CORRESPONDENCE.

ON A TABLE FOR FACILITATING THE VALUATION OF ABSOLUTE REVERSIONS.

To the Editor of the Journal of the Institute of Actuaries.
Sir,-The accompanying Table, suggested by Mr. Sprague's Table of the Value of Life Interests (contained in the 8th volume of your Journal) will, I think, be found useful. Its title is sufficient explanation of the purpose for which it is intended.

The values indicated are based upon the well known formula $v-(1-v) a$, in which v is the present value of $£ 1$ due a year henee, and a the price of a whole-life annuity of $£ 1$; and it is evident that, whilst dealing with the same rate of interest, the difference between the results for any two given annuity prices consists of the difference between such prices multiplied by $(1-v)$. If a series of annuity prices be taken in arithmetical progression, the second term of the formula will form a series in like progression, causing the results of the whole expression to diminish by a constant quantity. When, therefore, the values for two prices are known, the value for any intermediate price can be found by the most simple method of interpolation.

If a be successively increased by one shilling, the series of values starting from that corresponding to an annuity costing x pounds, will be-

$$
\begin{array}{rccl}
\begin{array}{c}
£ \\
\text { for }
\end{array} x & 0 & 0 & v-(1-v) x \\
" x & 1 & 0 & v-(1-v) x-(1-v) \frac{1}{20} \\
", x & 2 & 0 & v-(1-v) x-(1-v) \frac{2}{20} \\
, x & 3 & 0 & v-(1-v) x-(1-v) \frac{3}{20}
\end{array}
$$

And similarly, if the successive increase be one penny, we shall have

$$
\left.\begin{array}{rccc}
f & s . & d . & \\
\text { for } x & 0 & 0 & v-(1-v) x \\
, & x & 0 & 1
\end{array}\right) v-(1-v) x-(1-v) \frac{1}{240} .
$$

from which it is seen that y shillings added to the annuity price diminish the value sought by $(1-v) \frac{y}{20}$, and that z pence diminish it by $(1-v) \frac{z}{240}$. Consequently the value corresponding with $\begin{array}{llll}x & s . & d . \\ x & y & z & \text { is }\end{array}$

$$
\begin{aligned}
& v-(1-v) x-(1-v) \frac{y}{20}-(1-v) \frac{z}{240}, \text { or } \\
& v-(1-v)\left(x+\frac{y}{20}+\frac{z}{240}\right)
\end{aligned}
$$

In the Table are given, the value for each whole number of pounds which occurs in practice, and the quantity to be deducted for each possible number of shillings, and of pence; so that the means are afforded for readily obtaining the value arising from a combination. To prevent any misunderstanding in the matter, it may be well to give an example. Suppose that an absolute reversion to $\mathfrak{£ 1 , 0 0 0}$ cash has to be dealt with; that the Life Tenant is a male, presently aged 65; and that we desire to know what sum will just secure a purchaser 5 per cent upon the total sum which he must invest. Taking the government price of an annuity, £8.17s.10d., we bave

$$
\begin{aligned}
& \text { for the } £ 8 \text {. . . } 571 \cdot 4286 \\
& \text { for the } 17 \mathrm{~s} \text {., to deduct, } \quad 40.4762 \\
& 530 \cdot 9524 \\
& \text { for the } 10 \mathrm{~d} \text {., to deduct, } \quad 1.9841 \\
& 528 \cdot 9683=£ 528.19 \text { s. } 4 d .
\end{aligned}
$$

I need hardly remark that, in some cases, the Table is applicable where two or more persons are enjoying the proceeds of a Trust Fund.

$$
\begin{aligned}
& \text { I am, Sir, } \\
& \quad \text { Your obedient servant, }
\end{aligned}
$$

> No. 1, Moorgate Street, London, 7 th December, 1868.

HENRY MOUNTCASTLE.

Table for ascertaining the Value of an Absolute Reversion; so as to allow the Purchaser a given rate of interest upon his outlay; according to the price of an Annuity payable during the life of the person at whose death the Reversion will fall in.

Sum requiredfor thepurchase ofan Annuty offl at thepresent Ageof theLife Tenant.	Value of a Reversion of $\boldsymbol{\mathcal { E } 1}$, assuming Interest at			
	4 per Cent.	42 per Cent.	5 per Cent.	512 per Cent.
£4	-807692308	$\cdot 784688995$	$\cdot 761904762$	$\cdot 739336493$
5	$\cdot 769230769$	$\cdot 741626794$	$\cdot 714285714$	-687203791
6	$\cdot 730769231$	-698564593	-666666667	-655071090
7	-692307692	-655502392	-619047619	-582938389
8	-653846154	-612440191	$\cdot 571428571$	-530805687
9	-615384615	- 569377990	$\cdot 523809524$	-478672986
10	- 576923077	-526315789	-476190476	-426540284
11	-538461538	-483253589	-428571429	-374407583
12	-500000000	-440191388	$\cdot 380952381$	-322274882
13	- 461538462	-397129187	$\cdot 333333333$	$\cdot 270142180$
14	-423076923	-354066986	$\cdot 285714286$	-218009479
15	-384615385	-311004785	$\cdot 238095238$	-165876777
16	-346153846	- 267942584	-190476190	-113744076
17	-307692308	-224880383	-142857143	-061611374
18	-269230769	-181818182	-095238095	$\cdot 009478673$
19	-230769231	-138755981	$\cdot 047619048$	
20	-192307692	-095693780		
21	-153846154	-052631579		
22	-115384615	-009569378		

Quantities to be deducted on account of shillings occurring in the price of the annuity.

