying the functor Hom(—, M") to
any projective resolution of C.. Thus, using the standard resolution of the counit, we see that

after suitable identifications, the vector spaces Ext%(C., M") are given by the cohomology of
the following complex

0 — Hom(C, M”) -% Hom(A, M) -Ls - - - ~% Hom(A®", M") - Hom (A", M) 25 . ..

where the differential 9 : Hom(A®", M") — Hom(A®"*1 M") is given by
n

A1 @ @api1) =e(a) flaa @ @ant1) + D _(-1)'f(a1 @+ ® a;aip1 @~ @ apy1)
=1

+ (—1)n+1f(a1 Y an) “Ap+1-

If A is an algebra and M is an A-bimodule, the Hochschild cohomology groups H*(A, M) are
the cohomology groups of the complex

0 — Hom(C, M) - Hom(A, M) -2 - .- —% Hom(A®", M) - Hom(A®" !, M) -2 ...

where the differential § : Hom(A®", M) — Hom(A®" ! M) is given by
n
(a1 ® ®anp1) =a1- flaz®- - ®anp1) + Y (1) f(a1 @ @ a1 ® -+ ® A1)
i=1

+ (—1)n+1f(a1 R ®ap) - ng1.
Assume now that A is a Hopf algebra and let M be an A-bimodule. Consider the linear map
¥ : Hom(A®", M) — Hom(A®", M")

N

fr—1Ff fla® - ®ay)=Sa) - a,q)flaie @ @ aym).

It is easy to see that ¥ is an isomorphism and that 0 o ¥ =9 o §. Hence, 9 induces an isomorphism
between the complexes defining H*(A, M) and Ext’ (C., M") and we get the second isomorphism
H*(A, M) ~ Ext’(C., M"). O

2.3 The Hopf algebra B(FE)

Let £ € GL,(C). Recall that the algebra B(E) (see [DL90]) is presented by generators (u;;)i<i,j<n
and relations

EYWEu=1I,=uE WE,
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where v is the matrix (ui;)1<ij<n- It has a Hopf algebra structure defined by
n
A(u”) :Zuik & Uk, €(uij) :51']', S(u) =EWE.
k=1

For the matrix E,; € GLy(C) in the introduction, we have B(E,) = O(SL,(2)), and thus the Hopf
algebras B(E) are generalizations of O(SL,(2)). It is shown in [Bic03a] that the isomorphism
class of the Hopf algebra B(E) only depends on the bilinear form associated with the matrix F,
and that for ¢ € C* satisfying tr(E~'E?) = —q — ¢~!, the tensor categories of comodules over
B(E) and O(SLy(2)) are equivalent.

E E

The fundamental n-dimensional B(E)-comodule is denoted by Vg: it has a basis ef’, . . ., e}
and right coaction a: Vi — Vg @ B(E) defined by a(ef) = pya ekE ® uy;. For future use, we
record that the following linear maps

0:C— Vg ®VEg, 0: Vg — Vg
n n

1— Z E&lef ® ef, eFr— Z Ejel*
ij—1 k=1

are morphisms of B(E)-comodules (where E~1 = (E;l) and {eF*} is the dual basis of {eF}).

We now define some maps that will be used in §6.

(i) The sovereign character of B(E) is the algebra map ®:B(E) — C defined by ®(u) =
E'E" 1t satisfies 5% = ® x id » 1.

(ii) The modular automorphism of B(E) is the algebra automorphism o of B(E) defined by
o(u)=E'E'wE'E! ie. 0 = ® xid * ®.

(iii) We denote by 6 is the algebra anti-automorphism of B(E) defined by § =S« ® % ®, i.e.
O(u) = S(u)E~'E'E~1E!. We have Sof =o0.

3. Free Yetter—Drinfeld modules

In this section we introduce the concept of free Yetter—Drinfeld module, which will be essential
for our purpose. We begin by recalling the basics on Yetter—Drinfeld modules.

Let A be a Hopf algebra. Recall that a (right-right) Yetter—Drinfeld module over A is a right
A-comodule and right A-module V satisfying the condition, Yv € V', Va € A,
(v a)) ® (v a)a) = v() < a@) ® Slaq))va)ap):

The category of Yetter—Drinfeld modules over A is denoted yDﬁ: the morphisms are the
A-linear A-colinear maps. Endowed with the usual tensor product of modules and comodules, it
is a tensor category.

An important example of Yetter—Drinfeld module is the right coadjoint Yetter—Drinfeld
module Acoaq: as a right A-module Agp.qg = A and the right A-comodule structure is defined
by

ad,(a) = a2) @ S(a(l))a(3), Va € A.

