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Abstract. If the action induced by a pseudo-Anosov map on the first homology
group is hyperbolic, it is possible, by a theorem of Franks, to find a compact invariant
set for the toral automorphism associated with this action. If the stable and unstable
foliations of the Pseudo-Anosov map are orientable, we show that the invariant set
is a finite union of topological 2-discs. Using some ideas of Urbanski, it is possible
to prove that the lower capacity of the associated compact invariant set is >2; in
particular, the invariant set is fractal. When the dilatation coefficient is a Pisot
number, we can compute the Hausdorff dimension of the compact invariant set.

At the end of the sixties Hirsch [Hi] asked what kind of compact sets can be
invariant under a toral hyperbolic linear automorphism. Several people worked on
the question, see [Bo], [Fra2], [Ha], [Irl], [Ir2], [Mai], [Ma2], [Pr], [Ur]. Essen-
tially, the following facts are obtained in these papers:

(i) there exists compact invariant sets of arbitrary topological dimension [Ha],
[Pr];

(ii) if a compact invariant set contains a Lipschitz arc, then it must contain a
subtorus which is invariant under some power of the linear map [Fra2], [Mai];

(iii) an invariant C1 submanifold must be a union of subtorii [Ma2].
One of the questions that remain is: can a hyperbolic toral automorphism have a
compact invariant set which is an embedded submanifold different from a subtorus?
The simplest submanifolds would be surfaces of genus >2.

In this work, we will not answer this question but we will obtain, from pseudo-
Anosov maps, some invariant sets which are in fact images under finite to one maps
from surfaces of higher genus; moreover, these maps are locally injective except at
a finite set of points. By the results of Franks and Mane, these sets must be 'unsmooth'.
We show this by computing some lower bound on the capacity. In some cases, it
is possible to compute the Hausdorff dimension of the invariant set.

In March 1987, David Fried told me that he knew theorem 5.2 and that it is a
consequence of Shub's paper [S]; moreover, the definition we give of topological
closed 1-forms is almost that of the Alexander cocycle which is .used in [S]. For
completeness, let us add that several years ago John Franks proved (unpublished)
that a pseudo-Anosov map with orientable foliations and quadratic dilatation
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192 A. Fathi

coefficient is a ramified cover of a linear hyperbolic map of T2, this is, of course,
covered by theorem 5.2.

1. A topotogical definition of closed complex I-forms
If Z is a topological space, we denote by 9?(Z) the space of continuous complex
valued functions on Z This is a complex vector space. We denote by C"(Z) the
group of singular n-cochains on Z, and by d the coboundary operator on that
complex.

Let X be a compact space. Denote by 3>{X) the space of (continuous) paths in
X endowed with the compact open topology. Denote by ^l(X) the space ^ ( ^ ( X ) ) .
The vector space ^ ' ( X ) is a subvector space of the space C\X) of singular
complex-valued 1-cochains. Define the subspace ££\X) of ^ ' ( X ) consisting of
1-cocycles. If X is for example a manifold - or more generally a locally contractible
space-the intersection c€\X)ndC°(X) is precisely the set {d<p\<p e <£(X)}.
Moreover, if w is a smooth closed 1-form on a compact manifold X, we can define
an element w e ^ ' ( X ) in the following way: if a is a continuous path, in X we can
homotope it with fixed extremities to a smooth path a, we put a>(a) = j ( ; w; since
w is closed it is easy to see that a> is well defined and contained in S\X). From
what we have said it is easy to obtain the following theorem:

THEOREM. Let X be a compact manifold. The map &>>->w induces an isomorphism
between H\X,C) and %1(X)/d(%{X)).

The advantage of the space ^ ' ( X ) over the space of smooth 1-forms is that if
/ : X -* Y is any continuous map, it induces a continuous map / * : "#'( Y) -» ^ ' ( X ) .
The map />-»/* is of course functorial.

