# Powder diffraction data of the Al<sub>0.931</sub>Ni<sub>1.069</sub>Sc<sub>5</sub> compound

Weijing Zeng, and Huashan Liu (Da)

School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China

(Received 9 July 2022; accepted 1 January 2023)

A new ternary compound  $Al_{0.931}Ni_{1.069}Sc_5$  has been synthesized and studied by means of the X-ray powder diffraction technique. Al<sub>0.931</sub>Ni<sub>1.069</sub>Sc<sub>5</sub> crystallizes in the hexagonal crystal system with the Al<sub>5</sub>Co<sub>2</sub> structure type, space group  $P6_3/mmc$ , with a = 8.8287(3) Å, c = 8.6959(4) Å, Z = 4 and  $V = 587.00 \text{ Å}^3$ ,  $\rho_{\text{calc}} = 3.538 \text{ g/cm}^3$ .

© The Author(s), 2023. Published by Cambridge University Press on behalf of International Centre for Diffraction Data.

[doi:10.1017/S0885715623000015]

Key words: Al–Ni–Sc compound, Al<sub>0.931</sub>Ni<sub>1.069</sub>Sc<sub>5</sub>, X-ray powder diffraction

## **I. INTRODUCTION**

In the Al-Ni-Sc ternary system, the crystal structure and X-ray powder diffraction (PXRD) data of five ternary compounds, AlNiSc (Teslyuk and Protasov, 1965), Al<sub>16</sub>Ni<sub>7</sub>Sc<sub>6</sub> (Markiv and Burnasheva, 1969), AlNi<sub>2</sub>Sc (Dwight and Kimball, 1987), Al<sub>2</sub>NiSc (Gladyshevskii and Parthe, 1992), and Al<sub>0.902</sub>Ni<sub>1.098</sub>Sc (Sahlberg et al., 2012), have been studied and collected in the Inorganic Crystal Structure Database (ICSD) and ICDD's Powder Diffraction File. Recently, our team has studied phase relations of the Al-Ni-Sc ternary system (He et al., 2019) and detected four new phases Ni<sub>2</sub>Al<sub>5</sub>Sc, Ni<sub>2</sub>Al<sub>4</sub>Sc, NiAl<sub>2</sub>Sc<sub>3</sub>, and NiAlSc<sub>5</sub>. The actual composition of the detected phase NiAlSc<sub>5</sub> is determined to be  $Al_{0.931}$ Ni<sub>1.069</sub>Sc<sub>5</sub> after studied. However, information for the crystal structure of  $Al_{0.931}Ni_{1.069}Sc_5$  is not available in the literature. Here, the PXRD data for Al<sub>0.931</sub>Ni<sub>1.069</sub>Sc<sub>5</sub> is reported.

## **II. EXPERIMENTAL**

#### A. Sample preparation

The sample of Al<sub>0.931</sub>Ni<sub>1.069</sub>Sc<sub>5</sub> was prepared by arc melting the stoichiometric amounts of elemental constituents 99.99 Al, 99.99 Ni, and 99.9 Sc (wt%) (supplied by China New Metal Materials Technology Co., Ltd.) under high purity argon atmosphere on a water-cooled copper hearth. To ensure homogeneity of the sample, it was melted four times and weight losses were less than 1 wt%. After melting, the sample was enclosed in an evacuated quartz tube and annealed at 1173 K for 40 days, and then finally cooled down to room temperature at a rate of 10 K/h. The composition (13.40 at. % Al, 15.32 at.% Ni, 71.28 at.% Sc) of the sample was obtained by the electron probe microanalysis (EPMA; JXA-8800R, JEOL, Japan), which is in good agreement with the crystal structure refinement composition of Al<sub>0.931</sub> Ni<sub>1.069</sub>Sc<sub>5</sub> (13.30 at.% Al, 15.27 at.% Ni, 71.43 at.% Sc). The sample was then grounded to a size smaller than 20 µm for powder diffraction analysis.