The following result, which will be of vital importance for us, generalizes the construction of the
right coadjoint comodule.
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PrOPOSITION 3.1. Let A be a Hopf algebra and let V' be a right A-comodule. Endow V ® A
with the right A-module structure defined by multiplication on the right. Then the linear map

VRA—VRIARA
v®a— ) ® a@) ® Saq))v)ap)
endows V ® A with a right A-comodule structure, and with a Yetter—Drinfeld module structure.

We denote by V K A the resulting Yetter—Drinfeld module, and this construction produces a
functor

L:M* — YDA
V— VKA.

Proof. This is a direct verification. O

Note that when V = C is the trivial comodule, then CX A = A¢o.4.

DEFINITION 3.2. Let A be a Hopf algebra. A Yetter—Drinfeld module over A is said to be free
if it is isomorphic to V' X A for some right A-comodule V.

Of course a free Yetter—Drinfeld is free as a right A-module. The terminology is further
justified by the following result.

PROPOSITION 3.3. Let A be a Hopf algebra. The functor L=—XA: M4 — YD4 is left
adjoint to the forgetful functor R: yDﬁ — MA. In particular, if P is a projective object in
MA, then L(P) is a projective object in yDﬁ.

Proof. Let V € M and X € YD4. Tt is a direct verification to check that we have a natural
isomorphism
Hom 4 (V, R(X)) — Homypﬁ(V X A, X)
fr—=1F Jwea)=f()—a
and thus L = — KX A is left adjoint to the forgetful functor R. The last assertion is a standard
fact, see e.g. [Wei94, Proposition 2.3.10]. O

A left—right version of Proposition 3.3 was given in [CMZ97, Corollary 2.8]. More generally,
it is worth noting that the existence of a left adjoint functor to the forgetful functor R : yDﬁ —
MA follows from the general situations studied in [CMZ02).

Recall [Lin77] that the category M* of right A-comodules has enough projectives if and only
if A is co-Frobenius (A is said to be co-Frobenius is there exists a non-zero right A-colinear map

A—C).

COROLLARY 3.4. Let A be a co-Frobenius Hopf algebra. Then the category yDﬁ has enough
projective objects.

Proof. Let V € YD and let P be a projective object in M# with an epimorphism f : P — R(V).
We have a surjective morphism of Yetter—Drinfeld modules

L(P)=PRA—>V
z®a (f(z)a)

with L(P) projective, and we are done. O
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Note that when A is a projective generator in M# (A is then said to be quasi-co-Frobenius)
then AKX A is a projective generator of YD4, by [CMZ97, Corollary 2.10)].

DEFINITION 3.5. Let A be a Hopf algebra and let M € yDﬁ. A free Yetter—Drinfeld resolution
of M consists of a complex of free Yetter—Drinfeld modules

P=--PyWw—-FP—--—P—-F—0
for which there exists a Yetter—Drinfeld module map € : Py — M such that
-Pn+1—>Pn—>---—>P1—>P0i>M—>0

is an exact sequence.

In particular, a free Yetter—Drinfeld resolution of M is a resolution of M (as a right A-module)
by free A-modules. A basic motivation for considering this special kind of resolutions comes from
the fact that the standard resolution of the counit is in fact a free Yetter—Drinfeld resolution.
Before making this statement precise, we need the following construction.

For any n € N, we define the comodule A®" as follows:
AN =C, A = C R A= Acopq, AR = AT A, ... AROHD) = p®n g 40

It is straightforward to check that after the obvious vector space identification of A¥" with A®",
the right A-module structure of A% is given by right multiplication and its comodule structure
is given by

ad(™ : A¥" — A¥ @ A
a1 @ @ Ay (9) © - ® an(z) ® S(ay() - - an(1))a1(3) - - An(3)-

ProPOSITION 3.6. Let A be Hopf algebra. The standard resolution of the counit of A is a
resolution of C by free Yetter—Drinfeld modules.

Proof. Tt is a direct verification to check that for any n > 0, the map
AIZl(n+1) _ A@n

n
M@ ®an — (1)@ @ ®dnp1+ Y _(—1)'a1 @ ® 6iip1 @ -+ @ api
1=1

is a morphism of Yetter—Drinfeld modules. This gives the result since the Yetter—Drinfeld modules
AR+ are free by construction. O

We close the section by recording the following elementary result, to be used in § 5. The proof
is left to the reader.

LEMMA 3.7. Let A be a Hopf algebra, let V' be a finite-dimensional A-comodule with coaction
a:V —V ®A, with basis e1, . . ., ey, and let (u;;) € My,(A) be such that o(e;) =), ex ® U;.
The linear maps

(I)%/ZV*®V_>(C®A:Acoad

*
€; ®ej— U
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L VRV VeV —(V'eV)RA
ef ®ej®ep ® e €] ®ep ® ug

are A-colinear.