2. Some linear algebra
Let A:I" 4-Z" be a linear isomorphism. Call its minimal polynomial PA. Suppose
we can write PA— Q1Q2, where Qi and Q2 have no common factor. Consider
Im Ql(A)<=-Z", it is isomorphic to some Z \ and A induces a linear isomorphism
Ax :Zkl^Zk'. One can see that the minimal polynomial of At is precisely Q2.
Moreover, the dimension kt is also the dimension of Ker Q2(A)<^Z". One can see
this last fact in the following way: first Im Qi(A)<= Ker Q2(A) and Im Q2(A)c
KerQ,(A); secondly, since Q\ and Q2 have no common factor, Bezout's theorem
shows that Ker Q,(A) n Ker Q2(A) = {0} and

Im Q,(A)®Q©Im Q2(A)®Q = 1"®Q = Q".

We can sum up what we have obtained in the following theorem.

THEOREM 2.1. Let A: Z" -> Z" be a linear isomorphism whose minimal polynomial PA

can be written PA = QiQ2, where Qx and Q2 have no common factor. Then, we have:
(i) the dimension k, of the image Im Q\(A) is equal to the dimension of the kernel

Ker Q2(A);
(ii) the dimension k2 of the image Im Q2(A) is equal to the dimension of the kernel

KerQ,(A);
(iii) n = kx + k2.
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Moreover, there exists a commutative diagram of linear maps:

such that:
(iv) the maps px and p2 are surjective;
(v) the minimal polynomial of Bx is precisely Q2;
(vi) the minimal polynomial of B2 is precisely Qx;
(vii) the map px x p2 has a finite coimage; in particular it is an isomorphism over Q.

3. Some results on pseudo-Anosov maps
Definition 3.1. Le t / : Mg -» Mg be a pseudo-Anosov diffeomorphism of the oriented
compact surface of genus g. If its invariant foliations are orientable, then we can
define the stable foliation by a closed 1-form a>s which satisfies f*u>s = XODS, with
| A | > 1 . We call A the algebraic dilatation coefficient. Of course |A| is the usual
dilatation coefficient of /

I learned the following result from Gilbert Levitt [Lei] and [Le2, pp. 208-209].
A different proof is provided by David Fried [Fri].

LEMMA 3.2. Suppose that f: Mg -» Mg is a pseudo-Anosov diffeomorphism with orient-
able invariant foliations. Then the algebraic dilatation coefficient is a simple eigenvalue
of the action /* : Hi(Mg, Z) -» H\Mg, Z) induced by f.

Definition 3.3. if/ is a homeomorphism of an orientable manifold, we define e(f)
by:

+ 1 if/preserves the orientation;

, - 1 if/ reverses the orientation.

Remark 3.4. If/: -* Mg is a homeomorphism of the compact orientable surface of
genus g, we have (/*)*/ = e(f)I, where / : Hx(Mg, Z) x Hx(Mg, Z ) ^ Z is the inter-
section form. Since / is a symplectic form, if /u is an eigenvalue of/* then e(/)/u,~1

is also an eigenvalue. In particular, eigenvalues on Hx for homeomorphisms of
orientable surfaces are in fact algebraic integers.

We have the following lemma:

LEMMA 3.5. Let f:Mg-> Mg be a pseudo-Anosov diffeomorphism of the compact
orientable surface of genus g, with orientable invariant foliations, call its algebraic
dilatation coefficient A. Let PA(X) be the polynomial of A on Q. Consider two cases:

(i) The other eigenvalue e(/)A~' is conjugate to A over Q, then the degree of PA is
2g' for some g', with 1 s g' < g. Moreover, the characteristic arid the minimal poly-
nomials oj'/* admit PA as a simple factor.

(ii) The other eigenvalue e(/)A~' is not conjugate to A over Q, then PA and Pe(j)\-'
are two distinct prime polynomials of the same degree g', with 1 < g '< g. Moreover,
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194 A. Fathi

the characteristic and the minimal polynomials of f^ admit PA and P^/)*-1 as simple
factors.

