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A NOTE ON THE THEOREM OF BATUROV

MARIA MUNOZ

D.P. Baturov proved in 'Subspaces of function spaces' Vestnik Moskov University
Series I (1987) that Lindelof degree equals extent for subspaces of CP(X) when X
is a Lindelof S-space. We prove that if the Lindelof degree of the subspace is "big
enough" the equality is true for a topological space X not necessarily Lindelof E.

1. INTRODUCTION

Baturov proved in [5] that Lindelof degree equals extent for subspaces of CP(X) when
X is a Lindelof S-space. This classical theorem answers a question of A. V. Arkhangel'skii.
Later, Buzyakova established in [8] a connection between the D-property and Baturov's
theorem. A topological space X is a D-space if, and only if, given a neighbourhood
assignment {N(x) : x G X}, that is, x € IntiV(x) for each x e X, there is a closed
discrete subset D of X such that X = u{iV(x) : x £ D}, [10], see also [3, 4, 12, 6].
Buzyakova showed that CP(X) is hereditarily D whenever X a compact space, see [8].
Gruenhage describes the theorem of Buzyakova as an "explanation" of Baturov's result,
whose proof is quite technical. Recently, Gruenhage has proved the same result for X a
Lindelof E-space, [13].

The theorem of Baturov is established in terms of Lindelof E-spaces. The notion of
Lindelof E-space was introduced in [17] (in different terminology K-countably determined
space, [18]). We use the following characterisation of Lindelof E-spaces (see [18, pp. 95-
96]).

DEFINITION 1.1: A topological space X is said to be Lindelof E-space if it is the
image of some subset of NN under an upper semicontinuous compact-valued map.

The class of Lindelof E-spaces is the minimal class which contains all second coun-
table spaces and all compact spaces and is closed with respect to finite products, closed
subspaces and continuous images.

The goal of this paper is to give a different point of view of the theorem in the way
that the restrictive hypothesis is not supported by the space X or even by the subspace
of CP(X). Our result is better in the sense that X is not necessarily a Lindelof E-space.
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To achieve our aim, we use the invariant cardinal function index of K-determination.
This cardinal function is close to the ideas of Nagami [17] and the cardinal functions
defined by Hodel [14]. It has turned out to be an useful tool to establish relation-
ships between different cardinal functions of a topological space [9]. The index of K-
determination, £E(X) of a topological space X, measures how the space X is determined
by its compact subsets via upper semicontinuous compact valued maps defined on metric
spaces.

Now we can enunciate the theorem of Baturov in these new terms. We shall prove
that for a subspace Y oiCp(X), the Lindelof number of Y is equal to the extent of Y, if the
Lindelof number of the subspace is greater than or equal to the index of AT-determination
of-Y.

2. NOTATION AND RESULTS

All our topological spaces X, Y are assumed to be Tychonoff. Every Tychonoff
space has a compactification. We denote by bX a compactification of X. Our basic
references are [15, 2, 11, 16]. A cardinal number m is the set of all ordinals which
precede it. In particular, m is a set of cardinality m. m+ is the smallest cardinal after
m. A cardinal function <j> is a function from the class of all topological spaces (or some
precisely defined subclass) into the class of all infinite cardinals such that (j>{X) = <j>(Y)
whenever X and Y are homeomorphic. The requirement that cardinal functions take on
only infinite cardinals as values simplifies statements of theorems. We assume that to all
the cardinal functions we add the countable cardinal LJ. The weight of X, w(X), is the
minimal infinite cardinality of a base for the topology of X. The Lindelof degree of X,
denoted i(X), is defined as the smallest infinite cardinal m such that every open cover
of X has a subcollection of cardinality ^ m which covers X. The density of X, d(X),
is the minimal cardinal of an everywhere dense set in X. The extent of X e(X) is the
supremum of the cardinalities of discrete closed sets in X. The hereditary density of X,
hd(X), is sup{d(F) : Y C X}. The tightness of a point x in a topological space X,
t(x, X), is the smallest infinite cardinal number m with the property that if x € A, then
there exists AQ C A such that |>lo| ^ w and x G AQ. The tightness of a topological space
X, t(X) is the supremum of all numbers T(X, X) for x 6 X. It is obvious that for every
subspace Y of X, t(Y) ^ t(X). We say that a topological property V is hereditary for a
space X if every subspace of X has the property V.