4. Equivalences between tensor categories of comodules

In this section we present the technical core of the paper: the fact that if A and H are Hopf
algebras that have equivalent tensor categories of comodules, then one can transport a free
Yetter—Drinfeld resolution of the counit of A to the same kind of resolution for the counit of H
(with preservation of the length of the resolution). The precise result is as follows.

THEOREM 4.1. Let A and H be some Hopf algebras. Assume that there exists an equivalence
of linear tensor categories © : MA~® MH Then © induces an equivalence of linear tensor
categories © : yDﬁ ~® ypg together with, for all V€ M?, natural isomorphisms

~

O(VXRA)~O(V)XH.
The functor © associates to any free Yetter—Drinfeld resolution of the counit of A
VKA: - V1 KAV, KA—.- - - VjKA—-0
a free Yetter—Drinfeld resolution of the counit of H
OVORH: - -OV,1)XH—-0O(V,))XH—---—0(Vh) KH — 0.

Proof. Let Ra:YD4 — MA and Ry : YD — M™ be the respective forgetful functors with
their respective left adjoint L4 : M4 — YD4 and Ly : M¥ — YD The description of YD
as the weak center of the monoidal category My (this is stated in [Sch04, Appendix], the proof
can be done along similar lines as the proof for modules over a finite-dimensional Hopf algebra,
given in [Kas95, Theorem XIII.5.1]) ensures the existence of an equivalence of linear tensor
categories O: ;)/Djl1 ~ y@g such that RH@ ~ OR, as functors. Denote by ©~! a quasi-inverse
of ©. Then we have, for any U € M and X € YDE natural isomorphisms

Homy, s (OL407! (U), X) 2 Homy,pa (La©O~H(U), 671 (X))
~ Hom 4 (0~ 1(U), R4O~(X))
~ Hom 4 (07 1(U), 0 'Ry (X))
~ Hom yu (U, Rg(X)).

The uniqueness of adjoint functors ensures that oL 407~ Ly, so that oL A~ LyO, as
required. The last assertion is then immediate. O

In the next section, in order to transport an explicit resolution, we will need to know the
explicit form of a tensor equivalence O : M4 ~® MH and of the associated tensor equivalence
0:YD4 ~ VDL (whose description will be independent of the description of the category of
Yetter—Drinfeld modules as a monoidal center).

It was shown by Schauenburg [Sch96] that equivalences of linear tensor categories M4 ~®
MH always arise from Hopf A-H bi-Galois objects. The axioms of Hopf bi-Galois objects were
symmetrized [Bic03b, Gru04], leading to the use of the language of cogroupoids [Bic10], that we
now recall.
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First recall that a cocategory (of algebras over C) C consists of:
e a set of objects ob(C);
o for any X,Y €ob(C), an algebra C(X,Y);
e for any X,Y, Z € ob(C), algebra morphisms
A%y C(X,Y)—C(X,Z2)®C(Z,Y) and ex:C(X,X)—C
such that some natural coassociativity and counit diagrams, dual to the usual associativity

and unit diagrams in a category, commute. In particular, C(X, X) is a bialgebra for any
object X.

A cogroupoid C consists of a cocategory C together with, for any X,Y € ob(C), linear maps
Sxy :C(X,Y)—C(Y, X)

such that natural diagrams (dual to the invertibility diagrams in a groupoid) commute. In
particular, C(X, X) is a Hopf algebra for any object X. A cogroupoid is said to be connected if
for any X,Y € ob(C), the algebra C(X,Y) is non-zero.

The following theorem is the cogroupoid reformulation of Schauenburg’s results in [Sch96],
see [Bicl0].

THEOREM 4.2. Let C be a connected cogroupoid. Then for any X,Y € ob(C) we have linear
equivalences of tensor categories that are inverse of each other

MEKX) L® ACVY) MEY) L® AC(X.X)
V’—>V|:|C(X,X) C(X,Y) VHVDC(}/’y) C(Y,X)
Conversely, if A and H are Hopf algebras such that M ~® MH | then there exists a connected
cogroupoid with two objects X, Y such that A=C(X,X) and B=C(Y,Y).

Here the symbol [ stands for the cotensor product of a right comodule by a left comodule,
see e.g. [Mon93].

In order to extend the previous monoidal equivalences to categories of Yetter—Drinfeld
modules, let us now recall Sweedler’s notation for cocategories and cogroupoids. Let C be a
cocategory. For aX¥ € C(X,Y), we write

A)ZQY(aXY) = ag)z ® a(Zzi)/.

