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1. Introduction. We exhibit a large class K* of real 2x2 matrices of determinant +1
such that, for nearly all A and B in K*, the group generated by A and B' (the transpose of B)
is the free product of the cyclic groups <y4> and <£'>. It1S shown that K* contains all matrices

of determinant + 1 with integer entries satisfying \b\ > \a\, \c\, \d\. This gives a

generalization of a theorem of Goldberg and Newman [2]. We also prove related results
concerning the dominance of b and the discreteness of the free products </4> * <5'>.

The matrices A will be identified with linear fractional transformations on U* (the
extended reals), except in §5.

2. Definitions and notation.

(1) A matrix M is unimodular if detM = ± 1 .

(2) A will always denote the real unimodular matrix

(3) Z denotes the integers.
(4) An entry of A is called dominant if its absolute value is larger than that of each other entry.

]
(6) T denotes the interval (-1,1).
(7) A = R * - [ - l , 1].
(8) If C is a 2 x 2 matrix and S is a set of 2 x 2 matrices, then Sc = {Bc : BeS}, where

Bc K

(9) A = means that either the matrix A or — A has the indicated sign pattern, i.e.

a, b ̂  0, c, d ^ 0 or a, b ^ 0, c, d ^ 0.

(10) A real linear fractional transformation is called minimal if it has a matrix*[::]
of determinant 1 which satisfies the conditions c > 0, a+d = 2cos(nlq)(qeZ, q >: 2). If a
transformation A has period q >: 2 and detA = 1, then </4> has a unique minimal member
of period q which can be found as follows. Write | tr A | = 2 cos (np/q), where (p, q) = 1, q 5: 2.
Choose r such that rp= l(modg). Then either Ar or A~" is minimal.

c+rf|, |a—fe| >: \c—d\ and | 6 | > | a | } .
^ 2, deU = 1}.

(11) J = | |
(12) Kl = {AeJ:\trA
(13) K2 — {A : A'eJ and /4r is minimal, for some r}.
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It will be shown in Lemma 7 that K2 <= J. On the other hand, not every AeJ of deter-
minant 1 and finite period is in K2. For example, if A = 2COS(TC/5), we have

A = \eJ, A2$J, and A2 is minimal.
I I — A. A— I I

(14) #3 = {AeJ: detA = - 1 , t r^ = 0}. Observe that K3 consists of all AeJ of deter-
minant — 1 with finite period.

(15) AT4 = {AeJ: detA = - 1 , A2eJ}.
(16) K=K1

3. Free products of transformations.

THEOREM 1. Let A, BeK, C = B'. Then (A, C> = {A} * <C> if and only if, for every

pair r, s satisfying s2 — r2 = l, we have {A, C} <t < 1,1 > .

IL-J ~rJ L1 °JJ
Before proving this theorem, we prove Proposition 1. The following lemmas lead up to

Proposition 1.
LEMMA 1. AeJ if and only ifA(T)cz A.

Proof. Let AeJ; then |^(1)| ^ 1, | ^ ( - 1 ) | ^ 1, and A(x) does not vanish for xeT.
Moreover, A(x) is monotone on the intervals ( - oo, -djc) and {-die, oo), since djdx(A(x)) =
detA/(cx+d)2. It is thus readily seen that min{|/*(;<:)|: xe[—l, 1]} is attained at x - 1
or x = - 1 . Thus A(T) <= A. The converse is readily verified.

LEMMA 2. AeJifand only ifA~leJ.

Proof. This follows from Lemma 1.

LEMMA 3. Let det A = - 1 (so that the fixed points of A are in U*). Then A$J if and
only if there is a fixed point of A in T.

Proof. Suppose that A£J. Then the graph of A(x) must intersect the open square
whose vertices are (1, 1), (1, -1 ) , ( - 1 , 1), and ( - 1 , -1 ) . Since A(x) is monotone decreasing
on ( - oo, —djc) and on (—djc, oo), the graph of A(x) must intersect the line y = x inside the
square. Thus A has a fixed point in F. The converse is obvious.

LEMMA 4. Let detA = - 1 . Then, ifA2eJ, AeJ.

Proof. If A$J, then, by Lemma 3, there exists xeF such that A(x) = x. Thus A2(x) = x,
so that A2$J.

LEMMA 5. Let AeKv Then A"eJfor all n > 0.