A multi-valued map <f>: X —> 2Y is said to be upper semicontinuous if it is compact
valued and upper semicontinuous, that is, for every x G X the set <f>(x) is compact, non-
empty and for every open set V CY with <j>(x) C V there is an open neighbourhood U
of x such that <j>(U) C V. In terms of nets, if <f> : X —• 2Y is an upper semicontinuous
map, (xj)j£j is a convergent net to x in X and (yj)jej is a net in Y such that Vj € <S>{xj)
for every j € J, then we have that (y,-)i€J has a cluster point y which belongs to <f>(x).
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More about upper semicontinuous maps can be found in [7].

DEFINITION 2 .1 : Let X be a topological space. The number of K-determination
of X £E(X), is the smallest infinite cardinal number m for which there are a metric
space (M, d) of weight m and an upper semicontinuous map <j> : M —> 2X such that

x=\jMY

When £E(X) is countable we simply get Lindelof E-spaces. The behavior of this
invariant cardinal with respect to the usual operations and more properties can be found
in [9]. We include in the proposition that follows some properties of €£ to make this
paper self-contained. All of them can be found in [9].

PROPOSITION 2 . 2 . Let X be a topological space. Then:

(ii) Let Xi be a topological space for i = 1 , . . . , r, then

i = l,...,r}.
t = l

(iii) t{Cp(X))

PROOF: (i) Let (M,d) be a metric space with w{M) < 0£{X) and </> : M ->• 2X

an upper semicontinuous map such that X = u{<j>(t) : t € M}. Let O = {Oi : i 6 /}
be an open cover of X. The set 4>{t) is compact for every t € T, hence there exists a
finite set of indices i\,... t^ such that <j>{t) C U{Oj« : j = 1,. . . , r^}. Since cj> is upper
semicontinuous, for the open set O(t) := U{Ojt : j = 1,.. .nt} there exist an open set
U{t) in M such that </>(£/(*)) c O(t). Now the" family, U = {U(t) : t € M} is an open
cover of M. Since iu(M) = £(M), there exists a subcover {U(t) : t € 5} of M with
|5| ^ IL(X). Thus,

X = U *(tf(*)) c U °W = U U{°.j = i = 1. • • •, "f},
tes tes tes

and the proof is finished.

(ii) There exist a metric space Mi with w(Mi) ^ £E(Mj) and an upper semicon-

tinuous map fa : Mi -> 2Xi such that Xi = (J &(£) for each i = 1 , . . . , r. The space

r

M := n -Mi is a metric space with w(M) ^ sup{iu(Mj) : i = 1,... ,r} and the multi-
i=l

n * t
valued map <j> := <t>\ x . . . x <j>T defined on M which takes values in 2i = 1 is an upper

r
semicontinuous map such that J~[ A"< is covered by the union (J 4>(t).

«=i teM
(iii) This is a consequence of a theorem of Arkhangel'skii, [1] see ([2, Theorem

II.l.l]) which affirms that if i{Xn) ^ m for every n e N then t(Cp{X)) ^ m, where m is
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an infinite cardinal number. Now (iii) is obvious because using 2.2 and 2.2 we have that
£(Xn) ^ ffipf") sj £E(X) for every n € N. D

We recall that a continuous map / : X —• Y is perfect if / is a closed map and all
fibres f~l(y) a r e compact subsets of X.

PROPOSITION 2 . 3 . Let X be a topological space. Tien, there exist a
metrisable space M with w(M) < tZ(X), a topological space Y with £Y,{Y) < £Z(X)
and continuous functions f : Y —> X and p : Y ->• M such that f is onto and p is a
perfect map.