The cocategory axioms are

(Ak z®1) 0 ALy (™) =afl) @afy @afy) = (1® AT y) o Ak y(a™")

ex(af) = o = eyl
and the additional cogroupoid axioms are
SXy(afS/)aéi( =ex(a®¥)1= aﬁ?Sy,X(aéi().
The following result is [Bic10, Proposition 6.2].
PROPOSITION 4.3. Let C be cogroupoid, let X, Y € ob(C) and let V' be a right C(X, X)-module.
(i) V®C(X,Y) has a right C(Y,Y)-module structure defined by

(v®@aXY) = bV =0 bé)X ® Syx(béif)aXYbé) .
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Endowed with the right C(Y, Y')-comodule defined by 1 ® AX v,V ®C(X,Y)is a Yetter-Drinfeld
module over C(Y,Y).

(ii) If moreover V is Yetter-Drinfeld module, then V Ue(x, x)C(X,Y) is Yetter—Drinfeld
submodule of V @ C(X,Y).

We now can write down the explicit form of the tensor equivalence between categories of
Yetter—Drinfeld modules induced by a tensor equivalence between categories of comodules.

THEOREM 4.4. Let C be connected cogroupoid. Then for any X,Y € ob(C), the functor
C(X,X) CY,Y)
yDC(X,X) - yDC(Y,Y)
Vi—V DC(X,X) C(X, Y)
is an equivalence of linear tensor categories. Moreover, we have natural isomorphisms
(VUexx) C(X,Y)KC(Y,Y) — (VRC(X, X)) Uex,x) C(X, Y)
v e @b — o by © Syx (bl e b -

Proof. The fact that this indeed defines an equivalence of tensor categories is proved in [Bic10,
Theorem 6.3]. The announced natural isomorphism is that induced by the uniqueness of adjoint
functors as in the proof of Theorem 4.1. For the reader’s convenience, let us write down explicitly
the inverse isomorphism. Let
§v (V X C(X7 X)) DC(X,X) C(X7 Y) -
((V Oex,x) C(X, Y))KC(Y, Y)) Ocvyy (CY, X) Oex,x) C(X, Y))
XX o p XY XY\, YX YX o 1 XY
v®a T @Y — v B vhy ®agy) © Sxy(ah) v ai @b

The explicit inverse of the morphism in the statement is then (id ® (ey f))&y, where f is
the inverse isomorphism to Ay :C(Y,Y) —C(Y, X)Oex,x) C(X,Y), see [Bicl0, proof of
Lemma 2.14]. O

We end the section by recalling that B(F) is part of a cogroupoid. Let E € GL,,(C) and let
F € GL,(C). Recall [Bic03a] that the algebra B(E, F)) is the universal algebra with generators
uj, 1 <@ <m, 1 < j < n, satisfying the relations

F YW Eu= I; uwF~YWE=1,,.

Of course the generator u;; in B(E, F') is denoted uiEjF to express the dependence on E and F,
when needed. It is clear that B(E, E) = B(E).

We get a cogroupoid B whose objects are the invertible matrices E € GL,,(C), where the
algebras B(FE, F') are those just defined and where the structural morphisms are the algebra
maps defined as follows

A%F:B(E F) — B(E,G)® B(G, F)

5 Y

Se.r:B(E,F)— B(F, E)®
ur— B

and where g is the counit of B(E).
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When B(E, F)#0 (i.e. when tr(E~'E?) = tr(F~'F*) and the matrices E, F have size >2,
see [Bic03al), we know, by Theorems 4.2 and 4.4, that the cotensor product by B(E, F') induces
equivalences of tensor categories

B(F

MBE) n8 \BE) - ypBE) L& yDB(F;’

B(E) —

The following B(F)-comodule isomorphisms will be used in the next section:

ef|—>26k®uﬁF, ef*®efr—>ZekE*®elE®SFE(u5€E)ugF.
k k,l

5. A resolution of the counit for B(FE)

In this section we write down the announced resolution g for the counit of B(E).

5.1 The resolution

THEOREM 5.1. Let E € GL,(C), n>2, and let Vg be the fundamental n-dimensional
B(E)-comodule. There exists an exact sequence of Yetter—Drinfeld modules over B(E)

0= CRBE) 2L (Vie Ve)BBE) 2 (Vi e Vi) BBE) 2% CRB(E) 5 C —0

which thus yields a free Yetter—Drinfeld resolution of the counit of B(E).

Of course the first thing to do is to define the maps ¢1, ¢2, ¢3 in Theorem 5.1.