Proof. By Lemma 1, the fixed points of A must lie in U*—F. For any xeT, the sequence
x, Ax, A2x,... converges to one of these fixed points in that cyclic order on U*. Thus, for
all n > 0, A"(x) e A, and so A"(T) c A.

https://doi.org/10.1017/S0017089500002287 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500002287


FREE PRODUCTS OF TWO REAL CYCLIC MATRIX GROUPS

LEMMA 6. Let AeKA. Then AneJ for all n > 0.

123

Proof. An easy calculation shows that A eKv By Lemma 5, A eJ for all n > 0.
By Lemma 4, A"eJ for all n > 0.

LEMMA 7. Let AeK2. Then A"eJfor all n such that A" # /.

Proof. Let Be (A} be minimal of period 9, so that BeJ. Fix xeF. The points x, Bx,
B2x,..., Bq~lx occur in that cyclic order on U*. If one of these points other thanx were
in [—1, 1], then either Bxe[—l, 1] or B~1xe[—l, 1]. This is impossible since BeJ. Thus
{Bx, B2x,..., B9'^} <= A. Therefore, for all n such that A" # /, we have A"(x)eA, and so
^"(F) c A.

LEMMA 8. Let AeK3. Then A" eJfor all n such that A" $ I.

Proof. Since each AeK3 is an involution, the assertion is obvious.

PROPOSITION 1. IfAeK, then A"eJ for all n such that A" ^ I.

Proof. This follows from Lemmas 2, 5, 6, 7 and 8.

Proof of Theorem \. Suppose that Bm # / . By Proposition 1, B ~meJ. Thus

C""(A) = TB~mT(A) c TB~m(T) c T(A) = F.

Thus, by the Lemma in [4, p. 161], <^, C> = </4>*<C> unless A and C are involutions
such that (AC)" = /(« > 0). Suppose that the latter event occurs. We must show that

for some pair r,s satisfying s2—r2 = 1. Let E= { — 1,1}. Assume that C(E)^E. Then
there exists eeE such that C(e)eF, so that AC(e)eA. By induction, e = {AC)\e)eA, a
contradiction. Thus C(E) = E. Since (CA)n = /, similar reasoning shows that A{E) = E.
Therefore

^(<?(£)) = O(g(E)) = <?(£) = {0, 00}.

It follows that A9 and C9 each have one of the forms or . (The forms

0
1/M

u

0
and

v

0

0
are ruled out because

0 u
1/w 0

and
v 0
0 l/»

are not in /, by definition of /.) The latter form is an involution only if v = 1. Suppose
that A9 and C9 both have the former form, say

0
- 1 / M

U

0
C9 =

0
-1/w

w

0
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Then A9 = Cg, since otherwise {AC)9 has infinite period. Therefore we conclude that, for
some M,

{A9, a)
0 u

-1/w 0
1 0
0 - 1

for some pair r, s satisfying s2 — r2 = 1.

4. Discreteness. The free products </4> * <C> in Theorem 1 are, in fact, discrete. We
shall prove this now in the special case in which det/4 = d e t C = 1; we prove the result in
full generality in a paper to be submitted later. First we establish some propositions.

If we could find a larger class K' •=> K for which Proposition 1 held, we would be able
to improve Theorem 1. The next result (the converse of Proposition 1) shows that no such
K' exists.

PROPOSITION 2. Let A ^ I satisfy A"eJ for all n such that A" # /. Then AeK.

Proof. First suppose that det^ = 1. If \trA | ^ 2, then AeKv Suppose that \ttA\ < 2.
If A had infinite period, then {A"(0) : n = 1, 2 , . . . } would be dense in U; so there would
exist an n > 0 such that A"$J, a contradiction. Thus |tr.i41 = 2cos(np/q), with (p, q)= I,
<7 ^ 2. Since the power of A that is minimal is in / by hypothesis, AeK2.

Now suppose that del A = — 1. If A has finite period, then AeK3. If A has infinite
period, then, since ^42e/by hypothesis,

LEMMA 9. AeJ9 if and only if A "[- -]•
Proof. Suppose that AeJ9. Then

A[(0, oo)] = A[g(T)] c= <?(A) = ( - oo, 0).

It follows that {,4(0), /T'(()), ^(oo)} <= [ - oo, 0]. This shows that A=\+ + \.

Conversely, if A = , then A[(0, oo)] c ( - oo, 0), so that AeJ9.

PROPOSITION 3. Let A

that A" * I.