### **B.** Data collection

A PXRD pattern (Figure 1) of the new compound Al<sub>0.931</sub>Ni<sub>1.069</sub>Sc<sub>5</sub> was obtained using a Rigaku D/max 2550 V X-ray diffractometer equipped with  $CuK\alpha$  radiation and a graphite monochromator. The  $2\theta$  scan range was from  $10.02^{\circ}$  to  $100.04^{\circ}$  with a step size of  $0.02^{\circ}$  and a count time of 1 s/step. The lattice parameters were calculated with the XRD pattern processing program JADE 6.0 (Materials Data Inc., 2002).

#### **III. RESULTS AND DISCUSSION**

The PXRD pattern of  $Al_{0.931}Ni_{1.069}Sc_5$  was indexed using the JADE 6.0 program after smoothing the patterns, fitting the background, and stripping the Cu $K\alpha_2$  peaks. All lines were successfully indexed in the hexagonal system with the lattice parameters a = 8.8287(3) Å, c = 8.6959(4) Å, and the Al<sub>5</sub>Co<sub>2</sub> (Burkhardt et al., 1998) structure type. Details of the crystal structure for Al<sub>0.931</sub>Ni<sub>1.069</sub>Sc<sub>5</sub> will be given in our further publication. The observed X-ray powder diffraction data are listed in Table I.

## IV. DEPOSITED DATA

The raw data file of  $Al_{0.931}Ni_{1.069}Sc_5$  has been deposited with ICDD. You may request this data from ICDD at pdj@icdd.com.

<sup>&</sup>lt;sup>a)</sup>Author to whom correspondence should be addressed. Electronic mail: hsliu@csu.edu.cn



Figure 1. The powder X-ray diffraction pattern of  $Al_{0.931}Ni_{1.069}Sc_5$ .

| TABLE I.  | Indexed X-ray | powder | diffraction | data f | for the | Al <sub>0.931</sub> Ni <sub>1</sub> | .069Sc5 |
|-----------|---------------|--------|-------------|--------|---------|-------------------------------------|---------|
| compound. |               |        |             |        |         |                                     |         |

| $2\theta_{\rm obs}$ (°) | $d_{\rm obs}$ (Å) | Iobs | h | k | l | $2\theta_{cal}$ (°) | $d_{\mathrm{cal}}(\mathrm{\AA})$ | $\Delta 2\theta$ |
|-------------------------|-------------------|------|---|---|---|---------------------|----------------------------------|------------------|
| 15.393                  | 5.7514            | 11   | 1 | 0 | 1 | 15.418              | 5.7421                           | 0.025            |
| 20.080                  | 4.4184            | 3    | 1 | 1 | 0 | 20.098              | 4.4145                           | 0.018            |
| 20.400                  | 4.3498            | 5    | 0 | 0 | 2 | 20.408              | 4.3480                           | 0.008            |
| 23.239                  | 3.8244            | 2    | 2 | 0 | 0 | 23.248              | 3.8230                           | 0.009            |
| 23.500                  | 3.7825            | 6    | 1 | 0 | 2 | 23.518              | 3.7797                           | 0.018            |
| 25.418                  | 3.5012            | 7    | 2 | 0 | 1 | 25.429              | 3.4998                           | 0.011            |
| 28.797                  | 3.0977            | 1    | 1 | 1 | 2 | 28.796              | 3.0978                           | -0.001           |
| 30.905                  | 2.8910            | 17   | 2 | 1 | 0 | 30.917              | 2.8899                           | 0.012            |
| 31.100                  | 2.8733            | 13   | 2 | 0 | 2 | 31.125              | 2.8711                           | 0.025            |
| 32.600                  | 2.7444            | 13   | 2 | 1 | 1 | 32.624              | 2.7425                           | 0.024            |
| 33.014                  | 2.7110            | 23   | 1 | 0 | 3 | 33.021              | 2.7105                           | 0.007            |
| 35.179                  | 2.5490            | 10   | 3 | 0 | 0 | 35.183              | 2.5487                           | 0.004            |
| 36.700                  | 2.4468            | 72   | 3 | 0 | 1 | 36.714              | 2.4458                           | 0.015            |
| 37.338                  | 2.4064            | 100  | 2 | 1 | 2 | 37.331              | 2.4068                           | -0.007           |
| 38.941                  | 2.3109            | 47   | 2 | 0 | 3 | 38.960              | 2.3098                           | 0.020            |
| 40.840                  | 2.2078            | 32   | 2 | 2 | 0 | 40.850              | 2.2072                           | 0.010            |
| 41.499                  | 2.1742            | 15   | 0 | 0 | 4 | 41.502              | 2.1740                           | 0.004            |
| 42.586                  | 2.1212            | 1    | 3 | 1 | 0 | 42.597              | 2.1206                           | 0.012            |
| 43.918                  | 2.0599            | 4    | 3 | 1 | 1 | 43.910              | 2.0603                           | -0.008           |
| 44.200                  | 2.0474            | 6    | 2 | 1 | 3 | 44.218              | 2.0466                           | 0.019            |
| 46.503                  | 1.9512            | 1    | 1 | 1 | 4 | 46.525              | 1.9503                           | 0.022            |
| 48.098                  | 1.8902            | 2    | 2 | 0 | 4 | 48.107              | 1.8898                           | 0.009            |
| 52.217                  | 1.7503            | 4    | 4 | 0 | 2 | 52.232              | 1.7499                           | 0.015            |
| 52.650                  | 1.7370            | 2    | 2 | 1 | 4 | 52.638              | 1.7373                           | -0.012           |
| 53.516                  | 1.7109            | 5    | 3 | 1 | 3 | 53.494              | 1.7115                           | -0.021           |
| 54.020                  | 1.6961            | 3    | 1 | 0 | 5 | 54.027              | 1.6959                           | 0.007            |
| 54.991                  | 1.6684            | 2    | 4 | 1 | 0 | 54.988              | 1.6685                           | -0.003           |