DEFINITION 5.2. Let e, ... ef be the canonical basis of V. The linear maps ¢1, ¢2, ¢3 in

Theorem 5.1 are defined as follows:

¢1:CRB(E) — (Vi@ Veg) RB(E)
zr— Y el @el @ (B'E7Y); — (Bu(E") ™))z
i,
¢2: (Vp @ V) MB(E) — (Vp © Vp) K B(E)
ef* ® ef Qrr+—e* ® ef ®x+ Z ef* @ef @ (u(BY) VB
k,l
¢3: (V@ Veg)XB(FE) — CX B(F)
eiE* ® 6? & T — (uij — 5U)l‘
When E = I,,, the maps ¢1, ¢2, ¢3 are those defined in [CHT09].
5.2 Proof of Theorem 5.1

LEMMA 5.3. The maps ¢1, ¢2, ¢3 in Theorem 5.1 are morphisms of Yetter—Drinfeld modules.

Proof. This can be checked directly, but for future use we describe ¢1, ¢o2, ¢3 as linear
combination of maps that are known to be morphisms of Yetter—Drinfeld modules. Let ¢, ¢/
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be defined by the following compositions of B(FE)-colinear maps

¢ C Ve Ve P2 v o Ve 9% (V@ Vi) K B(E)

0R0 PRPRid
E—

@2
1:CE5 VR VERVE® Ve VERVERVE® Ve — (VE® Ve) RB(E)

where u is the unit map C — B(FE), the maps ¢, § were defined in §2 and <I>%/ was defined in
Lemma 3.7. We have ¢ = q;'l — (5’1’ (where the notation ~ has the same meaning as in the proof
of Proposition 3.3), hence ¢ is a Yetter—Drinfeld map. Define now ¢/, by the composition of the
following colinear maps

id®d

id id
Wb Vi Ve 25 Vi@ Ve @ Ve @ Vi —22,

We have ¢ =id + ¢~’2, hence ¢o is a Yetter—Drinfeld map. Finally, we have ¢3 = (I;%, - (5%, where
¢ is the evaluation map V3 ® Vg — C — CKX B(E), and hence ¢3 is also a morphism of Yetter—
Drinfeld modules. u

LEMMA 5.4. The sequence in Theorem 5.1 is a complex.

Proof. 1t is straightforward to check that € o ¢3 = 0 and that ¢3 o ¢2 = 0. The identity ¢2 0 ¢1 =0
follows from the observation that ¢/, o ¢} = ¢} and ¢}, o ¢ = ¢. O

LEMMA 5.5. Let E € GL,(C), F € GL,,,(C) with m,n >2 and tr(E~1E?) = tr(F~1F!). Then
the sequence in Theorem 5.1 is exact for B(E) if and only if it is exact for B(F).

Proof. We know from [Bic03a] and Theorems 4.1 and 4.4 that we have an equivalence of tensor
categories yDgEg ~® ypgg; that preserves freeness of Yetter—Drinfeld modules. Let us check
that this tensor equivalence transforms the complex of Yetter—Drinfeld modules of Theorem 5.1
for B(E) into the complex of Yetter—Drinfeld modules of Theorem 5.1 for B(F'). First consider

the following diagram.

o

C X B(F) (Vi ® Vi) R B(F)

| |

(COpr) B(E, F)) K B(F) (Vg ® Vi) Upr) B(E, F)) K B(F)

| |

(CRB(E)) O ey BE, F) — Y2 (Vg @ Vi) ®B(E)) Oy B(E, F)

The first vertical arrow on the left is given by the identification C ~ C Og gy B(E, F) (this
identification follows from the fact that B(F, F') is a left B(E)-Galois object) and the second
vertical arrow is that of Theorem 4.4 for the trivial comodule C. So the composition of the
vertical arrows on the left is

CR B(F) — (CX B(E)) Og(p) B(E, F)
1® 2 F .T(E2J)E X SFE(:IZ{;J)E).TE,)I;7

The first vertical arrow on the right is that given at the end of § 4, while the second vertical arrow
is that of Theorem 4.4 for the comodule V3 ® Vg. So the composition of the vertical arrows on
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the right is
(Ve ®@ Vr)XB(F) — (Vg ® V) X B(E)) Opr) B(E, F)

Fx F FF Z Ex E EE FE FE\ EF_EF
€; ®€] X x — €L ®€l ®l’(2) ®SFE($(1) )SFE(qu: )Ul] 33(3) .
k.l
The vertical arrows are compositions of isomorphisms so are isomorphisms. It is a direct

verification to check that the previous diagram is commutative. Similarly one checks the
commutativity of the following diagrams.