Proof. It is an elementary - though rather long - exercise to prove that, in the first
case, the degree of A must be even. If we write P for the characteristic polynomial
of f%: H,(Mg, Z ) ^ H^Mg, Z), then PA appears as a simple factor of P. Moreover,
by 3.4, in the second case PAPe(/)A-' appears as a simple factor. This implies the
same facts for the minimal polynomial. •

COROLLARY 3.6. There exists an automorphism A: Z2g -> Z2g for some g', with 1 < g' <
g, whose characteristic polynomial is either PA i/A is conjugate to e(/)A~' or PAP<,(/-)A-'
if not, and there exists a surjective linear map a : Hl(Mg,Z)-*Z2g such that the
following diagram is commutative:

/ / , (M g ,Z) —^—> H,(Af.,Z)

Proof. By 3.5, we can write the minimal polynomial P/- as a product P^ = Q\Q2,
where Q, and Q2 have no common factor and either Qt = PA, if A is conjugate to
e ( / M ~ \ or (?, = PAPf(/ )A' , if not. It remains to apply theorem 2.1. •

4. An application of a theorem of John Franks
A proof of the next theorem can be found in [Fral];

THEOREM 4.1 (Franks). Let X be a compact space having the homotopy type of a
polyhedron. Suppose that f.X^X is a homeomorphism of the compact space X and
that A: J" -> T" is an Anosov linear automorphism. If we have a commutative diagram
of algebraic maps:

H,(T",Z) *-> H,(T",Z)

then there exists a continuous map a : X -» T", which induces a^ : H,(X, Z) -> //,(¥",
i«cn ?naf the following diagram:

X -

• 4-
Tn -

/

A

* X

I"4-
> T "

is commutative.

Theorem 4.1 and corollary 3.6 obviously imply the next corollary:
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COROLLARY 4.2. Suppose that f: Mg-> Mg is a pseudo-Anosov diffeomorphism with
orientable foliations whose algebraic dilatation coefficient A has no conjugate over Q
which is in Sl. We can find a commutative diagram

Mg — ^ Mg

T2g' —'•—> T2g'

where A is an Anosov linear automorphism whose characteristic polynomial is either
PA 1/A is conjugate to e(/)A~' or PAPE(/)A~' if not. Moreover, the induced map
a^-.H^M^Z)-* H{(J

2g', Z) is surjective.

5. The local injectivity argument
The goal of this section is to prove that the map a obtained in 4.2 is almost locally
injective.

LEMMA 5.1. Suppose that we have a commutative diagram of continuous maps:

1" > T"

where A is a linear map admitting an eigenvalue \x and f: X -» X is a diffeomorphism
of the compact connected manifold X which has a closed \-form w satisfying f*co =
fiw - where the equality is on the level of forms and not only on cohomology. Call Q.
the linear \-form on the torus which satisfies A*fl = /ifl. Suppose moreover, that on
the cohomology level we have a*[£l] = [&>]. Then if \fi\>l, we have the equality:
a*H = w in <€\X).

Proof. We can write:

a*n = u + d(p (1)

where <p e ^(X). If we apply / to this equation and use the fact that af= Aa we
obtain:

pia*n = ijLu + d(<pf). (2)

Comparing equations (1) and (2) gives:

d{<pf-n<p) = Q. (3)

Since X is connected, we can find keC such that:

<pf=<P + k. (4)

This implies that the compact set Im <p is invariant under the linear hyperbolic map
C->C, zi—>/xz+ k. It follows that this image is reduced to the fixed point of that
linear map. In particular, the map (p is constant. This finishes the proof by equation

(1). •
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THEOREM 5.2. Suppose that f: Mg^> Mg is a pseudo-Anosov diffeomorphism with
orientable foliations whose algebraic dilatation coefficient A has no conjugate over Q
which is in S'. Consider the commutative diagram given by 4.2:

Mg —:—> Mg

J2s > T 2 g

where A is an Anosov linear automorphism whose characteristic polynomial is either
PA if A is conjugate to e(/)A~' or PAP€lfu-< if not.

The map a is injective on each small enough rectangle of the local product structure
given by the invariant foliations off.