| TABLE I.                | Continue                 | d    |   |   |   |                     |                                  |                  |
|-------------------------|--------------------------|------|---|---|---|---------------------|----------------------------------|------------------|
| $2\theta_{\rm obs}$ (°) | $d_{\rm obs}({\rm \AA})$ | Iobs | h | k | l | $2\theta_{cal}$ (°) | $d_{\mathrm{cal}}(\mathrm{\AA})$ | $\Delta 2\theta$ |
| 56.077                  | 1.6387                   | 4    | 4 | 1 | 1 | 56.079              | 1.6386                           | 0.002            |
| 57.702                  | 1.5963                   | 3    | 4 | 0 | 3 | 57.723              | 1.5958                           | 0.022            |
| 58.250                  | 1.5826                   | 1    | 2 | 0 | 5 | 58.230              | 1.5831                           | -0.020           |
| 59.638                  | 1.5490                   | 3    | 2 | 2 | 4 | 59.645              | 1.5489                           | 0.007            |
| 60.480                  | 1.5295                   | 2    | 5 | 0 | 0 | 60.492              | 1.5292                           | 0.012            |
| 61.758                  | 1.5009                   | 12   | 3 | 2 | 3 | 61.763              | 1.5007                           | 0.005            |
| 63.139                  | 1.4713                   | 13   | 3 | 3 | 0 | 63.131              | 1.4715                           | -0.008           |
| 64.200                  | 1.4495                   | 4    | 0 | 0 | 6 | 64.209              | 1.4493                           | 0.009            |
| 64.522                  | 1.4431                   | 13   | 5 | 0 | 2 | 64.546              | 1.4426                           | 0.025            |
| 64.845                  | 1.4367                   | 16   | 3 | 0 | 5 | 64.848              | 1.4366                           | 0.003            |
| 67.100                  | 1.3938                   | 1    | 3 | 3 | 2 | 67.096              | 1.3938                           | -0.004           |
| 69.420                  | 1.3527                   | 1    | 5 | 0 | 3 | 69.432              | 1.3525                           | 0.011            |
| 71.158                  | 1.3239                   | 1    | 4 | 1 | 4 | 71.175              | 1.3236                           | 0.017            |
| 75.299                  | 1.2610                   | 3    | 6 | 0 | 1 | 75.310              | 1.2609                           | 0.011            |
| 76.720                  | 1.2412                   | 5    | 5 | 1 | 3 | 76.730              | 1.2410                           | 0.010            |
| 78.397                  | 1.2188                   | 3    | 3 | 3 | 4 | 78.411              | 1.2186                           | 0.014            |
| 78.899                  | 1.2123                   | 2    | 5 | 2 | 1 | 78.890              | 1.2124                           | -0.009           |
| 79.254                  | 1.2077                   | 2    | 4 | 3 | 2 | 79.268              | 1.2076                           | 0.014            |
| 79.547                  | 1.2040                   | 3    | 4 | 1 | 5 | 79.546              | 1.2040                           | -0.001           |
| 81.398                  | 1.1813                   | 1    | 2 | 0 | 7 | 81.379              | 1.1815                           | -0.019           |
| 81.629                  | 1.1785                   | 1    | 5 | 2 | 2 | 81.627              | 1.1785                           | -0.002           |
| 87.176                  | 1.1172                   | 1    | 3 | 2 | 6 | 87.167              | 1.1173                           | -0.010           |
| 93.182                  | 1.0603                   | 1    | 6 | 2 | 0 | 93.181              | 1.0603                           | -0.001           |
| 96.478                  | 1.0326                   | 3    | 3 | 3 | 6 | 96.486              | 1.0326                           | 0.007            |
| 96.803                  | 1.0300                   | 5    | 6 | 2 | 2 | 96.792              | 1.0301                           | -0.012           |
| 97.059                  | 1.0280                   | 2    | 6 | 0 | 5 | 97.067              | 1.0279                           | 0.007            |
| 97.829                  | 1.0220                   | 3    | 5 | 3 | 3 | 97.806              | 1.0221                           | -0.023           |
| 98.398                  | 1.0176                   | 2    | 2 | 1 | 8 | 98.417              | 1.0174                           | 0.019            |
| 98.907                  | 1.0137                   | 2    | 3 | 2 | 7 | 98.892              | 1.0138                           | -0.015           |