$1 s$.	-001923077	$\cdot 002153110$	-002380952	$\cdot 002606635$
2	-003846154	-004306220	-004761905	-005213270
3	-005769231	$\cdot 006459330$	$\cdot 007142857$	-007819905
4	-007692308	-008612440	-009523810	-010426540
5	-009615385	-010765550	-011904762	-013033175
6	-011538462	-012918660	-014285714	-015639810
7	-013461538	$\cdot 015071770$	-016666667	-018246445
8	-015384615	-017224880	$\cdot 019047619$	-020853081
9	-017307692	-019377990	-021428571	$\cdot 023459716$
10	-019230769	$\cdot 021531100$	$\cdot 023809524$	$\cdot 026066351$
11	-021153846	-023684211	-026190476	-028672986
12	-023076923	$\cdot 025837321$	-028571429	-031279621
13	-025000000	$\cdot 027990431$	-030952381	-033886256
14	$\cdot 026923077$	-030143541	-033333333	$\cdot 036492891$
15	-028846154	-032296651	-035714286	$\cdot 039099526$
16	-030769231	$\cdot 034449761$	-038095238	$\cdot 041706161$
17	-032692308	-036602871	-040476190	-044312796
18	$\cdot 034615385$	-038755981	-042857143	$\cdot 046919431$
19	-036538462	-040909091	-045238095	$\cdot 049526066$

Quantities to be deducted on account of pence occurring in the price of the annuity.

$1 d$.	$\cdot 000160256$	$\cdot 000179426$	$\cdot 000198413$	$\cdot 000217220$
2	$\cdot 000320513$	$\cdot 000358852$	$\cdot 000396825$	$\cdot 000434439$
3	$\cdot 000480769$	$\cdot 000538278$	$\cdot 000595238$	$\cdot 000651659$
4	$\cdot 000641026$	$\cdot 000717703$	$\cdot 000793651$	$\cdot 000868878$
5	$\cdot 000801282$	$\cdot 000897129$	$\cdot 000992063$	$\cdot 001086098$
6	$\cdot 000961538$	$\cdot 001076555$	$\cdot 001190476$	$\cdot 001303318$
7	$\cdot 001121795$	$\cdot 001255981$	$\cdot 001388889$	$\cdot 001520537$
8	$\cdot 00128205 \mathrm{I}$	$\cdot 001435407$	$\cdot 001587302$	$\cdot 001737757$
9	$\cdot 001442308$	$\cdot 001614833$	$\cdot 001785714$	$\cdot 001954976$
10	$\cdot 001602564$.001794258	$\cdot 001984127$	$\cdot 002172196$
11	$\cdot 001762821$	$\cdot 001973684$	$\cdot 002182540$	$\cdot 002389415$

*** We print this modification of Orchard's tables in the form adopted by our correspondent; but we think no good purpose is served by giving more than five decimal places. In practice, it would probably be better to make the corrections additive: thus, taking the above example,

$$
\begin{aligned}
& \text { £8. } 17 \mathrm{~s} \text {. } 10 \mathrm{~d} .=£ 9-2 \mathrm{~s} .2 \mathrm{~d} \text {. } \\
& \text { Value for the } £ 9=523 \cdot 809524 \\
& \text { Add for the } \mathbf{\Sigma} \text { s. } \quad 4 \cdot 761905 \\
& \text { " " } 2 d . \quad 396825 \\
& \text { Value, as above, } \quad 528.968254
\end{aligned}
$$

> ED. J. I. A.

ON "TEN YEAR NON-FORFEITURE POLICIES."

To the Editor of the Journal of the Institute of Actuaries.
Srr,-If leisure had permitted I intended to have given in the last Number of the Journal a development of the suggestion contained in your foot note to my letter in the January Number, and to have looked at the American ten year non-forfeiture policies from the surrender point of view. I now propose to do this, and as all numerical results given in the present communication are based upon the Experience rate of mortality and three per cent interest, it will be advisable first to give the following recomputed values, on the same basis, of the numerical illustrations contained in my last letter.

Ageat Entry.	Law of Surrender.${\underset{1}{1}}_{p}=1, \underset{2}{p}=\underset{3}{p}=\underset{4}{p} \ldots=p_{9}(=p) .$				Law of Surrender.$p=1, \underset{2}{p}=p=p=p(=p), p=\frac{p}{7}=p=\underset{9}{p}=1 .$			
	$p=0$.	$p=\frac{1}{3}$.	$p=\frac{2}{3}$.	$p=1$.	$p=0$.	$p=\frac{1}{8}$.	$p=\frac{2}{3}$.	$p=1$.
30	$4 \cdot 674$	$4 \cdot 690$	$4 \cdot 686$	$4 \cdot 691$	$4 \cdot 674$	$4 \cdot 689$	$4 \cdot 683$	$4 \cdot 691$
40	5.636	$5 \cdot 633$	$5 \cdot 637$	$5 \cdot 630$	$5 \cdot 636$	5.632	5635	5.630
50	$7 \cdot 002$	$7 \cdot 091$	$7 \cdot 080$	$7 \cdot 088$	$7 \cdot 002$	$7 \cdot 088$	$7 \cdot 056$	$7 \cdot 088$

Each of these results denotes the annual premium per cent.
If, now, we call V_{n} the true cash surrender value of a policy at the end of the nth year, just before the $(n+1)$ th premium becomes due, and