I. Then AeK9 if and only if A" = \ for all n such

Proof. This follows from Propositions 1 and 2 and Lemma 9.
The next theorem implies that (A, B') is the discrete free product <^>*<5'> for all

A, BeK of determinant 1. Another consequence is that all the real groups investigated by
Lyndon and Ullman in [4] are discrete.
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THEOREM 2. Let F o be an open interval in U* and let To be its closure. Let Ao = U*—To.
Suppose that A and C are real 2 x 2 matrices of determinant 1 satisfying the conditions

(1) A\T0) <= Ao for all n such that A" # /, and

(2) CB(A0) c Tofor all n such that C" ¥= I.

Then {A, C> is the discrete free product </4>*<C>.

Proof. By conjugating A and C, we may assume without loss of generality that F = F o

and A = Ao. Let B = C*. Since B=TC~1T,v/e have 5"(r) c A for all n such that 5" # /.

Thus, by Proposition 2, ,4, 5 e A". By Proposition 3, we have A9, B9 = \ . Define• • * • [ - - }
A j = (A9)1 where j is chosen as follows. If A e Kt, choose j e {1, — 1} so that A t has a matrix
whose upper entries are gO and whose trace is ^ 2 . If AeK2, choose j so that ^ has a
matrix whose upper entries are ^ 0 and whose trace is 2cos(7i/^) with q ^ 2, g e z . Define
2?! analogously. It is readily seen that ^A1,B\y is the discrete free product <y41>*<5'1>
if and only if {A9, CB")'> is the discrete free product O4»> •<(£")'>• Since (B9)' = (£')», it
suffices to show that <y4l5 2?j> is the discrete free product (Aty *(.B\y. This follows immedi-
ately from Newman's theorem [6, p. 159]. (For a proof of Newman's theorem, see [7, p. 212].)
This completes the proof.

The next theorem shows that, if A and C satisfy certain conditions given in [7, p. 210],
one can always find an interval F o for which the hypotheses of Theorem 2 hold.

THEOREM 3. Let A and C be real 2 x 2 matrices of determinant 1, neither of which is
elliptic of infinite period. If A has infinite period, let A t be the matrix for A satisfying tr A j 2: 2;
if A has finite period, let At be the matrix for the minimal transformation in <^> satisfying
trAi =2cos(n/q) with q^2, g e z . Define Q analogously. Suppose that A^^ - C , and
tr(/4f 'Cj) ^ — 2. Then A and C satisfy the conditions of Theorem 2 for some Fo .

Proof. View A± and Ct as transformations. It suffices to prove the conclusion with A
and C replaced by Ax and Cu respectively. As shown in [7, pp. 210-211], we may assume,

[ 0 - o ~ | P 0 -p,~]

and Ct = , , with ppt < 0. Suppose,
1/p Xj Ll/Pi AtJ

without loss of generality, that p > 0. Letting Bt = CJ, we have /41( 5 j = - B y
Lemma 9, /4l5 B^eJ9, so that v41; B^eK9 by definition of T̂. The result now follows from
Proposition 1.

5. Free products of matrices. In this section, unless otherwise specified, we interpret
matrices as elements of the real unimodular 2 x 2 matrix group G rather than the group G
of real linear fractional transformations. We define A in G as the image of AeG under the
natural homomorphism G-* G. Define K* = {A : AeK}.
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THEOREM 4. Lex A, BeK*, C = B'. Then (A, C> = (A} • <C> if any only if

i]}
and neither A nor B has even period ^ 4 .

Proof. Suppose that A or C, say A, has period 2n (n ^ 2). Then A" = —I. Consequently,
A"CAnC~1 = /, so that (A, C> ^ </4>*<C>. Conversely, suppose that

and neither .4 nor B has even period 2:4. Then it follows from Theorem 1 that </I, C> =
<I> * <C>. Assume that a reduced word ... A"Cm... in <y4, C> equals /. Then ... A"Cm...
equals 7, which is impossible because -/^</4>, - / ^<C>. Thus </l, C> = </4>*<C>. This
completes the proof.

. [a b l .^.
ices , with ul_c ^JLet L* be the set of unimodular matrices , with integer entries, infinite period,

and b dominant. Let L = {A: AeL*}. Goldberg and Newman [2] proved that, for all
A, BeL*, {A, B'y is free. The next theorem shows that this result is a special case of
Theorem 4.

THEOREM 5. L* <= K*.