Proof. Choose e > 0 such that a ball of radius less than e in T2* is contractible.
Choose 5 > 0 such that each S-ball in Mg is contractible and has an image under
a contained in an e-ball of T2 g . Given x in Mg (resp. T2 g) , there exists a well
defined map a>x : B(x, 5) -* U2 (resp. Clx : B(x, e) -» R2) such that the value of the first
and second coordinates at a point y are obtained by integrating 1-forms a>\io"
defining the stable and unstable foliations (resp. linear forms Cl\ O" with a*[fT] =
[&>s] and a*[Qu] = [wu] in cohomology) on any path joining x to y and contained
in B(x, 5) (resp. B(x, e)). It is easy to see that u>x is injective on each rectangle
defined by the invariant foliations which is contained in B(x, S). But lemma 5.1
shows that a>x = ilaix)a. •

6. An upper bound for the capacity of a compact set invariant under a linear auto-
morphism of a torus
The goal of this section is to prove a general upper estimate on the Hausdorff
dimension of a compact set invariant by a linear automorphism of a torus. The
proof is a simple application of the Douady-Oesterle trick [DO] which allows to
use parallelotopes instead of cubes. This is also an easy instance of the work of
Ledrappier and Young [LY] though it is not formally a consequence of their result.

In fact, we will obtain a bound for the upper capacity.
We recall the definition of upper capacity - also called capacity. If X is a metric

space, we denote by N(X, e) the minimum number of e-balls covering X. The
(upper) capacity C(X) of X is:

C(X) — lim sup ; —.
^ o -log e

In the same way, the lower capacity C(X) of X is:

N(X,e)
C(X) = liminf

E^o -log e

If we denote by HD(X) the Hausdorff dimension of X, we have the inequalities:
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Remark that the quantities HD(X), C(X) and C{X) remain the same if we replace
the metric on X by one which is Lipschitz equivalent.

The next lemma is of course well-known; we provide its simple proof.

LEMMA 6.1. Suppose that E is a normed space of finite dimension d. There exists a
constant k such that for every r, ReU, with r < R, a ball of radius R can be covered
by at most k(R/r)d balls of radius r.

Proof. We denote by || • || the norm on E. We endow Ud with the max norm, which
we denote by | • j. We identify Ud with E. There exists C > 1 such that:

Vx e E, C

We call B(x, s) (resp. B'(x, s)) the ball of center x and radius s in the norm || • ||
(resp. |-1). We have:

Vxe£,V.?eR + , B'(x, s)<= B(x, Cs) and B(x, s) c B'(x, Cs).

To prove the lemma, we may assume that R = 1 and r < 1. The unit ball B(0,1)
in the norm || • || is contained in the ball B'{Q, C). Since this last norm | • | is the max
norm, it is possible to cover B'(0,C) by at most ( [C/(C"V)] + \)d <2d(C2/r)d

balls of radius C~lr in the norm | • |. By the inequality on the norms, a ball of radius
Cxr in the norm | • | is contained in a ball of radius r in the norm || • ||. It follows
that we can take k = 2dC2d. •

The following fact is an easy observation which is very useful.

LEMMA 6.2. Let <p : ]0, oo[ -> IR be a decreasing function. If de]0, l[ and eo>0, we
have:

logcp(e) \ogip(6n€0)lim sup = lim sup
t . o F - l oge n ^ - I o g 0 %

,. . r log <p(e) . 1
lim mi = liminf-

«-o -log e n-°c -log d e0

Proof. To simplify notations, we will suppose that eo= 1. Define:

Since 6 e ]0,1[, we have:

log e
l i m n ( e ) = oo and lim- —7777= 1. (1)
e^O e^O log U

Since <p is decreasing, we have by the definition of n(e):

For e < 1, this gives:
f)) Jogtp(e) ^ l o g y ( e )

- l o g e - l o g e - l o g e

The result follows from (1) and (3). •
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THEOREM 6.3. Suppose that A:J" ->T" is a linear automorphism of a torus. Let us
denotebykx,..., kn its eigenvalues counted with multiplicities. For eachkj, define Tjby:

^ - l o g I A,

By renumbering T, , . . . , rn,we will suppose that r, > T2 2 • • • > rn. Define T : [0, n] -> U
by r(s) = T , + • • • + T [ S ] + ( S - [ S ] ) T [ S ] + 1 . This function is negative and decreasing.