PROOF: Let M be a metric space with w(M) ^ £Y,(X) and $ : M —>• 2X an upper
semicontinuous map. We define Y := {(t,x) : x € <j>{t)} C M x 6X. Now the set
y is closed in M x 6A\ Let (*,-, Xj)jey be a convergent net to (t, x) in M x kY. We
shall prove that (i, x) € Y, that is x 6 0(t). Since {tj,Xj)j€j converges to (t,x), this
implies that (tj)j^j converges to t in M and (xj)jgj converges to a; in bX. For each open
neighbourhood U in Wf of x there exists ju such that if j ^ jV then Xj € {/. Since 0 is
upper semicontinuous, the net (XJ)J€J has a cluster point x* in X such that x* € (f>(t).
If we assume that x ^ x* then there exist open sets V and V* in Wf such that x € V,
x* e K* and V n V* = 0. But now there exist an open set U* in X such that x* G t/*
and {7* C V* D A\ and j ^ jV such that Xj € £/* C V*, but also x_, e V, which is a
contradiction, so x = x*, that is x € X and x £ <j>{t).

On the other hand, we have that ffi(Af x bX) ^ max{ffi(Af),ffi(6X)}, by 2.2 (ii).
£E(6X) is countable since bX is a compact set and M is a metrisable space. Hence
£E(M) ^ w(M) ^ £S(X). The index of /^-determination does not increase under
closure [9], hence ffi(r) ^ £E(M x bX) < ffi(X).

The maps / : y —> X and p : Y -*• M given by f(t, x) := x and p(t, x) := t are
continuous. The space X is covered by the union L){/(t,x) = x, (t,x) € y } , hence / is
onto. On the other hand, p is a perfect map. In fact, the set p"1 (t) = {t} x <f>{t) is compact
and we have by Kuratowski's theorem [11, Theorem 3.1.16] that p : M x bX ->• M given
by p(t, x) = t is closed. Since y is closed, the map p is closed too and the proof is over. D

Although in- the proof of the theorem that follows we follow the general argument
used in the proof of the theorem of Baturov, we include all the steps and changes because
of the technical arguments used in it.

THEOREM 2 . 4 . Let X be a topological space and T C CP(X) be a subspace such
that £(T) > tZ{X) then £(T) = e(T).

PROOF: The inequality e(T) < £(T) is always true. To prove the other inequality,
we may assume that X is a topological space such that there exists a continuous perfect
map p defined on X which takes values in a metrisable space M with w(M) < i£(X).
In fact, by proposition 2.3, there exist a metrisable space M with w(M) ^ £T:(X), a
topological space Y with £L(Y) ^ £E(X), and maps / : Y -¥ X continuous onto and
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p : Y -¥ M continuous and perfect. Since X is a continuous image of Y, the map
/ : CP{X) -¥ CP(Y) given by J{h) := h o / for every h G CP(X) is a homeomorphic
embedding. Let T C CP{X) be a subspace such that £(T) > iT,{X), then l(J{T))

> PL{Y). This inequality follows since 1{J{TJ) = £(T) > ffipQ ^ ffi(V).

To prove that ^(T) ^ e(T) we shall prove that for every infinite cardinal m > £E(X),

if e(T) > m, then e(T) > m.

We suppose £(T) > m. There is an open cover 7 of T in which there is no subcover
of cardinality less or equal to m. We can assume that the elements of the cover 7 have
the form

U{xh,. ..,xin;Okl,.. .,Okn) = {/i G CP{X) : h(x{j) G Okj, j = l,...,n},

where x^ are points in X and Okj G O for j = l,...,n, where O = {Oi : i £ N}
is a standard countable base of R. For every n G N we define the family On := {Oix

x Oi2 x • • • x Oin : Oj. g O , i = l , . . . , n } . The cardinality of On is countable, so we can
consider On = {On,m : m € N}. We denote f/n,m(x) = U{xiit.. .,xin;Okl,. ..,Okn)
where x = (i*,,. ..,xin) and On>m = Okl x • • • x Okn e On. We define An<m

= {x e Xn : f/n,m(a;) € 7 } . We consider the subset P C N2 defined as (n,m) € P
if, and only if, j4n,m ^ 0. The family 7 can be represented as 7 = u{7n,m : (n, m) £ P } ,
where 7n,ro = {C/n>m(x) : x € A n ) m } . For every map h G CP(X) and n G N we denote by
hn the map from Xn to Rn such that hn(xi,..., xn) = ( / i ( i i ) , . . . , h(xn)) and by p" the
map from Xn to M" such that pn(x\,..., xn) = ( p ( i i ) , . . . ,p(xn))- With this notation,
we have that for each h G T there exist (n, m) G P and x G j4nim such that hn(x) G On,m-

The fact that there is no subfamily of 7 of cardinality less or equal to tn which covers
T can be written as if for every (n, m) G P we choose Sn,m C An,m and |Bn,m | ^ m, then
there is g G T such that gn{Bn>m) n On>m = 0 for every (n,m) G P.