Proof. We must show that Lc K. Let AeL. As is mentioned in [2, p. 446], \b—a\ ^

\d— c\. If the same reasoning is applied to eL, we obtain

Hence AeJ. This proves, incidentally, that L<zJ.
Suppose that det.4 = 1. Since A has infinite period, | t r / l | ^ 2 . Thus AeKv Now

suppose that det̂ 4 = — 1. It remains to show that A2eL, for then A2eJ and consequently

A eK4. Since A has infinite period, t = ttA # 0. Observe that A2 =

We may assume that | a+t~l | ^ | d+t'11, because there is no loss of generality in replacing
A2 by its inverse, since L = {A~l : AeL}. It remains to show that | i | > | f l + ?~1|. Clearly,

" J | g |a | + l ^ \b\. Assume that \a+t~l \ = \b\. Then/ = sgn(o) and

Va ± ( l+ | a | ) - l
[c - a + sgn(a)J

so that + c = — 1 +a2/(l + | a |). Since ce2, we must have a = 0. Therefore 161 = 1, which
contradicts the fact that b is dominant in A.

6. Dominance. For each A, write A" = \ " " . In [2] it is proved that, if AeL,
lcn dn]

then ftn is dominant in A" for all n ^ 0. The next theorem generalizes this result. We first
prove one lemma.
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LEMMA 10. Let AeK and suppose that (A'feJfor some n. Then

or A = \
ro n
|_i oj

9. Hence B$KA; so we must have

Proof. Let B = A". Since B'eJ, B^I. Thus BeK, by Propositions 1 and 2. By

Lemma 9, B9, (5")'= * * ] • Thus59 = ° °

B9 has the latter form, then (Be)2 = + +

and consequently v= 1. We have thus shown that B9 — o r > '•e<»

B — . « o r Mo r s o m e *">•*• In either case A has even period 2m. If 5 = I,

|_1 0J l-s -rj L1 °J

then det/4 = — 1, so that AeK3. Then ,4 = 2?= , the desired result. Suppose there-

fore that B = \ r S \. Let Me</4> be minimal. The sequence 1, M(l) M 2 " 1 " ^ )

\_-s -rj
occurs in R* in that cyclic order and each term lies outside of F by Lemma 7. However,
— 1 must be in the sequence because 5(1) = — 1 and B is a power of M. This is possible
only if - 1 6 {M(l), M~\l)}. Thus B = M or B = M" 1 , so that M 2 = /. Therefore A2 = /
and ,4 = 5, the desired result.

THEOREM 6. Let AeK. Then bn is dominant in A" for all n such that A" ^ I, unless

. ro n . r a b~\
A = \ \ o r A = \

L. J L _l
Proof. Let B = A" ^ /. Suppose without loss of generality that bn > 0. Since 5(0)

and 5~1(0) are not in F, by Proposition 1, bn> \an\, \dn\. Assume that bn is not dominant
in 5 . Then we have | cn \ _ bn > | an |, | dn |. Since BeJ, we have

(1) bn+an ^ (cn + dn)s, and
(2) bn-an>(cn-dn)s,

where •s = sgn(cn). Adding, we have fcn _ \cn\. Thus bn = \cn\ and equality must hold in
(1) and (2). It follows that B = \a" b"\. Hence B'eJ. By Lemma 10, A = r M or

|_^n raj LI 0J

/4 = , , the desired result.
l-b -aj

7. Comments on the literature. In [1], Brenner showed that A = and 5 =

generate a free group if | w | _ 2. Brenner asked if there were any algebraic me(0, 2) for
which </4, 5 ) is free «/4, 5 ) is easily seen to be free for transcendental m). In fact, Brenner's
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work answers his own question. For (as pointed out in [5]), it follows immediately that
</4, By is free when m has an algebraic conjugate of absolute value ^ 2. Since each meS =
{4cos7t0 : 9 rational, 0e(^, $)} has a conjugate of absolute value ^ 2 , we have a dense set of
algebraic m e (0, 2) for which (A, B~) is free. Thus Knapp [3, p. 304] was incorrect when he
claimed (in effect) that (A, B} is free for no value of me(0,2).

In [5, p. 1399], it is claimed that and generate a discontinuous group

(on the upper half-plane) when u = 2cosrox, with a rational. The condition " a rational"
should be replaced by the condition " a = \jq, with qeZ+ ".

In [4, p. 165], the description of a minimal transformation is rather ambiguous, since,
if | tr ̂  | is maximal, so is | tr 4̂ ~x |. With our definition of minimal in §2, the ambiguity is
eliminated and the theorems in [4] involving minimal transformations are correct. In
particular, Purzitsky's counterexample [7, p. 214] does not apply because the transformation

0r[ . , is not minimal.

Purzitsky's other counterexample [7, p. 213] is incorrect, since (3 + v5)/2 > (5 —V21)/2.
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