(Vi@ Vi) K B(F) (Vi@ Vi) X B(F)

| l

(Vg @ Vi) Ogry B(E, F)) X B(F) (Vg @ Ve) Opr) B(E, F)) X B(F)

| |

(Vi © Vi) B B(E)) Ois(py BEE, F) — 22 (Vi @ Vi) ¥ B(E)) Oy B(E, F)

(Vi ® Vie) K B(F) i3 CRB(F)

| |

(Vg ® Ve) Opr) B(E, F)) K B(F) (COpg) B(E, F)) R B(F)

l !

(Vi ® Vi) R B(E)) Op sy BE, F) — 2 (CRB(E)) Ops) B(E, F)

CX B(F) - C

|

(COpp) B(E, F)) K B(F)

|

(CRB(E)) Opm) B(E, F) ——=24 . € Ogy B(E, F)

The vertical isomorphisms are those defined previously. Thus, we conclude that the complex in
Theorem 5.1 is exact for B(E) if and only if it is exact for B(F'). O

LEMMA 5.6. Let g € C*. The sequence of Theorem 5.1 is exact when E = Ej,.
Proof. Put A= B(E,;) = 0O(SLy(2)). As usual we put a =wu11, b=u12, c =wug; and d = ugy. We

will frequently use the well-known fact that A and its quotients A/(b), A/(c) and A/(b, c) are
integral domains, see e.g. [BG02, §1.1]. For x € A, we have

p1(z) =€ @e1((—g  + qd)z) + €} R ey @ (—cx) + €5 @ e; @ (—bx)
+ et ®er® ((—q+q ta)x)
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=e]Re1Rr+esRe; ®(—gbx) +e5 R ey ® ax
1

P2(el ®er ®x)
Poe]®er@x)=e]Qe@br+e]®e®(1—q¢ a)x
Pa(esRe1@x)=e3®er ® (1 —qd)x +e5@ e @ cx

PrehRea@a)=ci@er@drteiRer® (—q lex) ey Rera @

p3(e] ®@e1 @) =(a—1)z, @3(e] ®e2 ® x) = b,

P33 @e1 @) =cx, P3(ez®@er2@x)=(d— 1)z
The injectivity of ¢ follows from the fact that A is an integral domain and the surjectivity of
¢3 is easy (and well known). Let X =3, . €] ® €; ® xj; € Ker(¢3). We have

X+ do(—e]®e1 @x11) =€] Qea @1z + €5 @ e ® (gbxryr + 221) + €5 ® ea @ (—aw1y + x22)
and, hence, to show that X € Im(¢2), we can assume that z1; = 0. We have
brig + cxo1 + (d — 1)x22 =0
which gives (d — 1)z =0 in the integral domain A/(b, c¢) and, thus, x9 =ba + ¢ for some
a, B € A. Then we have
X+ (el ®ea®@qda—e; e @ —e5Qea@ba)=€e] Rea®@x+e50e1 Ry

for some z,y € A, and hence we also can assume that x9o = 0. Then we have bxis + cro; =0,
which gives bz12 = 0 in the integral domain A/(c), hence z12 = ca for some « € A, and moreover
T91 = —ba. Then we have

polg lef@er@ate@e@ca—q ley@e®@aa) =X

and we conclude that Ker(¢z) =Im(¢2).
Let X = Z cef ®ej ®x;; € Ker(¢2). Then —gbx11 + (1 — gd)xo; =0, hence (1 — gd)z21 =0
in the integral domam A/(b) and, hence, x2; = ba for some a € A. Hence,

X+o(a)=et®e1 @ (z11 + (—¢ '+ qd)a) + e} ® ea @ (212 — ca)

+eb®er® (129 + (—q+ ¢ 'a)a)

and we can assume that x9; = 0. But then, using the fact that A is an integral domain, we see
that X =0 since X € Ker(¢2). We conclude that Ker(¢2) =Im(¢1). O

We are now ready to prove Theorem 5.1. Let E € GL,(C), n > 2, and let ¢ € C* be such
that tr(E~'E') = —¢ — ¢! = tr(E,; ' E!). Lemmas 5.5 and 5.6 combined together yield that the

sequence in Theorem 5.1 is exact.
6. Applications

In this section we present several applications of the resolution built in the previous section.

6.1 Smoothness and Poincaré duality

THEOREM 6.1. Let E € GL,(C) with n > 2. The algebra B(FE) is smooth of dimension 3. In
particular, H,(B(E), M) = (0) = H"(B(E), M) for any B(E)-bimodule M and any n > 4.