Let K <= J" be a compact set invariant under A, call A, the topological entropy of
A\K. Define:

D = sup {s e [0, H]|2A = -T(S)}.

We have the inequality:

Proof: Decompose R" as a direct sum £ ,© • • • ®Ek, where A has all its eigenvalues
on Ej contained in the circle of radius r,. Define in the same way as above:

log rj if rj < 1

L-logr,- ifr ,-al .

Without loss of generality, we can assume that tJ+1 < /,. If we define /: [0, n] -»R by
f(5) = I i s , < J

 d i m (£,)', + (5 -[s])fj if X1Si<J dim (£,) < 5 < I 1 S 1 S J dim (£,). It is easy
to see that t = T.

Fix e > 0. For future purposes, we will suppose that t,• + e < 0 for each i such that
?, < 0. Fix j e { 1 , . . . , k} such that f, < 0. It is possible to choose a norm || • || on R",
which is the maximum of norms on the Et and such that
inf(log||A|EI.||,log||A~1|E1-||):Sfi + e. Call ®s the covering of T" by 5-balls in the
norm || • j | . Call Js"(n, e) the minimum number of elements in S8«(«) = V"=o A~'(2ftf,)
covering K. By the definition of entropy we have:

log./V(/i, 8)
lira hm sup = A.

Remark that each element in A"(58 5 (2M)) is contained in a set which is the product
of balls in each of the £,, where the ball in E{ has radius 5 exp «(/, + e). From
lemma 6.1, it follows that such a set is contained in at most C, exp [Xi = 1 « dim (£;) x
(/, — tj)] balls of radius 8 exp «(/,- + e), where C, is a constant independent of n and
5. We can find <50 such that:

< 50,hmsup

In particular, we can choose n(80) such that:

( o ) >

From the estimates above, we obtain that:

- « ( ( , • •

- H 1 !
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By lemma 6.2, this implies:

n l v , 2(A + e)+I^:1
1 dim (£,)(?,- -t})

CiK) H^) '
Of course, our estimates used a norm on R" which depended on e > 0 . Since the
left hand side of the above inequality does not depend on the norm, we obtain:

The above inequality is valid for all je { 1 , . . . , k} such that f, <0 . We leave it as
an exercise to show that the minimum over these j of the left hand side of the last
inequality is precisely D. •

7. A lower bound for the capacity
From the work of Urbanski [Ur, Theorem 1], it is possible to obtain a general lower
bound for the capacity of a(Mg) - where a is associated by 4.2 to a pseudo-Anosov
map f:Mg-*Mg. This was brought to my attention by Feliks Przytycki during our
stay in spring 1986 at the University of Warwick for the 'Special Year in Smooth
Ergodic Theory'. In fact, the argument of Urbanski can be used to prove a slightly
better result than what can be formally obtained from [Ur, Theorem 1].

THEOREM 7.1. Let f: Mg-> Mg be a pseudo-Anosov map, with orientable stable and
unstable foliations and whose algebraic dilatation A coefficient has no conjugate on the
unit circle. Suppose that A is not a quadratic integer. Call PA the polynomial of \ over
Q. Call n^ • • •> / ! ) . the elements of the set {|p||PA(p)PE(/)A-(p) = 0, with | p | > l } .
Since |A| appears as the biggest eigenvalue of an irreducible positive matrix, we have:
/x j = ! A j. Moreover, since A is not quadratic, we have: h>2. If a : Mg-»T2 g is the
map associated tofby 4.2, we have:

Because h>2, this implies that C(a(Mg))>2.

We will need some lemmas:

LEMMA 7.2. Suppose that for j = 1 , . . . , k, we have <pj: [0,1] -» Ej, a continuous function
from the interval [0,1] to the finite dimensional normed space Ej. Suppose that these
continuous functions satisfy the following property:

3 C > 0 , e , , . . . , ek_,, 0 < e, < 1, such that:

V [ o , 6 ] « = [ 0 , l ] , max \\<pJ+l(t)-<pJ+l(a)\\>C\\<pj(b)-<pj(a)\\''.