Continued

### **FUNDING STATEMENT**

This work was financially supported by the National Key Research and Development Program of China (Grant No. 2016YFB0701404).

### REFERENCES

Burkhardt, U., M. Ellner, Y. Grin, and B. Baumgartner. 1998. "Powder Diffraction Refinement of the Co<sub>2</sub>Al<sub>5</sub> Structure." *Powder Diffraction* 13: 159–62.

- Dwight, A. E., and C. W. Kimball. 1987. "ScT<sub>2</sub>X and LnT<sub>2</sub>X Compounds with the MnCu<sub>2</sub>Al-Type Structure." *Journal of Less-Common Metals* 127: 179–82.
- Gladyshevskii, R. E., and E. Parthe. 1992. "Crystal Structure of Scandium Nickel Dialuminium, ScNiAl<sub>2</sub> with MgCuAl<sub>2</sub> Type." Zeitschrift für Kristallographie - Crystalline Materials 198: 291–2.
- He, J. Q., L. Fan, H. S. Liu, H. L. Peng, and Z. P. Jin. 2019. "Experimental Investigation of Phase Equilibria in the Al–Ni–Sc System." *Journal of Materials Science* 54: 10516–28.
- JADE Version 6.0. 2002. XRD Pattern Processing. Livermore, CA, Materials Data Inc.
- Markiv, V. Y., and V. V. Burnasheva. 1969. "New Ternary Compounds in the Systems (Sc, Ti, Zr, Hf) - (V, Cr, Mn, Fe, Co, Ni, Cu) - (Al, Ga)." Dopovidi Akademii Nauk Ukrains'koi RSR, Seriya A: Fiziko-Tekhnichni ta Matematichni Nauki 5: 463–4.
- Sahlberg, M., J. Angstroem, C. Zlotea, P. Beran, M. Latroche, and C. Paygomez. 2012. "Structure and Hydrogen Storage Properties of the Hexagonal Laves Phase Sc(Al<sub>(1-x)</sub>Ni<sub>(x)</sub>)<sub>2</sub>." *Journal of Solid State Chemistry* 196 (12): 132–7.
- Teslyuk, M. Y., and V. S. Protasov. 1965. "Crystal Structure of Ternary Compounds ScCoAl and ScNiAl." *Dopovidi Akademii Nauk Ukrains'koi RSR* 5: 599–601.