Proof. 1t is a standard fact (explained e.g. in [CHT09, § 3]) that the resolution of Theorem 5.1 will
induce a length 3 resolution of the trivial bimodule B(E), and hence B(E) is smooth of dimension
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d < 3. Moreover using Proposition 2.1 and Theorem 5.1, we see that H3(B(E), $Cg-1) ~C, so
the resolution in Theorem 5.1 has minimal length and we conclude that B(E) is smooth of
dimension 3. O

We now show that Poincaré duality holds for the algebras B(E).

PROPOSITION 6.2. Let M be a right B(E)-module. Then for any n€{0,1,2,3} we have
isomorphisms
B
Extfy ) (Ce, M) ~ Torg ) (Ce, M)

where 0 is the algebra anti-automorphism of B(E) defined by §(u) = S(u)E~'*E'E~1E? and where
9M has the left B(E)-module structure given by a - x:=x - 6(a).

Proof. After applying the functor Homy(—, M) to the resolution of Theorem 5.1 and standard
identifications, the complex to compute the Ext-groups on the left becomes

t t t
0-M 2 VvieveM ZvieveM M -0
where V = Vg and with
$h(x) = ef @e; @ (uji — 0ji)
i

Phle; @e;@a)=cf@e;@r+ Y er@e @z (w(E) 1))
k1l

¢i(e; @ej@a) =2 (B'E™")j — (Bu(E")™")j).
Consider now the isomorphisms ¢: M — A®y4 (9M), z+— 1 ®4 z, and
f2VeVeM—-V'eaVeAea(eM), ¢0ver—¢® fo(v)®@1®az

where fq is the automorphism of V' whose matrix in the canonical basis is (E?) ! E. The following
diagrams commute

o4 *% #}
0 M 2 V*eVeM V*QVeM M 0

) ’ ’ )

id id - id
0— > A4 (M) 28N oV Ao, (M) 228V oV e Aos ((M)PE2E Ag, (¢M) — 0

and hence since the homology of the lower complex gives the Tor-groups in the proposition, we
obtain the result. O

Using Propositions 2.1, 6.2 and the fact that S o § = o, the proof of the following result is a
direct verification that we leave to the reader, who might also consult [BZ08, §3.3].

COROLLARY 6.3. Let M be a B(E)-bimodule. Then for any n€{0,1,2,3} we have
isomorphisms

HMB(E), M) ~ Hy_,(B(E), , M)
where o is the modular automorphism of B(E) given by o(u) = E-'E'tuE~1E®.

See [BZ08] for more examples of (noetherian) Hopf algebras satisfying Poincaré duality.
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6.2 Some homology computations

In this short subsection we record the computation of the Hochschild homology of B(E) when
the bimodule of coefficients has dimension 1 as a vector space.

PROPOSITION 6.4. Let a, 8 € Homc_a5(B(E), C). Put v= "1 xa, where 3~' =308 is the
convolution inverse of 3. Then

if o if o * §2
g: iia ig H3(B(E), oCg) = {g(): 1;04 i g * ig
_ AM € My (C) | tr(M~y(u)") = tr(M)}
- AM + E*My(u)(EY) 71, M € My(k)}
[M € My (C), M + E'My(u)(E) "L = 0}
A, 6 @e; @ (B'E-Y)i; — (Bv(w)(EY)1)y)), A€ CH

Eh(B(E)uﬁCﬂ)ﬁf{

H1(B(E), «Cp)

Hy(B(E), «Cp) ~

The proof is a direct computation by using Proposition 2.1 and Theorem 5.1. The
computation of the cohomology groups follows by using Poincaré duality.

6.3 Bialgebra cohomology of B(E)

The cohomology of a bialgebra was introduced by Gerstenhaber and Schack [GS90, GS92]: it
is defined by means of an explicit bicomplex whose arrows are modelled on the Hochschild
complex of the underlying algebra and columns are modelled on the Cartier complex of the
underlying coalgebra. If A is a Hopf algebra, let us denote by H;(A) the resulting cohomology.
Taillefer [Tai04a] proved that

Hy (A) = Extyy (4, A)

where M(A) is the category of Hopf bimodules over A. Combined with the monoidal equivalence
between Hopf bimodules and Yetter—Drinfeld modules [Sch94], this yields an isomorphism
Hy(A) = Ext;pﬁ (C,C).

Bialgebra cohomology of algebras of polynomial functions on linear algebraic groups was studied
by Parshall and Wang [PW90], with a complete description in the connected reductive case. It
seems that only very few full computations of H;f(A) are known in the non-cocommutative case,
see [Tai07] and the references therein. The following result gives in particular the description of
the bialgebra cohomology of O(SL,(2)) for ¢ generic, i.e. ¢ = %1 or ¢ not a root of unity.