Then if <px is not constant, the multigraph G = {(<pl(t),..., (pk(t))\te [0, 1]} has a

lower bound for its lower capacity which is given by:

Proof. For each i= 1 , . . . , k, we define E' = @ j = 1 Ej and we endow E' with the
norm | | ( x , , . . . , x,)|| =maxj= 1 | | x j .
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For each integer n > 1 and each j = 1 , . . . , k, we are going to define, by induction
on j = 1 , . . . , k, a finite family &'„ of balls in EJ such that:

(i) the balls in &„ have radius 2~";
(ii) the balls in &'„ have disjoint interiors;
(iii) given a ball B in ^ , there exists a subinterval [a, b]<= [0,1] such that:

{(<p1(t),...,<pj(t))\te[a,b])}^B and | | ^ - ( 6 ) - ^ ( a ) | | = 2 " " ;

(iv) the number #2P'n of balls in &'„ satisfies:

where [r] is the integer part of the real number r.
Suppose that we have already obtained %F'n. If B is a ball in zFJ

n, consider the
interval [a, b] associated to B by (iii), applying the hypothesis of the lemma, we
obtain:

||<P,+ 1 (&)-<P;+ 1( a ) | |>C2- ' . .

It follows that we can construct [C2~nc'2n~i] balls in EJ+1 of radius 2~" which have
disjoint interiors, satisfy the analogous of condition (iii) with j replaced by j+l
and whose projection on Ej is contained in B. If we apply this to all balls B in &J

n,
we obtain the family &J

n
+l.

It follows from (iv) that there exists some A>0 such that:

V n > l , #&k
n>(A2n-l) n" (A2" < 1 ' £ ) -1 ) . (1)

Since Ek is finite dimensional, there exists, by volume consideration, a number K
such that for any r> 0, at most K disjoint open balls of radius r can be contained
in the same ball of radius 3r. It follows that at most K disjoint open balls of radius
r can intersect the same ball of radius r. This last fact, joined to inequality (1),
shows that any cover of the multigraph G by balls of radius 2 " must contain at
least AT1(^2'1- l )n!cr i 1 ( ^ " " - ^ - l ) elements. Hence, by 6.2, we get:

C ( G ) > 1 + I ' d - c , . ) . •

In the following, we will consider a pseudo-Anosov map / : Mg -> Mg satisfying
the hypothesis of 7.1. We call a : Mg -» T2g and A: T2* -»T2g the two maps associated
to / by 4.2. We will also call A the linear lift of the map A:J2g'->T2g' to R2*'.
Although with some more routine work we can dispense with the fact that the
characteristic polynomial of A has no multiple roots, we use that fact to write:

with A(Ej) = Ei and

'"•'•Wl' i f x e £ , , f o r i = l , . . . , / c

We will consider the collection 9 of continuous functions from U to U2g defined
in the following way: a map is in & if it is the composition of an isometry of IR
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into a union of unstable leaves and singularities of the unstable foliation lifted to
the universal cover MK of Mg with the lift a: Mg^> U2g of a to the universal covers.

L E M M A 7.3. The family 3F satifies the following properties:

(i) if <p is in 2F, then t*-><p(t + r) is in 3Ffor any reU;

(ii) if <p is in &, then ti-*A~n<p(\\\nt) is in 3F for any n e Z ;

(iii) ifip is in 3F, write (p = (<px,..., <p2k) with <pt: [0, l]-» £,, then for i = k+l,... ,2k,

we have <p, = 0.

Proof. The first property is evident from the definition. The second one follows
from the fact that a is a semi-conjugacy. The third one follows from the fact that
a takes leaves of the unstable foliation o f / i n t o leaves of the unstable foliation of

A. a
L E M M A 7.4. / / {<pn)n^ is a sequence in SF, there exists a sequence {vk)k&M of vectors

vkeZ2g and a subsequence <pnk such that <pnk + vke^ and the sequence ((pnk + vk)keN

converges to a function <p e SF.