We construct by transfinite induction a set F = {ha : a < m+} C T which is closed
and discrete in T.

Choose ho G T arbitrarily, and suppose that we have the functions {hp G T : /3 < a}

where a < m+.

For each n G N the space R n r x Mn is a metrisable space and io(Rn r x M n )
^ w{M) < ^S(X), [11, Theorem 2.3.13]. The hereditarily density degree of R n r x Mn

coincides with the weight, see [15, Theorem 8.1], hence hd{RnT x M") ^ ffi(X).

For each finite collection /3i,...,0r < a and n G N, we consider the map h^i<ffr

= / $ , A . . . A/i^Ap" which is the diagonal product of the maps / i ^ , . . . , /ijjr and, p"
defined on X n and taking values in R n r x Mn. Now we have that hjjx,...* is a perfect
map since p is perfect, [11, Theorem 3.7.11].

For each {n,m) G P we can choose in An<m a set S£;™ A with |5^™

such that ^ , ^(Sft™ A ) is dense in ^ , ^(i4n > m). We'define i5«m =
Pi,.. .,0r < a}. It is obvious that | B " m | ^ max{m,^E(A')} = tn. We assume that we
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have B*m for every (n, m) G P and hence we obtain that there exists ha G T such that
ftS(Bn,m)nOB,m = 0 for every (n, m) G P. The construction of the set F = {ha : a < m+}
is finished.

We show that F is discrete and closed in T. Assume the contrary. Then there is
a point g G T which is a limit for F. For some (n,m) G P and xg G Xn, we have
g G £/n,m(x9), that is gn{xg) G On>m. By proposition 2.2 (iii), t(Cp(X)) < £Z{X), and
hence t(T) ^ m. Let ao be the smallest a' < m+ such that g is a limit point of the set
{ha : a < a'}, and we put

P={ha€F: hl(xg) G On,m, a < a0}.

The set (gn)~l(On,m) n n j C 1 " ) " 1 ^ " ^ ) ) : h e p } i s n o t empty because xg belongs to

the intersection. We define the set N = n{{hn)-l(hn{xg)) : heP}\ (^n)-1(On,m)-

We distinguish two situations. If N is empty, we put pn(xg) = t. The map p" :
Xn -i- Mn is perfect,- hence (p")"1^) is compact. Since the set (^"H^n.m) is open,
there is a finite set {hpt,..., hpr} C P such that

* = nU1(hl)-l(hl(xg))n(P»)-\t) c (sT'tOvn).

Now, * = (/i^ Pr)-
I{h}l(xa),...,h%r{xg),t). The map /i^ Pr is closed and the set

(gn)~l(On,m) is open such that $ C (fl")"1^,™)- Since An,m n $ ^ 0, there exists
a point y G / ^ . . . ^ ( S ^ J such that (/ft ^{y) c (s")-1^,.,™), [11, Theorem
1.4.12]. Thus, there is a point x G S^'™ 0r D (s")"1^,™)- But then, by construction,
the function ha, for a > max{/?j : i = 1,.. . , r } , does not belong to the neighbourhood
Un,m{x) and g G Un,m(x). We define a* = max{/?j : t = 1,. . . ,r}. Now, a* < a0, and
g is a limit point for the set {ha : a < a*}. But ao is the smallest cardinal with that
property and we get a contradiction.

On the other hand, if N is not empty, let i ' G N. Then gn{x') ^ gn(xg), since
gn{xg) G On,m. But hn(x') = hn(xg) for every h G P. This implies that 5 does not belong
to the closure of P, which is a contradiction. We have proved that F is discrete and
closed in T and the proof is finished. D

The theorem of Baturov follows as corollary of the main theorem.

COROLLARY 2 . 5 . (Theorem of Baturov, [5]) Let X be a Lindelof E-space and

T C CP(X) a subspace ofCp{X), then e(T) = £(T).
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