THEOREM 6.5. Assume that B(E) is cosemisimple, i.e. that the solutions of the equation
tr(E7'EY) = —q — ¢~ ! are generic. Then we have

0 ifn#0,3

HﬁmE»:{c ifn=0,3.

Proof. The assumption that B(E) is cosemisimple ensures that every object in MBE) g
projective, so by Proposition 3.3 every free Yetter—Drinfeld module is a projective object in
ypggg and the category ypggg has enough projective objects by Corollary 3.4. The description
of bialgebra cohomology as an Ext-functor [Tai04a, Tai04b] now shows that the bialgebra
cohomology of B(E) is given by the cohomology of the complex obtained by applying the functor

HOmyDB(E)(_, C) to any projective resolution of the trivial Yetter—Drinfeld module C. Thus,
B(E)
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using the resolution of Theorem 5.1, the description of Hj(B(E)) is a direct computation, that
we leave to the reader. O

6.4 L2-Betti numbers

Let A be compact Hopf algebra, i.e. A is the Hopf *-algebra of polynomial functions on a compact
quantum group [Wor98], and assume that A is of Kac type (the Haar state of A is tracial, or
equivalently the square of the antipode is the identity). The L2-Betti numbers of A have been
defined in [Kye08]. There are several possible equivalent definitions [CS05, Kye08, Tho08] and
the one we shall use is
B2 (A) = dim pger Torf(Cz, AM)

where M is the (finite) von Neumann algebra of A, the left A-module structure on 4 M =M
is given by left multiplication through the natural inclusion A C M, and dimpaqer is Liick’s
dimension function for modules over finite von Neumann algebras [Luc98].

Now let F € GL,(C) with FF € RI,. Recall [Ban96] that A,(F) is the universal *-algebra
with generators (u;;), 1<1i,j<n and relations making the matrix u = (u;;) unitary and
u= FuF~!. The *-algebra A,(F) has a natural Hopf x-algebra structure (it is isomorphic, as a
Hopf algebra, to the previous B((F?)~!)) and is a compact Hopf algebra. Moreover A,(F) is of
Kac type if and only if F' = +F'. Thus, in this case

Ao(F) >~ Ap(I) = Ao(n) or Ay(F) ~ Ay(Jam)

where for 2m = n, Jo,, € GLg;,, (C) is the antisymmetric matrix

Om Im
J2m N <_Im Om>

Collins et al. have shown, combining the results in [CHT09] with the vanishing of ﬂf) (Ao(n)) by

Vergnioux [Ver12], that all of the L2-Betti numbers 515,2)(140(71)) vanish. Similar arguments lead
to the following result, which completes the computation of the L?-Betti numbers of the A,(F)’s
of Kac type.

THEOREM 6.6. For any m > 1 and k > 0, we have ﬂ,(f)(Ao(ng)) =0.

Proof. For m =1 it is already known [Kye08] that the L?-Betti numbers of A,(J2) all vanish,
since A,(J2) is commutative. So we assume that m > 2. First, by Theorem 5.1, we have ﬁ,(f) (A,

(Jom)) =0 for k> 3. We have ﬁéz) (Ao(J2m)) =0 by [Kye 11] and hence by Poincaré duality
and the fact that the L2-Betti numbers can be defined in terms of L?-cohomology [Tho08] we

have 6§2)(A0(J2m)) =0= 662)(A0(J2m)). Similarly by Poincaré duality we have ﬂéz) (Ao(J2m))
ﬁgz) (Ao(J2m)). By [Verl2, Theorem 4.4, proof of Corollary 5.2] ([Ver12, proof of Corollary 5.2] is

valid for A,(J2m,) since it has the property of rapid decay [Ver07]), we have B§2)(AO(J2m)) =0,
and we are done. O

7. Conclusion

We have shown that there might exist strong links between the Hochschild (co)homologies of
Hopf algebras that have equivalent tensor categories of comodules, although the ring-theoretical
properties of the underlying algebras might be very different. We cannot expect to have
functoriality at the level of the computation of Hochschild (co)homology groups, the situation
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is rather that if one of the Hopf algebras has a very special homological feature (a free Yetter—
Drinfeld resolution of the counit), then so has the other.

A similar situation had been observed in the work of Voigt [Voill] on the K-theory of free
orthogonal quantum groups: the existence of a tensor category equivalence does not seem to imply
functoriality at the level of K-theory groups, but is enough to ensure that one can transport a
special homological situation, namely the validity of the Baum—Connes conjecture.

We hope that the present paper will bring further evidence to convince the reader that tensor
category methods can be useful tools in the homological study of Hopf (C*-)algebras.
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