Proof. This follows easily from the fact that the unstable foliation is continuous
and from the compactness of Mg.

L E M M A 7.5. If<pe3F is written as <p = ( < p l 5 . . . , <p2k) with <p,•: [0, l]-> £,, then for

i = 1 , . . . , k, the map <pt cannot be constant on an interval which is not reduced to a point.

Proof. If some <p, were constant on some non trivial interval, then we could find a
non trivial unstable segment S in Mg whose image under a would be contained in
a codimension > 1 'linear' subspace P of some unstable leaf of A: T2g -»J2g. Since
the stable leaves of/ in MK are dense and since a takes stable leaves of/ to stable
leaves of A, it follows that a(Mg) is contained in the union of the stable leaves of
A that intersect P. This last union is a codimension >1 'linear' subspace in T2 g .
This is a contradiction since the inclusion of P<= J2s is not surjective on the first
homology group but a is. •

LEMMA 7.6. (A priori inequalities). There exists a number C > 0 such that if <p e SF

is written as <p = (<p,,..., (p2k) with <p;: [0, 1] -> £,, then we have:

V / = l , . . . , f c - l , V [ a , 6 ] c R > m a x \\<pJ+l(t)-<pj+l{a)\\>C\\<pj{b)-<pj(a)p

where e, = (log /x,+1)/(log /A,), for j = 1 , . . . , k - 1.

Proof. Suppose that the conclusion is false. Using the properties of 3F given in
lemma 7.3, and selecting some subsequence, if necessary, we can find a j e
{ 1 , . . . , k - 1} and sequences ip" E 9> and tn > 0 such that:

ik;()max ik;+1(o-^+.()| |
< • - ' - ' „ n

Above and in the following: if i/(:IR^IR2g, then ip, is the /-th component of <p with

respect to the decomposition U2g = 0 2 ' l 1 £ , .

Remark that (1) implies that in fact tn>0. In particular, we can find for each n

an integer mne1 such that | A | > |A|m"fn > 1. If we define t'n = \^\m"tn and <p'"(t) =

Am«<p"(\\\~m»t), we have ? ' " e l and ^ e [ l , | A | ] . From the definition of the
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decomposition U2g =0?i i£ , - , we have:

ik;B(o-*'r(oii=A'Mk!1(|A|-m-/)-».7(|A|-'"-oii. (2)
Now it is clear that (1), (2) and the definition of e, imply the following:

max 1 1 ^ ( 0 - < P ; ; , ( 0 ) | | < - max \\<p>n {t)-<?'," {0)p. (3)
0^ ("̂  1 1̂ 0</^A1

By 7.4, we can find vectors vneZ2g and a function <p £ &> such that there is a
subsequence of <p'" + vn whose uniform limit on each compact subset of R is tp. But
(3) in the limit shows that <pj+l is constant on the interval [0, 1]. This contradicts 7.5.

•
Proof of 7.1. It follows from what was done above that if S (resp. U) is a stable
(resp. unstable) small non trivial segment in Mg then C(a(S))> 1 + £*!,' (1 -e,-)
(resp. C(a{U)) > 1 +1*1,' (1 - e,)). In fact a(S) (resp. a(U)) is contained in a stable
(resp. unstable) leaf of A and a respects the local product structures. Moreover, it
is a general fact that for subsets of euclidean spaces the lower capacity of a cartesian
product is > the sum of the lower capacity of its factors. This finishes the proof of
7.1 •

8. Pseudo-Anosov dijfeomorphisms with Pisot dilatation coefficient
We consider in the following a pseudo-Anosov diffeomorphism/: Mg-* Mg with

orientable invariant foliations and an algebraic dilatation coefficient A which is a
Pisot number, i.e. all conjugates on Q have absolute value <1 - see the examples
given by Arnoux and Yoccoz [AY]. We will suppose that the degree of A on Q is
g', this implies that the genus g of Mg is >g' . We can apply 4.2 to obtain a
commutative diagram:

Mg — ^ Mg

T2g' * J2g'

where A is an Anosov linear automorphism whose characteristic polynomial is

Using 2.1, we can obtain another commutative diagram:

T 8 ' xT 8 ' * F'xF'

where B (resp. C) is an Anosov linear automorphism whose characteristic poly-
nomial is PA (resp. Ptif)x-

1). Of course the map px xp2 is a covering.

LEMMA 8.1. 77ie maps p{a, p2a : Mg -> Tg are surjective.

Proof. This follows from [Hi, Theorem 5, p. 130]. Here is a slightly different proof.
Consider, for example, the case of fi = p,a. A half unstable leaf through a point x
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in Mg goes under /3 on a connected subset of the unstable leaf of/3(x) in Tg which
is a line - recall that all conjugates of A have modulus <1 . Consider the case where
the half leaf through x is infinite. If its image is contained in a bounded interval
of the unstable leaf of /3(x) in T g , then the whole image of Mg under /3 would be
contained in that interval, because we know that the closure in Mg of an infinite
half leaf is equal to Mg. This is impossible because the map induced by /3 on the
first rational homology group is surjective. This implies that the image of a half
unstable leaf through x which is infinite contains a half infinite unstable leaf through
j8(x). Such a half unstable leaf in Tg is dense. •

LEMMA 8.2. Any segment contained in a stable leaf of Mg which is not reduced to a
point has an image under p = p^a which contains an open subset - in the topology of
the leaf- of the corresponding (g — 1) -dimensional stable leaf in T g .

Proof. Suppose that some compact stable segment s <= Mg which is not reduced to
a point has an image /3(s) with empty interior in the corresponding stable leaf in
T g . It is easy to show that, in this case, the union U of the unstable leaves - for
A - through some point of {5(s) is a countable family of compact subsets of Tg

with empty interiors. Of course, if we call V the union of the unstable leaves - for
/ - through some point of s this a set which is equal to Mg minus a finite number
of points - namely the singularities of the invariant foliations. The image )8( V) is
contained in U. It follows clearly that the compact set /6(Mg) is contained in a
countable family of compact subsets of Tg with empty interiors. This contradicts
Baire's theorem since )3(Mg) = Tg'. •

LEMMA 8.3. Consider a point x in Mg with z = a(x). Call TTZ a local linear projection
of a neighborhood of z in T2g on the subspace Wz through z which is generated by the
eigenspaces of A which corresponds to the eigenvalues different from A and A"1. Remark
that the dimension of Wz is 2g' — 2. The image under irza of each small neighborhood
of x in Mg contains an open subset of Wz.

Proof. This follows from 8.2. In fact, the map Trza can be identified locally with the
cartesian product of the two maps p^fi and p2fi restricted respectively to a small
stable and unstable segments of/ containing x. •

THEOREM 8.4. For each subset X of Mg with non-empty interior, we have:

HD{a(X))=C(a(X)) = C(a{X)) = 2g'-2.

Proof. From 8.3, near each point of o(Mg), there is a local projection of T2g on a
codimension 2 'linear' subspace which take any non empty small open subset in
Mg to a set with non empty interior in the codimension 2 subspace. This shows that:

HD(a (X) )>2g ' -2 .

If we call fit,..., Mg-i» the conjugate of A on Q, since A is a Pisat number we have:

A~' = ±Mi - - ' Mg-i, l/"-il, • • • , W - i l < 1 > (!)
which implies |A~'|<|/u,|, for i = 1 , . . . , g ' - l . If we suppose that nh,..., /ilg,_, are
ordered in such a way that: |/x.,|s: • • • >|/ig_, | , then the numbers r l 5 . . . , T2g. of
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theorem 6.3 satisfy:

T2,--I = r2i = log |/i,-|, for 1 , . . . , g' - 1

and ;

This implies that r(2g'-2) = 2 £?=7 log \/J.,\ = 2 logflfV log |M,| = -2 log |A|. Since
no T, is zero, the function T(S) is strictly decreasing, hence if we apply theorem 6.3
to a(M), we find C(a(Mg))<2g'-2. The sequence of inequalities:

finishes the proof. •
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